
High-coverage nanopore sequencing of samples from
the 1000 Genomes Project to build a comprehensive
catalog of human genetic variation

Jonas A. Gustafson,1,2,35 Sophia B. Gibson,1,3,35 Nikhita Damaraju,1,5,35

Miranda P.G. Zalusky,1 Kendra Hoekzema,3 David Twesigomwe,6 Lei Yang,7

Anthony A. Snead,8 Phillip A. Richmond,9 Wouter De Coster,10,11 Nathan D. Olson,12

Andrea Guarracino,13,14 Qiuhui Li,15 Angela L. Miller,1 Joy Goffena,1

Zachary B. Anderson,1 Sophie H.R. Storz,1 Sydney A. Ward,1 Maisha Sinha,1

Claudia Gonzaga-Jauregui,16 Wayne E. Clarke,17,18 Anna O. Basile,17 André Corvelo,17

Catherine Reeves,17 Adrienne Helland,17 Rajeeva Lochan Musunuri,17

Mahler Revsine,15 Karynne E. Patterson,3 Cate R. Paschal,4,19 Christina Zakarian,3

Sara Goodwin,20 Tanner D. Jensen,21 Esther Robb,22 The 1000 Genomes ONT
Sequencing Consortium, University of Washington Center for Rare Disease Research
(UW-CRDR), Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR)
Consortium, William Richard McCombie,20 Fritz J. Sedlazeck,23,24,25 Justin M. Zook,12

Stephen B. Montgomery,21 Erik Garrison,13 Mikhail Kolmogorov,26

Michael C. Schatz,14 Richard N. McLaughlin Jr.,2,7 Harriet Dashnow,27,28

Michael C. Zody,16 Matt Loose,29 Miten Jain,30,31,32 Evan E. Eichler,3,33,34

and Danny E. Miller1,4,33
1Division of Genetic Medicine, Department of Pediatrics, University ofWashington, Seattle, Washington 98195, USA; 2Molecular and
Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA; 3Department of Genome Sciences,
4Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA; 5Institute for
Public Health Genetics, University of Washington, Seattle, Washington 98195, USA; 6Sydney Brenner Institute for Molecular
Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; 7Pacific Northwest
Research Institute, Seattle, Washington 98122, USA; 8Department of Biology, New York University, New York, New York 10003,
USA; 9Alamya Health, Baton Rouge, Louisiana 70806, USA; 10Applied and Translational Neurogenomics Group, VIB Center for
Molecular Neurology, VIB, Antwerp 2650, Belgium; 11Department of Biomedical Sciences, University of Antwerp, Antwerp 2000,
Belgium; 12Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899,
USA; 13Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee
38163, USA; 14Human Technopole, Milan 20157, Italy; 15Department of Computer Science, Johns Hopkins University, Baltimore,
Maryland 21218, USA; 16International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el
Genoma Humano, Universidad Nacional Autónoma de México, Mexico City 76230, Mexico; 17New York Genome Center, New York,
New York 10013, USA; 18Outlier Informatics Inc., Saskatoon, Saskatchewan S7H 1L4, Canada; 19Department of Laboratories,
Seattle Children’s Hospital, Seattle, Washington 98195, USA; 20Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
11724, USA; 21Department of Genetics, 22Department of Computer Science, Stanford University, Stanford, California 94305, USA;
23Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; 24Department of Molecular and
Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 25Department of Computer Science, Rice University,
Houston, Texas 77251, USA; 26Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA;

35These authors contributed equally to this work.
Corresponding author: dm1@uw.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.279273.124.
Freely available online through the Genome Research Open Access option.

© 2024 Gustafson et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution-NonCommercial 4.0
International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Resource

34:2061–2073 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/24; www.genome.org Genome Research 2061
www.genome.org

mailto:dm1@uw.edu
https://www.genome.org/cgi/doi/10.1101/gr.279273.124
https://www.genome.org/cgi/doi/10.1101/gr.279273.124
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


27Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA; 28Department of Biomedical Informatics,
University of Colorado School of Medicine, Aurora, Colorado 80045, USA; 29Deep Seq, School of Life Sciences, University of
Nottingham, Nottingham NG7 2TQ, UK; 30Department of Bioengineering, 31Department of Physics, 32Khoury College of Computer
Sciences, Northeastern University, Boston, Massachusetts 02115, USA; 33Brotman Baty Institute for Precision Medicine, University of
Washington, Seattle, Washington 98195, USA; 34Howard Hughes Medical Institute, University of Washington, Seattle, Washington
98195, USA

Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis

after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using

long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering

and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP)

Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples.

Our goal is to use LRS to identify a broader spectrum of variation so wemay improve our understanding of normal patterns

of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19

subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have

high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer re-

gions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome,

including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated

repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known

imprinted loci, samples with skewedX-inactivation patterns, and novel differentially methylated regions. All raw sequencing

data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics

community to discover pathogenic SVs.

[Supplemental material is available for this article.]

As an initiative to sequence a large set of healthy reference ge-
nomes from globally diverse ancestries, the 1000 Genomes
Project (1KGP) marked a significant milestone in genomic re-
search, yielding the first sequencing-basedmap of normal patterns
of human genetic variation for filtering and prioritizing candidate
disease-causing variants (International HapMap Consortium
2005; The 1000 Genomes Project Consortium 2015; Byrska-
Bishop et al. 2022). The impact of 1KGP on our understanding
of human genetic diversity has been enormous, and the flagship
papers have been cited more than 10,000 times in clinical and ba-
sic research studies. The success of the project has been amplified
by the use of diverse, high-quality, open-access data sets, and data-
bases such as gnomAD (Koenig et al. 2024) and DECIPHER (Firth
et al. 2009) have built on the 1KGP principles for determining
the population allele frequency of variants to aid in variant inter-
pretation. Pooling of data from large projects has improved the
usefulness of these databases, and analyses of 1KGP data to date
have made profound contributions using arrays or short-read se-
quencing technology. However, these approaches are inherently
limited in their ability to identify variants in complex genomic re-
gions or to capture certain types of genetic differences, such as
structural variants (SVs), repeat expansions, and epigenetic
changes (Chaisson et al. 2019; Ebert et al. 2021; Liao et al. 2023).

SVs—defined as insertions, deletions, duplications, inver-
sions, repeat expansions, and translocations at least 50 bp in size
—are major contributors to genetic diversity and disease suscepti-
bility and are more likely to have a larger effect size than single nu-
cleotide variants (SNVs) (Eichler 2019). SV calling using short-read
sequencing can be challenging because it detects fewer thanhalf of
the ∼25,000 SVs present in an individual, is incapable of fully re-
solving the complex structure of many SVs, and has low concor-
dance between callers (Cameron et al. 2019; Chaisson et al.
2019; Zhao et al. 2021). These challenges extend into clinical test-
ingwhere commonly used approaches, such as exome sequencing,
have low sensitivity for SV detection, meaning individuals with

disease-causing SVs may remain undiagnosed (Hiatt et al. 2021;
Miller et al. 2021; Cohen et al. 2022; AlAbdi et al. 2023).
Therefore, there is broad interest in using long-read sequencing
(LRS) to develop comprehensive catalogs of common human SVs
to facilitate improved detection of disease-associated variants
(Wojcik et al. 2023).

LRS has increasingly demonstrated its ability to detect and re-
solve SVs missed by traditional methods. Previous concerns about
cost, error rates, sample preparation, and computational tools
for both commercially available LRS technologies (Pacific
Biosciences, PacBio and Oxford Nanopore Technologies, ONT)
have largely been resolved (Logsdon et al. 2020; Wang et al.
2021; Kolmogorov et al. 2023), paving the way for its adoption
into clinical settings (Wojcik et al. 2023; Damaraju et al. 2024).

Building on the landmark effort of the 1KGP, the 1000
Genomes Project ONT Sequencing Consortium (1KGP-ONT) is le-
veraging ONT LRS with the goal of generating high-coverage,
high-quality sequencing data from the 1KGP sample set. This in-
ternational initiative aims to: (1) assess both assembly-based and
alignment-based approaches to LRS data analysis; (2) evaluate var-
iants in difficult-to-analyze regions of the genome; and (3) facili-
tate the identification of SVs not fully characterized by short-
read approaches. This effort is complementary to work from other
groups performing PacBio LRS of 1KGP samples, such as the
Human Pangenome Reference Consortium (HPRC) (Wang et al.
2022) and the Human Genome Structural Variant Consortium
(HGSVC) (Ebert et al. 2021), as well as lower coverage and N50
ONT sequencing from Schloissnig et al. (2024). With these collec-
tive endeavors, it is increasingly likely that the entire collection
will ultimately be sequenced using both LRS platforms.
Following 1KGP principles, all data generated through the 1KGP-
ONT Consortium are publicly released for immediate incorpora-
tion into clinical and basic research projects.

Here, we present our analysis of the first 100 samples se-
quenced by the 1KGP-ONT Consortium. Because a major goal of
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the consortium is to develop a catalog of common human SVs for
filtering and prioritizing disease-associated SVs, we demonstrate
how SV data from a modest number of individuals can be used
to filter variants in unsolved cases and identify high-priority re-
gions for follow-up analysis. We also describe variation that would
be difficult or impossible to detect or fully resolve using short-read
technology, including disease-associated repeat expansions,
skewed X-Chromosome inactivation in 46,XX samples, and differ-
entially methylated regions (DMRs) unique to individual samples.

Results

Approximately 3200 cell lines or DNA samples from the 1KGP are
available at the National Human Genome Research Institute
(NHGRI) Sample Repository for Human Genetic Research housed
at the Coriell Institute for Medical Research repositories (Coriell)
(International HapMap Consortium 2005; The 1000 Genomes
Project Consortium 2015). These anonymized samples, which
are not associated with medical or phenotypic data, are from indi-
viduals who self-reported ancestry, sex, and good health at the
time of sample collection. We selected 100 samples from all five
superpopulations based on their absence from other large-scale se-
quencing efforts (Ebert et al. 2021; Liao et al. 2023; Schloissnig
et al. 2024); we did not attempt to balance subpopulations within
these samples, and four of the 100 samples represent two parent–
child pairs (Fig. 1A; Supplemental Table S1).

Sequencing pipeline

High molecular weight (HMW) DNA was isolated from lympho-
blastoid cell lines (LCLs) cultured in the laboratory, and samples
were sequenced using the ONT R9.4.1 pore with an average depth
of coverage of 37.4× and read N50 of 53.8 kbp (Fig. 1B;
Supplemental Table S2). All samples were processed using two sep-
arate pipelines (Fig. 1C). First, an internal alignment pipeline used
minimap2 for alignment, Clair3 for small variant calling, and
Sniffles2, cuteSV, and SVIM for SV calling (Li 2018; Heller and
Vingron 2019; Jiang et al. 2020; Zheng et al. 2022; Smolka et al.
2024). SNV calls from this pipeline were used to ensure sample
identity by comparison with previous short-read-based variant
calls (Byrska-Bishop et al. 2022). Second, samples were processed
using the Nanopore Analysis Pipeline (Napu), which generates as-
sembly-based SV calls using hapdiff after generating a phased de

novo assembly using Shasta–Hapdup,minimap2 alignment-based
small variant calls using PEPPER-Margin-DeepVariant (PMDV),
and minimap2 alignment-based SV calls using Sniffles2 (Shafin
et al. 2021; Kolmogorov et al. 2023; Smolka et al. 2024).

Small variant accuracy

We evaluated the performance of our variant-calling pipelines by
comparing small variant calls (SNVs and indels <50 bp) to those
generated by prior studies and using orthogonal short- and long-
read sequencing technologies. We first compared the ONT se-
quencing of five samples (outside of our 1KGP cohort) to
Genome in a Bottle (GIAB) benchmarking data and the HiFi
PacBio data from the Human Pangenome Research Project.
Restricting analysis to the GIAB high-confidence regions for
HG002 resulted in F1 scores >0.984 for SNVs and >0.699 for indels
for both data sets (Supplemental Table S3). However, these values
were highly influenced by the presence of homopolymers in the
ONT data (Harvey et al. 2023; Kolmogorov et al. 2023). When ho-
mopolymers were removed from the analysis, F1 scores increased
to >0.984 for SNVs and >0.874 for indels (Supplemental Fig. S1;
Supplemental Table S4). Next, we compared ONT data from our
1KGP cohort to complementary Illumina data.We observed an av-
erage F1 score of 0.982 for SNVs and 0.878 for indels outside of ho-
mopolymers. (Supplemental Fig. S2; Supplemental Table S5).
These results validated that both variant-calling approaches
(Clair3 and PMDV) produced high-quality small variant calls con-
cordant with prior studies (Kolmogorov et al. 2023).

Genome assembly

We performed de novo genome assemblies for each of the 100
samples using both the Napu pipeline (which runs Shasta–
Hapdup) and Flye (Shafin et al. 2020; Kolmogorov et al. 2023).
In general, we found that Flye assemblies had a higher contig
NG50 than Shasta–Hapdup assemblies (Fig. 2A), and results were
robust to read N50 differences (Fig. 2B). We saw similar contig
NG50 patterns when our analysis included the five benchmarking
genomes with similar average depth of coverage and readN50. The
assembled genomes were highly complete, with each assembly
covering ∼93.5% (Flye) or 93.6% (Shasta–Hapdup) of the
GRCh38 reference genome (Supplemental Fig. S3) with a consen-
sus accuracy similar to previously published studies using the R9
pore (Fig. 2C; Kolmogorov et al. 2023).

We investigated why many of the
Flye assemblies had similar contig NG50
values by plotting the contig breakpoints
for both the Shasta–Hapdup and Flye as-
semblies. Among the100Flyeassemblies,
97.1% of assembly breaks occurred with-
in regions annotated as segmental dupli-
cations (segdups), satellite sequences, or
both, while 2.9% occurred within non-
repetitive sequence (Supplemental Table
S6). Among the 2.9% of assembly breaks
in nonrepetitive sequence, 90% were
seen in only one sample, suggesting sto-
chastic artifacts of the assembly process.
A focused analysis of Chromosome 7 re-
vealed an increased number of contig
breaks in the telomeric and pericentro-
meric regions for both Flye and Shasta–
Hapdup assemblies (Fig. 2D) and at
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positions flanking well-described recurrent copy number changes
associated with disease (Morris 1993). Visual analysis of breaks in
nonrepetitive sequence did not reveal sample-specific differences
that would easily explain the break in assembly, such as a duplica-
tion, inversion, or increased number of SNVs, suggesting that local
sequence variation did not influence the position of assembly
breaks in nonrepetitive regions (Supplemental Fig. S4). A list of as-
semblybreaks in 20 ormore samples fromeither the Flye or Shasta–
Hapdup assemblies genome-wide is available (Supplemental
File S1).

We then evaluated contig size across superpopulation groups
and the assembly of disease-associated OMIM genes. The median
contig size per sample excluding contigs <1 Mbp (Fig. 2E) was
higher for African ancestry samples. This was expected given the
higher genetic diversity in individuals of African ancestry, which
results in a higher number of distinct sequences leading to longer
and more contiguous sequences in the assembly. Next, we exam-

ined how well disease-associated genes
were assembled in these samples.
Among 4615 disease-associated OMIM
genes (excluding genes on the X and Y
Chromosomes), we found that 97%
(4492/4615) and 97% (4475/4615) of
genes in the Flye or Shasta–Hapdup as-
semblies, respectively, were completely
and correctly assembled (i.e., they were
spanned by a single, complete contig)
in at least 95 out of 100 samples
(Supplemental File S2). Among the 200
assemblies (100 Flye and 100 Shasta–
Hapdup), we found that five OMIM
genes were incompletely assembled in
all 200 assemblies and another 45
OMIM genes were incompletely assem-
bled in at least 50 or more of the 200 as-
semblies (Fig. 2F). We observed more
incompletely assembled genes in the
Shasta–Hapdup assemblies, partly due
to the requirement for a single gene to
be entirely spanned by a single contig
in both haplotypes for it to be considered
fully assembled.

We subsequently applied Pan
Genome Graph Building (PGGB) to con-
struct chromosome-level pangenome
graphs from the 100 Shasta–Hapdup as-
semblies and generate multisample vari-
ant calls including all types of variants
(Garrison et al. 2023). To investigate the
differences between assembly approach-
es, we performed principal component
analysis (PCA) on a Chromosome 20
pangenome graph created by combining
the 100 Shasta–Hapdup assemblies with
44 assemblies from the HPRC (Liao
et al. 2023). The PCA showed a clear sep-
aration between the two pangenomes
(Supplemental Fig. S5A). However, a
PCA based on the euchromatic, noncen-
tromeric fraction of the Chromosome 20
graphdemonstrates that this difference is
primarily due to the improved resolution

of highly repetitive sequences by the HiFi-based HPRC assemblies
(Supplemental Fig. S5B), supporting the high-quality nature of our
assemblies.

Variation within active transposable elements

The largely repetitive and polymorphic nature of active transpos-
able elements, especially full-length long interspersed element 1
(LINE-1) and endogenous retroviruses (ERVs), makes them
challenging to fully resolve and characterize using short-read as-
semblies (Yang et al. 2024). We anticipated that long-read assem-
blies would allow us to overcome these challenges. Using
RepeatMasker (https://www.repeatmasker.org), we identified in-
terspersed repeats in the 100 Shasta–Hapdup assemblies and found
that the fraction of major interspersed repeats differs by no more
than 3% compared to that of the T2T-CHM13 assembly
(Supplemental Table S7; Nurk et al. 2022). Furthermore, there
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was minimal variation among the 100 assemblies in interspersed
repeat content.

Among the youngest polymorphic interspersed repeats that
are too long to resolve with short reads (Chaisson et al. 2019),
LINE-1s (∼6000 bp) are the only types that are actively expanding
in the human genome. We found that the total base pairs of
LINE-1 sequence (including young and old LINE-1s) in the 100 as-
semblies (496 Mbp average) is lower than observed in the CHM13
T2T assembly (512 Mbp), likely due to LINE-1s within unassem-
bled regions. To measure the ability of
these ONT-based assemblies to resolve
young LINE-1s, we calculated the num-
ber of the youngest LINE-1 elements
(L1HS) and the number of full-length
(≥6 kbp) L1HS elements. Overall, we
found similar numbers of L1HS and
full-length L1HS sequences compared
to HG002 and HG005 from GIAB and
the CHM13T2T assembly (Supplemental
Fig. S6). Although HERV-Ks (∼9000 bp)
are unlikely to be actively replicating in
modern humans, like LINE-1s, they are
known to be polymorphic in the human
population (Subramanian et al. 2011; Li
et al. 2019). Therefore, we also counted
the number of full-length HERV-Ks
(HERVK-int) and found that the number
per genome is similar among the 100 as-
semblies and CHM13 T2T, HG002, and
HG005. This demonstrates that these as-
semblies are of sufficient quality to re-
solve the youngest long interspersed
repeats and that there is variation in the
number of these insertions among differ-
ent human populations.

Structural variant analysis

We called SVs using four alignment-based
and one assembly-based method (see
Methods) and compared them to
a known set of SV calls generated by
the HPRC (Liao et al. 2023). From three
of the five genomes used for small vari-
ant benchmarking (HG002/NA24385,
HG00733, and HG02723) we identified
an average of 23,732 SVs across all five
callers. This is similar to the average of
22,755 SVs among 15 human genomes
assembled by Audano et al. (2019) but
less than those predicted by the HPRC
and HGSVC (Ebert et al. 2021; Liao et al.
2023). The greater number than Audano
et al. (2019) is expected given that those
were called with older PacBio chemis-
tries (RSII CLR) and an approach, SMRT-
SV, that excluded SV calls in some
pericentromeric regions or regions where
variant calls were considered less reliable.
Benchmarking against theHPRCSniffles2
SV calls (Liao et al. 2023) and restricting
calls to regions within the GIAB HG002

SV Tier1 v0.6 benchmarking regions (GIAB Tier1 Regions) (Zook
et al. 2020) revealed F1 scores >90% for both methods among all
three samples (Fig. 3A). When comparing genome-wide SV calls
(not restricted to the GIAB Tier1 regions), our F1 score decreased
to ∼70% for all three samples, suggesting difficulty in generating
concordant SV calls in low complexity or repetitive regions of the
genome (Supplemental Table S8).

We observed high per-caller concordance between the num-
ber of SV calls from the three benchmarking genomes and the
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Figure 3. SV call set. (A) SV calls were benchmarked against HPRC Sniffles2 SV calls within the GIAB
HG002 SV Tier1 benchmarking regions. (B) A similar number of genome-wide SVs were identified by
all five callers used in this study. The confident call set is defined as variants called by hapdiff and at least
two unique alignment-based callers. For each call set, the average number of deletions (DEL), insertions
(INS), and total SVs (including INV, DUP, and BND events) per sample is shown. (C) Histogram of inser-
tion and deletion counts stratified by size. The peak ∼300 bp represents Alu insertions or deletions, and
the peak ∼6 kbp represents LINE insertions or deletions. (D) Cumulative novel SVs per sample. The fre-
quency of new SVs observed increases when samples from individuals of African ancestry are included.
(E) Upset plot of overlap among SV callers after merging with Jasmine. For each sample, five VCF files
were merged, demonstrating that the majority of calls in each sample were called by all five callers. (F)
Among 113,696 SVs from the Jasmine-merged confident call set, 12,432 were found in exactly two sam-
ples, with 6181 (50%) of those calls in pairs in which both samples are from the African superpopulation.
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100 genomes presented here (Fig. 3B). Across the five callers, we
identified an average of 24,543 SVs per sample (min: 20,068,
max: 28,734), similar to the 23,000–28,000 SVs per sample report-
ed by the HGSVC (Ebert et al. 2021). Consistent with prior work,
we observed more total SV calls in samples from the African super-
population (The 1000 Genomes Project Consortium 2015;
Audano et al. 2019; Ebert et al. 2021). The distribution of inser-
tions and deletions called in this data set was also as expected,
with an Alu peak ∼300 bp and LINE peak ∼6 kbp (Fig. 3C). A gen-
erally proportional number of SVs per chromosome was observed
and, on average, more insertion than deletion events were identi-
fied per chromosome for all SV callers (Supplemental Fig. S7). The
genome-wide distribution of total SV events was as expected, with
more insertions and deletions near the telomeres and centromeres
(Supplemental Fig. S8). We identified an increasing number of
novel SVs, excluding breakends (BNDs), for each additional sample
sequenced among all SV callers (Fig. 3D).

Because the primary goal of our study is to identify and cata-
log high-quality SVs among the 1KGP samples, wemerged the SVs
from each of the five SV callers per sample using Jasmine (Kirsche
et al. 2023). We observed high concordance between SV callers
across all samples (Fig. 3E), with an average of 16,722 SVs per sam-
ple called by all callers and no individual sample having an SV type
that was noticeably higher or lower than other samples within the
same superpopulation (Supplemental Fig. S9A). An average of
20,242, 22,685, 25,540, and 34,796 SVs were called by at least
four, three, two, or one callers, respectively (Supplemental Fig.
S9B).

The SVs called exclusively by hapdiff represent the majority
of SVs called by a single caller. Because hapdiff was the only assem-
bly-based caller in our data set, we examined whether these calls
represented false positives or SVs in regions where alignment
may be challenging. Our analysis found that of the 407,779 SVs
(excluding BNDs) called only by hapdiff across all 100 samples,
151,575 (37.1%) were fully or partially within a segdup or within
1000 bp of a segdup, suggesting that they may be in complex
copy-number polymorphic regions of the genome, and thus po-
tential artifacts because of their proximity to a segdup. Of the
SVs that were not fully within, partially within, or within 1000
bp of a segdup, 119,255 (46.5% of the remaining SVs) overlap a
variable number tandem repeat (VNTR) region. Analysis of SVs
called only by hapdiff did not reveal any individual sample or pop-
ulation outliers (Supplemental Fig. S9C), and visual analysis of 30
randomly selected SVs from this set found that 28/30 were likely
false-positive calls (Supplemental Fig. S10). This suggests that dif-
ficult-to-assemble regions are a major source of false-positive as-
sembly-based SV calls and that annotating SV calls with
information about genomic context might provide insight into
the confidence of these calls.

An SV frequency call set was generated that represented SVs
called by all five callers (100,915 total SVs), four or more
(119,805 total SVs), three or more (133,766 total SVs), two or
more (155,407 total SVs), or at least one caller (252,954 total
SVs). Among the 100 samples described here, there were a total
of 113,696 shared or unique high-confidence SVs (SVs identified
by hapdiff and two or more unique callers, excluding BNDs),
with 32% found in only one sample (36,096 of 113,696). We
found that 12,432 (11%) of these shared SVs were seen in exactly
two samples, and that approximately half of these shared SVs
were in samples only from the African superpopulation (Fig. 3F),
similar to previous analysis (The 1000 Genomes Project
Consortium 2015). Among 50,458 high-confidence SVs that inter-

sect protein-coding genes, 97% (49,142/50,458) are within or in-
clude intronic sequence, 3.3% (1654/50,458) are within or
include coding sequence, and 2.0% (992/50,458) are within or in-
clude a 5′ or 3′ untranslated region (UTR).

To investigate the functional significance of SVs on gene ex-
pression, we performed an SV-eQTL analysis using the merged SV
call set and the recently published MAGE data set, which includes
RNA-seq data from 731 samples from the 1KGP cohort
(Supplemental Fig. S11A; Taylor et al. 2023). Among 65 samples
shared between MAGE and this study, we found 153 significant
SV-eQTLs (Q-value<0.05), of which 37 were previously found us-
ing a collection of 31 diverse LRS-based genomes (Supplemental
Fig. S11B). This includes a 484 bp insertion associated with
ZNF79, a gene implicated in neurological diseases (Supplemental
Fig. S11C,D; Bu et al. 2021). This analysis also revealed several
new significant associations, including an 81 bp deletion not pre-
viously detected (Kirsche et al. 2023) that is associated with the
NAPRT gene, an important factor in cancer susceptibility
(Supplemental Fig. S11E,F; Duarte-Pereira et al. 2021). To further
explore the application of the variant call set for SV-eQTL discov-
ery, we genotyped the SVs in all 731MAGE individuals using their
matched short-read genomic data fromByrska-Bishop et al. (2022).
Using the 65 samples common to both the 1KGP-ONT andMAGE
data sets, we found the genotype consistency was >98% between
the short- and long-read data sets after filtering for tandem repeats
and Hardy–Weinberg consistency (Supplemental Fig. S11G).
Across all 731 samples, we identified 1324 significant SV-eQTLs,
of which 1258 were uniquely in the short-read data, including a
2716 bp deletion associated withGBP3, a gene implicated in infec-
tious diseases and immune responses (Supplemental Fig. S11H;
Tretina et al. 2019).

Structural variation within medically relevant genes

Sequencing of samples from all five superpopulations allowed us
to evaluate population-specific SVs intersecting genes associated
with an OMIM phenotype (n=4866) and revealed 349 high-confi-
dence SVs in or including at least one defined exon (Supplemental
Fig. S12A; Supplemental Table S9). These events ranged in size
from 50 bp (deletions in TNFRSF13C and TF and insertion in
IMPG2) to 87,776 bp (a deletion that fully includes IGHM).
Visual analysis of 30 randomly selected events confirmed that all
were likely true positives. These 349 SVs are distributed across all
chromosomes and impact 335 exons in 236 unique OMIM genes,
with 123 of those 335 exons containing ClinVar variants that are
annotated as pathogenic or likely pathogenic (Supplemental Fig.
S12B). We found that 150/349 (43%) of these SVs were found in
only one sample, and no single sample had more than six unique
SVs (HG01369). Three SVs (a 458 bp insertion inABCC11, a 243 bp
insertion in XYLT1, and a 118 bp insertion inMED13L) were seen
in all 100 samples, suggesting the reference genome represents a
minor allele at these positions. Indeed, GRCh38 has been patched
to include a similar insertion in XYLT1. Of the 38 SVs observed in
only two samples, 76% (29/38) were superpopulation-specific
with 55% of those (16/29) seen in samples from the African super-
population. We observed four SVs spanning multiple genes, some
of which are known population variants. This includes a 22.8 kbp
deletion spanningHBB,HBD, andHBG1 associated with beta thal-
assemia (Huisman et al. 1972) (MIM: 613985) and two samples
with a 19,304 bp deletion including HBA1 and HBA2 commonly
referred to as the Southeast Asian deletion (Farashi and Harteveld
2018) (MIM: 604131) (Supplemental Fig. S13).
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Wedid not expect to find rare SVs in X-linkedOMIMgenes in
46,XY samples, since those events would bemore likely to be asso-
ciated with a disease. However, we did find five such events in at
least one 46,XY sample. Of these, four were in a 3′ UTR and were
observed in at least two 46,XX samples. One of the four events,
found in only one sample, was an ∼141 bp insertion in exon 15
of RPGR (OMIM: 312610), a gene associated with several X-linked
conditions including retinitis pigmentosa, cone-rod dystrophy,
and macular degeneration (Fahim et al. 1993). A similar insertion
at this position has been reported twice in ClinVar as a variant of
uncertain significance (VUS) associated with primary ciliary dyski-
nesia, once as a 141 bp insertion (ClinVar entry 2121719) andonce
as a 69 bp insertion (ClinVar entry 1975740). Evaluation of the
short-read sequencing data for this sample at this position did
not clearly demonstrate the insertion, but the insertion consists
of only C- and T-nucleotides, which would make it difficult to
align and evaluate using short-read technology (Supplemental
Fig. S14). The presence of this insertion in a 46,XY 1KGP sample
suggests that this variantmay be present at a higher allele frequen-
cy than expected, is difficult to reliably call using short-read tech-
nology, or could be associated with a later onset of the associated
phenotype.

A substantial number of high-confidence SVs were observed
in regions of the genome difficult to evaluate using short reads,
meaning they may be filtered by variant annotation pipelines.
For example, 42% (47,315/113,696) of the high-confidence SVs
occur fully outside of the GIAB Tier 1 regions, and visual inspec-
tion of 30 events confirmed the presence of an SV. We also identi-
fied 407 high-confidence SVs within coding regions defined as
unreliable for variant identification using short-read sequencing
based on analysis of gnomAD data (Hijikata et al. 2024). Finally,
9788 of the high-confidence insertions were ≥500 bp, which
may preclude accurate resolution of these events and limit our un-
derstanding of their impact on gene expression or splicing when
evaluated using short-read technology.

Cytochrome P450 (CYP) genes impact drug response and are
among the gene sets that are challenging to interrogate using
short-read technologies and may require separate variant calling
approaches to fully evaluate (Zanger and Schwab 2013, Lee et al.
2019). Within this data set, LRS enabled better resolution of full
gene deletion and duplication SV events in highly polymorphic
CYP pharmacogenes such as CYP2D6, a pharmacogene involved
in themetabolism of over 20%of clinically prescribedmedications
(Zanger and Schwab 2013). For example, we identified one individ-
ual (HG02396) with a CYP2D6 gene deletion (∗5) on one haplo-
type and a hybrid tandem arrangement (∗36+ ∗10)—shown via
an insertion—on the second haplotype (Supplemental Fig.
S15A). In the equivalent short-read WGS data, it can be difficult
to identify both the gene deletion and the hybrid tandem star al-
lele in the same individual using specialized short-read genotyping
tools (Twesigomwe et al. 2023). Analysis of a known complex
CYP2B6 star allele (CYP2B6∗29) showed that it was called by hap-
diff but not the alignment-based callers, demonstrating that some
of these complex allelesmay not be represented in our initial high-
confidence SV set (Supplemental Fig. S15B; Twesigomwe et al.
2024).

We used Jasmine to test whether the SVs identified in these
100 samples could be used to accurately filter SVs in 16 cases
with known disease-associated SVs identified by whole-genome
(eight cases) or targeted (eight cases) ONT sequencing
(Supplemental Table S10; Miller et al. 2021; Wilderman et al.
2024). Among the eight cases that had undergone whole-genome

LRS, filtering reduced the average number of SVs called by Sniffles2
by 93% (from 22,743 to 1664), and in all 16 cases the pathogenic
SV was retained after filtering. Subsequent annotation of the fil-
tered SVs (i.e., if the SV intersects with a gene, if that gene is asso-
ciated with an OMIM phenotype, if the SV is exonic, if the SV is
within a segmental duplication or low complexity region, etc.) al-
lowed us to substantially further narrow the output candidate
SVs. This demonstrates that the high-confidence SV calls can be
used to filter SVs in cases with high suspicion of a monogenic
condition.

Analysis of disease-associated repeat expansions

Tandem repeat expansions (e.g., short tandem repeats [STRs] and
VNTRs) at more than 60 loci have been implicated in human dis-
eases such as the GGC expansion in the 5′ UTR of XYLT1 (MIM:
608124) associated with Baratella–Scott syndrome (MIM:
300881) (Hannan 2018; Depienne and Mandel 2021). Pathogenic
repeat expansions associated with monogenic disease can be diffi-
cult to precisely size or fully sequence-resolve using short-read se-
quencing, meaning clinically relevant interruptions in the repeat
may not be easily identified (Chaisson et al. 2023; Tanudisastro
et al. 2024). Thus, there is interest in using LRS to evaluate repeat
expansions genome-wide and at clinically relevant loci (Sulovari
et al. 2019; Reis et al. 2023; Dolzhenko et al. 2024).

We used vamos (Ren et al. 2023) to perform genome-wide
haplotype-resolved analysis of 562,005 loci—including 66 dis-
ease-associated loci—consisting of both simple and complex re-
peat units, and identified pathogenic-sized expansions in RFC1,
ATXN10, FGF14, and ATXN80S (Fig. 4A; Supplemental Figs. S16–
S19; Supplemental File S3; Hiatt et al. 2024). We also identified al-
leles over the pathogenic threshold but with a benign motif in
SAMD12, BEAN1, and DAB1, as well as several alleles at AR where
the total repeat count was over the threshold but the CAG motif
was only a portion of the region.

Expansions in RFC1, which are associated with autosomal re-
cessive cerebellar ataxia, neuropathy, and vestibular areflexia syn-
drome (CANVAS, MIM #614575), were observed in five samples
ranging from 359 to 712 repeat units in size (Fig. 4B). Pathogenic
expansions in this gene are typically 400 repeat units or larger
and are motif-dependent, with AAGGG being the most common
pathogenic expansion (Cortese et al. 2019; Beecroft et al. 2020;
Scriba et al. 2020). Our observation that some of these samples car-
ried the AAGGG repeat unit while others carried a nonpathogenic
repeat unit, such as AAAAG, was similar to recent work that iden-
tified expansions in RFC1 of varying repeat motifs in 5/100 HPRC
samples (Fig. 4C; Dolzhenko et al. 2024). That we observed an ex-
pansion in 5% of samples was not unexpected, as the carrier fre-
quency of RFC1 expansions has been reported at 1%–5% across
at least two populations (Akçimen et al. 2019; Fan et al. 2020).

Expansions in ATXN10 are associated with autosomal domi-
nant spinocerebellar ataxia type 10 (SCA10, MIM #603516), a
slowly progressive ataxia with typical age of onset between 12
and 48 years and full penetrance alleles varying from 800 to
4500 ATTCT repeats (Matsuura and Ashizawa 1993; Alonso et al.
2006; Raskin et al. 2007). Two of the 100 samples were heterozy-
gous for ATXN10 alleles larger than 800 motifs, one of which
had a second allele with 511 repeat units (Fig. 4D). In addition,
two other samples harbored expansions close to or larger than
280 repeat units, which has been reported as causative in one indi-
vidual with ataxia (Matsuura et al. 2006). However, three of the
four large alleles are purely ATTCT, and evidence suggests that
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interruptions of ATTCC are necessary for the allele to be pathogen-
ic (Morato Torres et al. 2022).

To determine whether any of the expanded RFC1 and
ATXN10 alleles would be identified using short-read data, we ran
ExpansionHunter on short-read data from all affected samples

(Dolzhenko et al. 2019). In all cases,
when an expanded allele was present,
the corresponding ExpansionHunter es-
timate was larger than the normal allele
but, in most cases, still significantly un-
derestimated the size of the expansion
(Fig. 4C,D; Supplemental Table S11).
For example, in ATXN10, LRS identified
a normal allele (15 repeat units) and an
expansion of more than 1000 repeat
units in HG01122. The Expansion-
Hunter estimates for this sample are 15
(range 15–15) and 73 (range 56–101) re-
peat units, thus the normal allelewas cor-
rectly estimated but the expanded allele
was markedly underestimated.

Evaluation of genome-wide methylation

patterns and identification of novel

DMRs

An advantage of LRS is the ability to
simultaneously capture both DNA se-
quence and modification information,
allowing for simultaneous evaluation of
how changes in sequence, such as a
repeat expansion, may alter the local epi-
genetic landscape.We evaluatedmethyl-
ation both genome-wide and at loci
associated with imprinting disorders.
Among 69 of the 70 46,XX samples se-
quenced, we found that 39% (27/69)
had X-Chromosome methylation pat-
terns suggestive of skewedX-inactivation
(Fig. 5A; Supplemental Table S12).

We then performed genome-wide
PCA of methylation to evaluate whether
samples would correlate with ancestry or
if patterns of X-inactivationwould be ap-
parent (Supplemental Fig. S20). This
analysis revealed that GM18864 clus-
tered with 46,XY samples despite being
reported as 46,XX. Because we validated
each sample using SNVs from short-
read sequencing, we wondered whether
this sample had lost an X Chromosome.
We found that the average X Chromo-
some depth of coverage was ∼55% of
the full-length autosomes in the LRS
data and ∼75% in the short-read data,
confirming the loss of an X Chromo-
some in this sample (Pedersen et al.
2020).

Next, we evaluated methylation
patterns at two disease-associated loci:
11p15.5, which is associated with both
Beckwith–Wiedemann syndrome (BWS,

MIM #130650) and Silver–Russell syndrome (SRS, MIM #180860)
(Saal et al. 1993; Shuman et al. 1993); and 15q11.2-q13, associated
with Prader–Willi syndrome (PWS, MIM #176270) and Angelman
syndrome (AS, MIM #105830) (Dagli et al. 1993; Driscoll et al.
1993). For the 11p15.5 region, we found that in all samples, one
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Pathogenic repeat size is shown to the right of each plot (∗), the associated condition is in parentheses,
and the full name of each condition can be found in Supplemental Table S11. The pathogenic repeat size
for FMR1 is listed as 200 repeats, but a dashed vertical line represents the 55-repeat threshold that puts
46,XX and 46,XY individuals at risk for fragile X-associated tremor/ataxia syndrome (FXTAS, MIM
#300623) and 46,XX individuals at risk of fragile X-associated primary ovarian insufficiency (POF1/
FXPOI, MIM #311360). (AD) autosomal dominant, (AD/AR) autosomal dominant/recessive, (AR) auto-
somal recessive, (XR) X-linked recessive, (XD) X-linked dominant. (B) Among 200 haplotypes (y-axis),
an expansion in RFC1 near or over 400 repeat units was seen in five haplotypes. AAGGG is the most com-
mon pathogenic repeat expansion; additional pathogenic expansions include ACAGG (not shown), and
a mixed AAAGG/AAGGG expansion (Cortese et al. 1993). (C) Haplotype (HP)-resolved detail of RFC1 re-
peat expansions in five samples with an expansion of one allele. Haplotypes are assigned arbitrarily. The
dotted line represents the position of full penetrance alleles typically seen at 400 repeat units. (D) Three
samples with expansions in ATXN10 larger than 280 ATTCT repeats were observed. The dotted line at
800 repeat units represents the position of the lower end of the full penetrance range.
ExpansionHunter (EH) estimates are overlayed atop the bar plots in (C) and (D), placed on HP1 or
HP2 based on their length.

Gustafson et al.

2068 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279273.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279273.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279273.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279273.124/-/DC1


haplotype was completely methylated while the other was
completely unmethylated at imprinting centers IC1 and IC2
(Fig. 5B). Evaluation of haplotype-resolved methylation at the
SNURF-SNRPN locus on 15q11.2 revealed two samples, GM19473
and HG00525, where one haplotype was 25%–75% methylated.
Visual evaluation of these samples showed that one haplotype of
GM19473 had increased methylation while one haplotype of
HG00525 had reduced methylation, which was unexpected and
further demonstrates that changes in methylation can occur
throughout the genome in these cell lines, even atwell-established
DMRs (Supplemental Fig. S21).

We used Methylation Operation Wizard (MeOW) (Zalusky
andMiller 2024) to analyze differences inmethylation atCpG sites
genome-wide and identified 134 CpGs with methylation differ-
ences across 37 samples, with a median of two DMRs per sample
(Supplemental Table S13). As an example, three DMRs were found
in HG02389 (Fig. 5C), including a hypermethylated CpG in
SLC29A3 not present in controls (Supplemental Fig. S22). We ob-
served both hypermethylation (86 CpGs) and hypomethylation
(48 CpGs) among the 134 CpGs and identified four samples
with more than 10 DMRs (Supplemental Fig. S23). Among the
15 samples from the African superpopulation with a DMR, there
was an enrichment of expression outliers near the DMR with in-
creasingly stringent Z-score thresholds, suggesting associated
changes in gene expression (Supplemental Fig. S24).

Discussion

Current approaches to clinical genetic testing are incomplete as
they are unable to capture the full spectrumof disease-causing var-
iation (Wojcik et al. 2023). This is because: (1) new technologies,
such as LRS, are not yet widely implemented in clinical labs; (2)
computational tools are not yet able to efficiently capitalize on
the data provided by these new technologies, and those that can
have substantial computational requirements; and (3) databases
are not yet available for filtering and prioritizing variants identi-
fied using new technologies. The 1KGP-ONT Consortium plans
to sequence at least 800 1KGP samples to generate amore complete
catalog of variation, especially rare yet presumably benign variants

across the 1KGP populations. While the
expanded collection will enable a more
accurate estimate of allele frequency for
challenging variants and add informa-
tion about haplotype-resolved epigenetic
variation, we acknowledge that this co-
hort represents a limited representation
of human diversity, notably excluding
individuals of indigenous Australian
and Middle Eastern ancestries.

Here, we describe the initial analysis
of the first 100 samples sequenced to an
average of 30× depth of coverage and av-
erage readN50 >50 kbp, whichwas possi-
ble because of the use of HMW DNA
isolated directly from cell culture (Fig.
1). This resulted in high sensitivity for
SV detection—especially larger duplica-
tions and repeat expansions—using
both assembly- and alignment-based ap-
proaches. We identified an average of
24,543 SVs per sample, similar to the pri-

or analysis of other 1KGP samples by the HGSVC andHPRC (Ebert
et al. 2021; Liao et al. 2023). Our efforts complement recent work
that identified ∼16,000 SVs from ∼1000 1KGP samples sequenced
to the lower average depth of coverage (15×) and median read
length (6.2 kbp) (Schloissnig et al. 2024). While the difference in
total SVs underscores the advantage of sequencing HMW DNA,
further analysis will be required to fully assess the significance of
the differences between these data sets.

We performed one of the most comprehensive benchmark-
ing analyses to date of SNVs, indels, and SVs using data from the
ONT platform. Consistent with prior studies, data generated on
the ONT platform has a higher recall and precision than
Illumina-based approaches for SNVs in well-characterized geno-
mic regions and performswell for indels, specifically outside of ho-
mopolymers (Kolmogorov et al. 2023). Because all data from these
first 100 samples were generated on the R9.4.1 pore, we anticipate
that improvements in chemistry, such as the use of the R10.4.1
pore, will reduce context-specific errors and result in improved
concordance with truth sets. Because of this, we have transitioned
ongoing sequencing to the R10.4.1 pore. SV benchmarking also re-
vealed high F1 scores for three samples for which orthogonal calls
were available, highlighting how the R9.4.1 pore is sufficient for
this application. Over time, we anticipate additional updates to
ONT chemistry or software, and plan to evaluate each change care-
fully before data reanalysis or changing the chemistry used for this
effort.

SVs were called using four alignment-based and one assem-
bly-based caller. After merging, a high-confidence SV call set com-
prising 124,927 SVs was generated that we show can be used for
filtering and variant prioritization. Genome-wide evaluation of
these high-confidence SVs revealed 349 that were within or en-
compassed an exon of a medically relevant gene. The low number
of SVs intersecting medically relevant genes was reassuring, as we
expect there to be selection against these events within coding re-
gions of the genome. Nevertheless, we did identify one SV—an
∼141 bp insertion in exon 15 of RPGR, a gene with an X-linked
phenotype—in a 46,XY sample near two similar insertions that
have been reported as VUSs in ClinVar. Because the 1KGP samples
came from presumably healthy individuals, it could be that this
event is associated with a later onset of an associated phenotype
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or that the insertion is benign. Identification of this insertion in a
1KGP sample is valuable as it may lead to functional studies that
clarify the nature of the variant. Analogous to what has been re-
ported for the relatively common occurrence of single nucleotide
loss-of-function mutations in otherwise healthy individuals, the
presence of an SV in a gene does not necessarily imply the variant
is pathogenic (MacArthur et al. 2012). Indeed, early studies of hu-
man population samples using SNP microarrays identified ex-
tremely rare copy number variants >500 kbp in length among
individuals without overt disease (Cooper et al. 2011).

Genome-wide evaluation of select repeat expansions re-
vealed expansions in complex alleles not previously reported
and difficult to identify using short-read technology (Fig. 4).
We identified repeat expansions associated with diseases that
are difficult to fully interpret because the individuals recruited
to the 1KGP were presumably healthy. These individuals may
be at risk of developing symptoms later in life, or theymay be car-
rying alleles that are benign because of nonpathogenic motif
composition or sequence interruptions that we did not detect.
Alternatively, these expansions may simply be an artifact of the
cell culture process and should be considered when these
samples are used in other experiments or when these data are
used for variant filtering and prioritization. We anticipate that
comparison of this data set to larger efforts, such as All of Us,
will allow us to better understand whether these variants repre-
sent artifact from the cell culture process or true human genetic
variation.

Finally, we evaluated patterns of methylation genome-wide
and at loci associated with disease. We observed large-scale chang-
es, such as skewed X-inactivation, in over one-third of 46,XX sam-
ples as well as unique changes, such as novel differential
methylation that correlates with changes in local gene expression.
These changes provide a mechanism by which distinct signals
from samples maintained in cell culture can be explained and
demonstrate the potential limitations of using immortalized cell
lines to infer epigenetic signatures.

Sequencing of 1KGP samples is ongoing and we expect the
analysis of a larger number of samples to further refine many of
the findings in this study. Most analysis presented here was per-
formed using GRCh38 as a reference due to its widespread use in
clinical and research laboratories; work is ongoing to evaluate
the impact of the more complete CHM13 T2T genome on variant
calling (Nurk et al. 2022). Overall, we anticipate that the data set
provided here will hasten the use of LRS to evaluate individuals
with suspected Mendelian conditions for whom a precise molecu-
lar diagnosis remains elusive. This work not only provides valuable
resources for candidate variant filtering and analysis but also em-
phasizes the critical need for ongoing investment in technology,
software, and database development to fully realize the benefits
of LRS. The more comprehensive analysis that can be performed
using LRS—such as the identification and resolution of complex
SVs, improved phasing, and incorporation of associated methyla-
tion information—will allow clinical and research teams to stop fo-
cusing on “what’s the next best test” when evaluating an
individual with a suspected genetic condition and instead focus
on interpreting those variants that were previously difficult to
detect or that may involve a novel gene. Together, these efforts
will lead to improved clinical outcomes, new gene–phenotype as-
sociations, the use of novel therapies, and an end to the diagnostic
odyssey for many of the individuals and their families who are liv-
ing with an unsolved or incompletely understood genetic
condition.

Methods

DNA extraction, sequencing, alignment, validation,

and variant calling

DNA for sequencing was isolated from B lymphocytes obtained
from the NHGRI Sample Repository at the Coriell Institute for
Medical Research. After sequencing and quality checks (Supple-
mental Table S2), an internal alignment pipeline and the Napu
pipelinewere run before variant calling and annotation (Kolmogo-
rov et al. 2023). Additional details can be found in Supplemental
Methods.

SNV and indel benchmarking and comparison with Illumina data

Original sequencing data for five benchmarking samples was base
called with Dorado 0.5.0 (ONT) and downsampled to match the
depth of coverage of the 100 study samples, then processed with
both the internal alignment pipeline and the Napu pipeline.
Long-read SNV and indel calls from the HPRC and GIAB (Shafin
et al. 2020; Liao et al. 2023) and short-read SNV and indel calls
from GIAB were obtained (Wagner et al. 2022) and preprocessed.
Benchmarking comparisons and comparisons with Illumina data
were conducted using hap.py (https://github.com/Illumina/hap
.py), with analysis limited to high-confidence regions.

De novo genome assembly and evaluation

Flye (v2.9.2) (Kolmogorov et al. 2019) and Napu (Shasta–Hapdup)
(Kolmogorov et al. 2023) were used for haploid and diploid ge-
nome assembly then aligned to the GRCh38 reference genome us-
ing minimap2 (v2.24) (Li 2018), with starts and ends of aligned
contigs determined using BEDTools (v2.3.0) (Quinlan and Hall
2010). Assembly breakpoints were characterized using precomput-
ed segdup and RepeatMasker positions downloaded from UCSC
(Bailey et al. 2002; Kent et al. 2002) then categorized as Satellite,
SegDup, SegDup+ Satellite, or Neither.

SV analysis, merging, and benchmarking

SV calls were parsed using BCFtools (Danecek et al. 2021) for vari-
ants that passed filtering criteria, were ≥50 bp, and were assigned
to a full-length chromosome. SVswere counted by type and length
per sample and caller. Novel SVs per sample were calculated
through iterative merging by Jasmine. To benchmark SV calling
methods, ONT data from HG002/NA24385, HG00733, and
HG02723 were processed using the Napu pipeline. SV calls for
Sniffles2 and hapdiff were benchmarked to the HPRC (truth) calls
using Truvari (v4.1.0) (English et al. 2022). The GIAB HG002 SV
Tier1 benchmarking BED was used to define regions for inclusion.
Additionally, we benchmarked HG002 SV calls against the draft
GIABT2TQ100HG002GRCh38 SVbenchmark. SVs per individual
were analyzed formulticaller concordance based on Jasminemerg-
ing. SVs meeting a threshold of support (described in Supple-
mental Methods) were reported as high confidence. SVs from
this high-confidence call set were further annotated with func-
tionally relevant genomic information (i.e., intersection with
exonic regions, genes associated with OMIM phenotypes, centro-
meric/telomeric regions, etc.) as defined by GENCODE release 45.

Filtering and prioritization of SVs

Sniffles2 SV calls from cases known to have a disease-causing SV
were preprocessed as above and merged using Jasmine with
Sniffles2 SV calls from the Napu pipeline from the 100 samples.
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Pangenome construction

Contigs from the Shasta–Hapdup assemblies were partitioned by
chromosome by mapping them against the human reference ge-
nomes using WFMASH (v0.12.6, commit 0b191bb) pangenome
aligner (Marco-Sola et al. 2021).

eQTL analysis

We applied the SV-eQTL analysis from Kirsche et al. (2023) to the
65 samples with both long-read DNA and short-read RNA data
from MAGE and analyzed them as described in Supplemental
Methods.

Tandem repeat genotyping

Repeats were genotyped using vamos v1.2.6 (Ren et al. 2023). A
BED file with the coordinates and metadata for each STRchive lo-
cus is provided.

Methylation analysis

Haplotype-resolved, whole-genome methylation pileup files were
generated using Modkit v0.1.11 (ONT) from the PMDV haplo-
tagged BAM file. For X-Chromosome analysis, the average fraction
of methylated reads was calculated for each CpG island. CpG is-
lands at disease-associated loci were subsetted and the average frac-
tion of reads methylated was calculated per sample and per
haplotype. Unique DMRs were identified using MeOW by a
leave-one-out analysis (Zalusky and Miller 2024).

Data access

Data for all samples sequenced as part of the 1000Genomes Project
ONT Sequencing Consortium are publicly available at https://
s3.amazonaws.com/1000g-ont/index.html and scripts used in
the analysis can be found at GitHub (https://github.com/
millerlaboratory/1000g_ONT) and as Supplemental Scripts. Data
from the 100 samples reported here, as well as summary analysis
data, are available at https://s3.amazonaws.com/1000g-ont/index
.html?prefix=ALIGNMENT_AND_ASSEMBLY_DATA/FIRST_100/.
Data and code related to pangenome analyses are available at
GitHub (https://github.com/AndreaGuarracino/1000G-ONT-F100-
PGGB).
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