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We investigated the efficiency of target-enriched long-read sequencing (TELSeq) for detecting antimicrobial resistance

genes (ARGs) and mobile genetic elements (MGEs) within complex matrices. We aimed to overcome limitations associated

with traditional antimicrobial resistance (AMR) detection methods, including short-read shotgun metagenomics, which can

lack sensitivity, specificity, and the ability to provide detailed genomic context. By combining biotinylated probe-based en-

richment with long-read sequencing, we facilitated the amplification and sequencing of ARGs, eliminating the need for bio-

informatic reconstruction. Our experimental design included replicates of human fecal microbiota transplant material,

bovine feces, pristine prairie soil, and a mock human gut microbial community, allowing us to examine variables including

genomic DNA input and probe set composition. Our findings demonstrated that TELSeq markedly improves the detection

rates of ARGs and MGEs compared to traditional sequencing methods, underlining its potential for accurate AMR mon-

itoring. A key insight from our research is the importance of incorporating mobilome profiles to better predict the trans-

ferability of ARGs within microbial communities, prompting a recommendation for the use of combinedARG–MGE probe

sets for future studies. We also reveal limitations for ARG detection from low-input workflows, and describe the next steps

for ongoing protocol refinement to minimize technical variability and expand utility in clinical and public health settings.

This effort is part of our broader commitment to advancing methodologies that address the global challenge of AMR.

[Supplemental material is available for this article.]

Antimicrobial resistance genes (ARGs) are the genetic foundation
of antimicrobial resistance (AMR), a phenomenon that diminishes
the efficacy of antibiotics, posing a significant threat to global pub-
lic health. To detect AMR, the prevailing technique involves
culturing specific bacteria, then subjecting these isolates to various
antibiotic concentrations to observe their growth or inhibition.
Additionally, culture-independent diagnostic testing (CIDT)
methods are employed, using primers to identify specific ARGs
in samples without the need for culturing. However, both ap-
proaches come with notable drawbacks: Culture-based tests are
time-consuming and generally limited to a narrow spectrum of
bacterial species, whereas CIDT methods often lack sensitivity,
are limited in the number and specificity of ARGs they can detect
within a single workflow, and do not provide the genomic context
for the ARGs identified (Loman et al. 2013; Ko et al. 2022).

Target enrichment assays have recently been described as a
new culture-independentmethod for detectingARGs. These assays
use biotinylated probes that hybridize to ARG targets, allowing for
amplification before sequencing (Noyes et al. 2017; Lanza et al.
2018). Target enrichment probes differ fromPCRprimers in several
importantways. First, probe sets canbedesigned to simultaneously
target megabases worth of reference sequences; second, probes are

longer than PCR primers, i.e., typically 120 bp; third, probes will
hybridize to targets even when the sequences contain many mis-
matches; and lastly, probes capture not only the hybridized target
but also nucleic acids that flank the target.

Target enrichment protocols have been designed to work
with short-read sequencing platforms, such as Illumina. However,
the use of short-read sequencing hinders precise analysis of the re-
gions flanking ARGs owing to the short length of the reads. Bioin-
formatic assembly steps can be taken to reconstruct longer
contiguous sequences, though this process can be highly error
prone. For example, it has been previously described that assem-
bled sequences are fragmented, especially within ARG-containing
regions, thus making it difficult or impossible to identify genomic
regions that neighbor ARGs (Abramova et al. 2023). Nonetheless,
identifying the genomic region that flanks the ARGs is valuable,
since some mobile genetic elements (MGEs) can rapidly mobilize
ARGs between distantly related bacteria. Understanding the pro-
file of ARG-flanking MGEs is fundamental for estimating the like-
lihood that an ARG may be acquired by pathogenic bacteria, thus
generating clinically relevant AMR information.We recently dem-
onstrated that target enrichment can be combined with long-read
sequencing to capture both ARGs and flankingMGEs, without the
need for bioinformatic sequence reconstruction, i.e., assembly
(Slizovskiy et al. 2022). We call this workflow target-enriched
long-read sequencing (TELSeq). This previously published work
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used a probe set that targeted ∼7000 ARGs, but no MGEs; there-
fore, the detected flanking MGEs were captured only due to a
“bystander” effect. It is unknown whether targeting MGEs and
ARGs would increase the sensitivity and utility of TELSeq in profil-
ing MGE-colocalized ARGs, allowing for inference of mobility po-
tential. Furthermore, this previous work used a molecular
workflow that required a relatively high amount of input genomic
DNA (gDNA), whereas lower-input workflows (i.e., 200–1000 ng)
have since been developed, but not yet used in a TELSeqworkflow.
Finally, our previous proof-of-concept study encompassed a rela-
tively small number of pilot samples, and thus did not support a
full statistical analysis of factors that might influence the work-
flow’s performance. These technical considerations are critical
for moving TELSeq beyond research applications, and into clinical
and public health practice.

The objective of this study was to identify technical factors
that impact TELSeq’s performance, particularly turnaround time,
accuracy, sensitivity, specificity, and reproducibility. To achieve
this objective, we designed an experiment in which technical rep-
licates of challenging sample matrices were subjected to two tech-
nical variables in a fully crossed design (Fig. 1): (1) enrichment
platform (i.e., high vs. low gDNA input); and (2) probe set, i.e.,
ARGs only, MGEs only, or ARGs and MGEs combined. Results of
TELSeq were formally compared to results obtained from a stan-
dard, nonenriched workflow. Our results demonstrate that
TELSeq continues to outperform nonenriched long-read sequenc-
ing by increasing the detection of ARGs andMGEs acrossmultiple,
complex sample types.However, the performance of the low-input
enrichment protocol was highly variable, thus limiting its utility
for sample matrices with very low amounts of gDNA. When used
with PacBio sequencing, TELSeq is recommended for generating
detailed, contextualized ARG sequence data without the need for
bioinformatic reconstruction, particularly for samples with mod-
erate-to-high amounts of gDNA.

Results

Study overview

The sample types used for this experiment included human fecal
microbiota transplant (FMT) material, bovine feces (BF), pristine
prairie soil (PPS), and a commercial mock human gut microbial
community standard (MOCK). Replicates of each sample were
subjected to target enrichment using three different probe sets:
resistome enrichment (“RES” probes), mobilome enrichment
(“MOB” probes), or resistome–mobilome combined enrichment
(“Combo” probes). Each sample was sequenced using two enrich-
ment platforms: TELSeq-XT-HS2 (XT-HS2) intended for samples
with low gDNA inputs (<200 ng); and TELSeq-XT (XT) intended
for samples with high gDNA inputs (>200 ng). For each sample
type, nine technical replicates were used as input for TELSeq

sequencing using either XT-HS2 or XT platforms (total nsample =
72). Alongside replicates prepared for sequencing via the XT-HS2
or XT enrichment platforms, triplicates of each sample type were
sequenced via nonenriched long-read circular consensus sequenc-
ing (CCS, PacBio) (nsample = 24).

TELSeq improves the sequencing yield of resistomes

and mobilomes even with low DNA input

As compared to nonenriched libraries, TELSeq libraries contained a
higher proportion of reads originating fromARGs and/orMGEs. As
expected, XT sequencing in particular led to a consistent increase
in the detection of reads containing ARGs in comparison to non-
enriched sequencing; these increases were similar to previously re-
ported results for both short- and long-read enriched libraries
(Noyes et al. 2017). Specifically, the overall median ARG on-target
percentage in FMT went from 0.1% in nonenriched to 2.9% in XT
libraries; in BF from0.2% to 16.6%; inMOCK from 2.4% to 20.7%;
and lastly, for PPS from 0% to 0.2% (Fig. 2). The magnitude of the
increased resistome on-target rate relative to the nonenriched sam-
ples was most pronounced when RES or Combo probes were im-
plemented and the TELSeq-XT protocol was notably more
efficient in sequencing ARG-containing reads than traditional
nonenriched sequencing methods. In addition, the XT enrich-
ment protocol increased the MGE on-target rate, which increased
from 1% in nonenriched BF libraries to 4.0% in BF XT libraries;
from 2.2% to 13.2% in FMT libraries; from 4% to 4.9% in MOCK
libraries; and from 1.1% to 17.1% in PPS libraries. For the XT en-
richment protocol, the gains in MGE sequencing relative to the
nonenriched protocol depended on the sample type and probe
set used. For instance, in BF and PPS libraries, RES and Combo
ARG–MGE probe systems resulted in increased MGE recovery,
while in FMT and MOCK libraries, MOB and Combo probes yield-
ed increased MGE recovery (Fig. 2).

When the low-input XT-HS2 platform was used, both ARG-
and MGE-based on-target sequencing rates in BF, FMT, and
MOCK libraries were similar or greater than what was achieved
via nonenriched sequencing (Fig. 2), again supporting the efficacy
of the target enrichment protocol as compared to standard nonen-
riched sequencing. However, the relative increases in XT-HS2 on-
target rates were more moderate as compared to the increases gen-
erated by the XT protocol. For example, themedian ARG on-target
rate for BF was 4.3% for XT-HS2 libraries, compared to 16.6% for
XT libraries; 0.9% versus 2.9% for the FMT libraries; 2.5% versus
20.7% for the MOCK libraries; and 0.0% versus 0.2% for the PPS
libraries. As compared to XT libraries, probe set design was less in-
fluential in the ARG sequencing rate. The variable performance of
XT-HS2 can be explained by variability in the concentration of the
final libraries. More specifically, all 12 of the libraries generated by
XT-HS2 and ARG probes contained <10 ng/μL of prepared DNA, as
did all nine of the PPS XT-HS2 libraries.Within the 36 XT libraries,
only one had concentration <10 ng/μL, and themeanwas 83.5 ng/
μL (median 94.4, range 0.36–120.6) (Fig. 2). Additionally, the
median DNA quality as determined by the 260 nm:280 nm
NanoDrop ratio was notably lower across all samples for the
XT-HS2 libraries as compared to the XT libraries, with libraries sub-
jected to the combination ARG–MGEprobes attaining proportion-
ally higher quality. We note that although both enrichment
protocols led to an increase in the amount of technical duplicates,
this effect was more pronounced in XT protocol, with median
duplicate levels ranging from 0.9% of all reads in the PPS libraries
to 7.0% of all reads in the MOCK libraries (Fig. 2).Figure 1. Experimental design overview.
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Although the on-target sequencing favored the XT protocol
over XT-HS2, this may have also been driven by differences in se-
quencing yield, whichwas higher for XT libraries (Fig. 2). Oneway
to circumvent the yield problem is to analyze the relative abun-
dance of individual ARGs, rather than total resistome on-target
rates. Hence, we considered the variation in the relative abundance
of the resistome andmobilome across the various enrichment pro-
tocols and probe systems (Fig. 3). To remove potential bias associ-
ated with variable gene lengths and variable numbers of reads, the
abundance was normalized by both gene length and sequencing
yield. Based on analysis using zero-adjusted gamma regression,

TELSeq BF, FMT, and PPS libraries had a consistently higher rela-
tive ARG group abundance using XT protocols (log10 effect
estimate [SE] = 5.40 [0.38], 5.66 [0.28], 2.62 [0.27], respectively;
all sample type P<0.001) and XT-HS2 protocols (2.29 [0.81],
P = 0.005; 6.09 [0.33], P<0.001; 3.49 [0.63], P< 0.001, respective-
ly), across all enriched replicates (Fig. 3). Enrichment in BF, FMT,
and PPS libraries also yielded greater MGE accession relative abun-
dance as compared to nonenriched sequencing using XT (0.59
[0.17], 3.29 [0.12], 5.66 [0.07], respectively; all sample type P<
0.01) or XT-HS2 (2.99 [0.21], 4.41 [0.13], 6.88 [0.10], respectively;
all sample type P<0.001). This result was consistent with our

A

B

Figure 2. Boxplots summarizing library input and quality parameters (A) and resistome or mobilome on-target statistics (B), reported by sample type,
enrichment protocol, and probe set for TELSeq and PacBio (i.e., nonenriched) sequencing methods.
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analysis of the median on-target rate, again showing that both the
XT and XT-HS2 protocols successfully enriched for ARGs and
MGEs.

While both XT and XT-HS2 resulted in a consistent increase
in relative resistome abundance as compared to nonenriched se-
quencing, there was no uniform pattern across probe sets (Fig.
3A). For PPS samples, we note that the relative abundance of de-
tected ARGs was higher in XT versus XT-HS2 libraries especially
when used with Combo probes (P<0.001) which lead to a >450-
fold improvement relative to nonenriched libraries. Moreover,
the PPS libraries appeared to be fairly divergent to the FMT and
BF libraries in that the variation in the relative abundance of PPS
libraries was narrower, exhibiting a more pronounced tendency
to cluster around themean. For BF samples, significant ARG recov-
ery (P< 0.01) was achieved for XT protocol using either the RES or
MOB probe sets which yielded approximately threefold and ∼45-
fold increased relative abundance over that of nonenriched librar-
ies. However, theXT-HS2 low-input protocol achieved comparable
increases in recovery via the Combo andMOB probe sets, yielding
an average increase of ∼10-fold and ∼200-fold relative to nonen-
riched libraries (P<0.01). For FMT samples, the XT-HS2 RES librar-
ies had a smaller range in the relative resistome abundance than
XT but this range was not significantly different from XT when
the Combo and MOB probe sets were used. Such results are mean-
ingful since they demonstrate that upon normalizing for sequenc-
ing yield, XT-HS2 increased the resistome abundance in
comparison to the nonenriched libraries when employed with ei-
ther the Combo orMOB probe set, but it was unsuccessful in yield-
ing high ARG abundance when employed with the RES probe set,
perhaps because of the high number of failed RES replicates.

Similar to the relative resistome abundance, Figure 3B dem-
onstrates that both XT and XT-HS2 yielded a significant increase
in the relative mobilome abundance in comparison to the unen-

riched data. Among BF samples,
TELSeq-XT and XT-HS2 libraries subject-
ed to RES probes yielded the highest
mobilome abundance increase (>900-
fold and 39-fold, respectively, P<0.001),
and this was followed by TELSeq-XT-
HS2 libraries subjected to Combo probes
(>750-fold, P<0.001). Probe systems us-
ing MOB and Combo, when used with
the XT protocol, did not produce signifi-
cant increases in mobilome abundance,
but did produce increases when used as
part of the low-input XT-HS2 platform
(P<0.01). In FMT samples,mobilome rel-
ative abundance was improved com-
pared to nonenriched libraries, most
prominently when the RES probes were
deployed in XT libraries (P=0.02), or
when Combo probes are utilized in XT-
HS2 libraries (P=0.006). While MOB
probes marginally improved MGE recov-
ery as compared to nonenriched PPS li-
braries, as with FMT, RES probes when
deployed in XT or Combo probes when
deployed in XT-HS2 protocols in PPS
samples resulted in the most significant
increases in sequenced MGE relative
abundance. It is possible that the higher
relative abundance of MGEs detected

with the RES and Combo probes compared to the MOB probes
in all samples could be attributed to the bystander effect, i.e., if
the MGEs were flanking targeted ARGs, and thus were captured
by the RES probes.

Detected resistome andmobilome diversity differs by sample type

and enrichment protocol

Principal component analysis indicated that enrichment protocol
was associated with significant differences in resistome and mobi-
lome beta-diversity (Fig. 4). These differences were statistically
significant for resistome analysis in the FMT (ANOSIM R=0.34,
P =0.001), BF (ANOSIM R=0.22, P=0.006), and PPS (ANOSIM
R =0.35, P=0.004) samples (Fig. 4A–C). Similar trends were ob-
served for mobilome beta-diversity (Fig. 4D–F), with significant
differences by enrichment protocol for FMT (ANOSIM R=0.22,
P =0.005), BF (ANOSIM R=0.17, P=0.007), and PPS (ANOSIM
R =0.27, P=0.001). Across all three sample types, the XT-HS2 pro-
tocol resulted in a relatively large amount of variability in beta-
diversity across replicates and probe sets. The variability in the
beta-diversity for the XT and nonenriched data sets was signifi-
cantly influenced by the sample type. Nonenrichment led to
very low variability in beta-diversity for the PPS and BF data sets,
but higher variability in the FMT data set. Conversely, the XT pro-
tocol produced low beta-diversity variability in the BF and FMT
data sets, but high variability in the PPS data set. The ARG group
tetQ had one of the largest loading vectors across all three samples,
suggesting that it played a large role in differentiating the resis-
tome composition generated by the three enrichment protocols.
Across all sample types, the tetQ loading variable was associated
with the XT and XT-HS2 data sets, suggesting that the use of en-
richment may have been crucial for detecting this ARG group.

A

B

Figure 3. Violin plots showing the log10 relative abundance of ARG groups (A) andMGE accessions (B)
normalized by gene length and sequencing yield, for BF, FMT, and PPS samples, colored by enrichment
protocol and probe set. Technical replicates of TELSeq libraries are shown individually, while the 24 non-
enriched replicates are summarized into a single violin plot.
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Pairwise comparison of PERMANOVA results allowed us to
identify which enrichment protocols generated significantly dif-
ferent beta-diversity profiles from one another. Based on this anal-
ysis, the XT and XT-HS2 protocols did not generate significantly
different beta-diversity profiles (all P>0.05) with the exception of
the resistome in PPS libraries and the mobilome in BF (P=0.045
and 0.006, respectively). In the case of resistome beta-diversity
within the PPS samples, although the difference between XT and
XT-HS2 was statistically significant, the magnitude of this differ-
ence was much smaller than the magnitude observed when com-
paring XT versus nonenriched and XT-HS2 versus nonenriched
(R2 = 13.7% vs. 22% and 32%, respectively). This smaller magni-
tude of effect indicates that the differences in beta-diversity be-
tween XT and XT-HS2 libraries were smaller than the differences
between enriched and nonenriched libraries. Indeed, the dif-
ferences between the enriched and nonenriched libraries were
consistently large and statistically significant. In the pairwise com-
parison of XT versus nonenriched libraries, R2 values for five of the
six data sets were >22% (all P<0.05), indicating that theXT enrich-
ment was associated with a large proportion of the observed vari-
ation in beta-diversity. The exception to this pattern was the
mobilome beta-diversity in the BF sample, which was not signifi-

cantly different between the XT and nonenriched libraries (R2 =
10.6%, P=0.09). For the pairwise comparison of XT-HS2 and non-
enriched libraries, R2 values were more variable by sample type,
ranging from a low of 11% in the FMT resistome to 32% in the
PPS resistome (all P<0.05). Taken together, these results suggest
that the differences in beta-diversity observed by enrichment pro-
tocol were associated primarily with differences between TELSeq
and nonenriched libraries, with smaller differences between XT
and XT-HS2 libraries.

Another way to evaluate composition is through a binary
heatmap (Fig. 5). This analysis revealed that the combination
of using the XT protocol with the RES probe set led to the
most successful ARG enrichment, as we detected nearly all of
the resistance mechanisms encountered in the nonenriched li-
braries, as well as additional mechanisms that were not captured
in the nonenriched libraries. Many of the mechanisms detected
only within the XT protocol involved resistance to aminoglyco-
sides, beta-lactams, tetracyclines, and trimethoprim (Fig. 5). The
Combo probe set was also successful in identifying a high num-
ber of resistance mechanisms, with the exception of the PPS
sample, which was known to have a very low resistome richness
in situ. Additionally, for PPS libraries, the XT-HS2-MOB and

A B C

D E F

Figure 4. Resistome and mobilome beta-diversity analysis of Bray–Curtis dissimilarity distances of microbiome samples, including BF, human FMT, and
PPS. Group-level ARG and accession-level MGE library compositions are colored by enrichment protocol (XT-HS2 in pink, XT in green, and nonenriched in
blue). Arrows in (A–C) indicate the loading vectors for ARG groups. The ARG groups with the longest arrow length are labeled by name.
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XT-MOB protocol and probe combinations were able to reveal
many additional resistance mechanisms not detected within the
nonenriched libraries,whichmaybedue to thegenomicproximity
ofMGEswith ARGs in situ.Wenote that theMOBprobe sets failed
to detect amajority of glycopeptide resistancemechanisms (Fig. 5).
Glycopeptide resistancemechanismsareprimarily chromosomally
located, and therefore would not be as likely to be proximal to
MGEs such as plasmidmarkers and integrative and conjugative el-
ements. Therefore, the lack of glycopeptide ARG detection by the
MOB probe sets is consistent with MOB enrichment of MGE-
flanked ARGs. The XT-HS2 RES probe set performed unexpectedly
poorly across all replicates, including the MOCK replicates. The
most immediate cause of this inefficacy was likely the low library
concentration generated by the XT-HS2 RES probes (Fig. 2A), and
subsequent very low sequencing yield (Fig. 2B). The cause of the
failed libraries is unknown, and could be due to systematic failure
of the XT-HS2 RES probe set itself, or the inherently stochastic
nature of the XT-HS2 enrichment process, which produced high
variability in results.

Sample type and sequencing yield outweigh the effect of the

probe set on resistome and mobilome richness

To isolate the impacts of the enrichment platform andprobe set on
ARG andMGEdetection using TELSeq, we needed to normalize for
sequencing depth due to sequencing throughput disparities across
samples, enrichment protocols, and probe sets (Fig. 2). To do this,
we rarefied all BF, FMT, and PPS TELSeq libraries that had 5033 or
more reads (seeMethods). The rarefying procedure, a method used
to normalize sequencing data by equalizing the number of reads
across samples, did not notably alter the proportion of on-target
sequences, affirming the expectation that this process primarily af-
fects the volume of data rather than its qualitative composition
(Supplemental Table S1). As anticipated, rarefying led to a reduc-
tion in the total amount of sequence data and a lower percentage
of duplicate sequences. Nevertheless, despite these data reduction
steps, the total base pair throughput from the rarefied XT libraries
remained higher than from rarefied XT-HS2 libraries, due to the
longer read lengths produced with the XT platform.

Figure 5. Binary heatmaps displaying the presence (dark blue) or absence (light blue) of drug-related ARGs at the mechanism level (right-hand axis),
sorted by antimicrobial class (left-hand axis), grouped by sample type (BF, FMT, PPS, and MOCK), enrichment platform (TELSeq and nonenriched),
and probe set-platform combination (XT-HS2 RES, MOB, and Combo; XT-RES, MOB, and Combo). ARGs associated with biocide and metal resistance
are shown in Supplemental Figure S1.
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Using the rarefied data set, we generated two linear mixed-ef-
fect regression (LMER) models, one each for the ARG group and
MGE accession richness. Following stepwise backward model se-
lection, the probe set was removed from the final model because
its inclusion did not significantly improve model fit. Rather, the
two strong explanatory factors in the models included the sample
type, with lower resistome richness identified in PPS than in BF
and FMT; as well as sequencing yield, which was a positive predic-
tor of both ARG and MGE richness across all samples, as expected
(Table 1).

TELSeq achieves a detection limit of 0.01% relative

abundance within a ground truth mock community sample

sequenced to relatively shallow depth

To analyze theMOCK libraries, we identified “ground truth”ARGs
(GT-ARGs) containedwithin reference genomes of the 21microor-
ganisms comprising the mock community (see Methods). The ge-
nomes in this mock community have a known relative abundance
(as documented by the manufacturer), which can be used to esti-
mate a limit of detection for ARGs from each genome. Briefly,
GT-ARGs consisted of ARGs that were unique to only one organ-
ism within the mock community; because of their 1:1 ARG:ge-
nome, we were able to use these ARGs as markers of detection
for each genome within the community. Of the 21 references,
eight did not contain any ARGs that could be considered GT-
ARGs (either because they did not contain any ARGs at all or
because they did not contain any unique ARG groups). Across all
MOCK samples (including nonenriched samples), we identified
GT-ARGs from eight of the remaining 13 genomes (Fig. 5). We
did not identify any GT-ARGs from Enterococcus faecalis, Clostridi-
um perfringens, Akkermansia muciniphila, and the Escherichia coli
strain JM-109. The genomes of E. faecalis and C. perfringens have
the lowest relative abundance within the mock community, at
0.001% and 0.0001%, respectively, which could explain their ab-
sence within the enriched mock community data. Similarly, A.
muciniphila has the next-lowest relative abundance at 1.5% (of
all 13 genomes that contained at least one GT-ARG), with the
exception of Salmonella enterica.

However, we did identify GT-ARGs from S. enterica and
Clostridium difficile, which have relative abundances of 0.01%
and 1.5%, respectively. The GT-ARGs within S. enterica were pri-
marily detected only in enriched samples (and not within non-
enriched samples), with the exception of corB and corC, which
were detected across nonenriched and enriched replicates. This

suggests that TELSeq’s limit of detection for the sequencing depth
used in this study was ∼0.01% relative abundance, although per-
formance at this level was highly variable across TELSeq replicates
(Fig. 6).We identifiedGT-ARGs from three of the four E. coli strains
with GT-ARGs, despite the fact that all four strains are present
within the mock community at the same relative abundance of
2.8%. Therefore, the limit of detection due to in situ relative abun-
dance is not the only factor determining false-negative findings
within the mock community. Other factors may include variabil-
ity in the true composition of the mock community, as the manu-
facturer’s documentation states that each organism in the
community can contain up to 15%deviation from the targeted av-
erage relative abundance. Other factors that impact detection in-
clude the extraction efficiency of each organism; the efficiency
of the baits in binding to each GT-ARG (which can be impacted
by GC content); and the inherent stochasticity of the molecular
workflow, particularly the numerous steps in which the mock
community cells, DNA and sequencing libraries are subsampled,
any one of which can lead to loss of GT-ARGs and thus absence
within the final sequencing pool. A notable result was the lack of
any GT-ARGs within the XT-HS2 RES replicates. This was likely
due to the very low sequencing yield of these samples, as shown
in Figure 2A, and discussed above in relation to Figure 5.

Discussion

Our results confirm previous work demonstrating the high sensi-
tivity of molecular target enrichment for ARG and MGE detection
withinmetagenomic samples (Noyes et al. 2017; Lanza et al. 2018;
Macedo et al. 2021). We further confirm our previous finding that
target enrichment continues to performwell when combinedwith
long-read sequencing (Slizovskiy et al. 2022). A major advance-
ment of thework presented here is the use of a low-input, rapid tar-
get enrichment workflow (XT-HS2). Compared to the previous
workflow (XT), XT-HS2 accommodates a wider range of sample
types (including samples with very low microbial biomass), and
reduces bench time from >24 h to <8 h. We demonstrate that
XT-HS2 can provide comparable results to XT, particularly in terms
of the resistome and mobilome composition of generated data
(Fig. 4). However, we also found that the XT-HS2 protocol was
more likely to yield libraries with very low DNA concentration,
particularly for the ARG probe set (across all replicates of all four
samples) and for the PPS sample (Figs. 2, 3). In these cases, the
use of XT-HS2 led to low sequence output, low on-target efficiency

Table 1. Results from best-fit linear mixed-effect regression models of ARG and MGE richness

LMER model Variable(s) Coefficient SE t-Value 2.50% 97.50%

ARG richness (Intercept) −4.39 8.46 −0.52 −20.98 12.20

REF—BF — — — — —

Sample source—FMT −4.16 7.09 −0.59 −18.05 9.72

Sample source—PPS −17.18 8.31 −2.07 −33.47 −0.90

Yield (Mb) 4.59 1.80 2.55 1.06 8.12

MGE richness (Intercept) −29.93 10.72 −2.79 −50.94 −8.93

REF—RES — — — — —

Probe set—Combo 16.27 8.44 1.93 −0.27 32.82

Probe set—MOB 2.73 8.39 0.32 −13.72 19.18

Yield (Mb) 12.04 1.91 6.31 8.30 15.78
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(Fig. 2), and lower sensitivity to detect ARGs and MGEs (Fig. 5). In
total, 21 of the 36 XT-HS2 libraries had a final library concentra-
tion of <10 ng/μL, whereas only one of the 36 XT libraries met
this threshold. Therefore, the decision to use XT-HS2 should be ba-
lanced between constraints to DNA input and turnaround time,
and the likely variability in library quality. Future studies should
address potential optimizations to the XT-HS2 protocol, which
could minimize low-yield issues and improve replicability. For ex-
ample, the XT-HS2 protocol may perform more robustly when
used with sequencing platforms that accommodate low-input li-
brary preparation, such as Illumina and Oxford Nanopore
Technologies.

Amajor open question for resistome studies is how to best in-
tegrate mobilome profiles (Oh et al. 2018; Slizovskiy et al. 2020;
Brown et al. 2022). This is an important question, because ARG
mobility is a critical component of predicting whether specific
ARGs may transfer from commensal bacteria to pathogens within
amicrobial community. Our previous work demonstrated that the
long reads generated by TELSeq can be used to colocalize ARGs
with MGEs, without the need for bioinformatic reconstruction,
i.e., without de novo assembly ormetagenome-assembled genome
methods (Slizovskiy et al. 2022). In this previous research, a probe
set tailored exclusively for ARGs was used, prompting an inquiry
into whether a specialized probe set for MGEs might better facili-
tate the identification of MGEs, including those that may harbor
ARGs. Our results presented here demonstrate that a combined
ARG–MGE probe set performed comparably to the ARG-only and
MGE-only probe sets, both in terms of on-target efficiency (Fig.

2) and recovered diversity (Figs. 3, 5). The use of a combined probe
set streamlines the laboratory workflow and reduces costs because
each sample is subjected to only one enrichment, instead of two in
parallel. Therefore, we recommend the use of a combined probe set
in future studies that aim to analyze the resistome and mobilome
in tandem. We note that future studies should carefully consider
the design of combined probe sets, and in particular, the amount
of sequence homology between accessions within and across the
ARG and MGE reference databases used for probe design. In the
current study, we utilized ARG andMGE reference databases with-
out modification, which meant that some ARG accessions were
contained within the full-length MGE accessions, likely resulting
in some overlap between the RES andMOBprobe sets. A combined
probe set designed using efficient bait design algorithmswould cir-
cumvent this problem because such algorithms remove redundan-
cy due to homologous sequences across accessions (Alanko et al.
2022).

TELSeq offers significant advantages, including enhanced
detection sensitivity for ARGs and MGEs across diverse samples.
This method eliminates the need for complex bioinformatic se-
quence reconstruction, providing detailed genomic context by
capturing both ARGs and flanking MGEs. TELSeq demonstrates
high sensitivity and versatility across various sample types, such
as human FMTmaterial, BF, PPS, and amock human gutmicrobial
community. The use of combined ARG–MGE probes streamlines
laboratory workflows and reduces costs by avoiding parallel en-
richments. However, the method also has disadvantages, such as
generating highly uneven coverage across targeted genomes,

Figure 6. Heatmap of alignments to GT-ARGs (y-axis), by replicate (x-axis). Replicates are grouped by enrichment protocol and probe set (x-axis), and
each GT-ARG is listed along with the bacterial species from which it originated (y-axis). Gray cells indicate GT-ARGs with no alignments in the relevant
replicate.
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requiring high DNA input for the XT protocol, and exhibiting
technical variability, particularly with the XT-HS2 protocol. This
variability necessitates careful optimization and extensive replica-
tion, which can be resource-intensive. Additionally, themethod is
not suitable for robust variant calling due to the shallow, fragment-
ed nature of the data, and its success heavily depends on the design
of the biotinylated probes. Despite these challenges, TELSeq re-
mains a powerful tool for resistome and mobilome profiling.

To date, the TELSeq protocol has been used solely for research
purposes. When designing a protocol for nonresearch purposes
such as humanmedicine or surveillance, it is critical to understand
and minimize technical sources of variability. Our experimental
design included triplicates, which is an expensive study design de-
cision; however, the replicates allowed us to look at technical var-
iability in the workflow (Fig. 1). We found that triplicates did not
always yield the same presence/absence profiles for targeted ARGs,
including in nonenriched data sets (Fig. 5). This variability could
be due to differences in sequencing yield between replicates,
which particularly impacts richness estimates. However, on-target
rates and relative abundance distributions for detected targets
should be less impacted by yield because thesemetrics are normal-
ized to sequencing depth. Indeed, in some cases, ARG and MGE
profiles were very consistent across replicates, particularly for the
XT enrichment protocol within the FMT and PPS samples (Fig.
3). However, in other cases, interreplicate variability was much
higher, and this seemed to be associated with low-yield XT-HS2 li-
braries (Figs. 2, 3). Another important factor for nonresearch appli-
cations is the availability of controls that can be used for quality
control. In this study, we used a commercially availablemock com-
munity of intact cells as a positive control, which yielded several
important findings. First, we found that the limit of detection of
TELSeq is in the range of 0.01%, although this value would likely
change based on sequencing depth and probe binding efficiency.
Second,we discovered important limitations in using amock com-
munity as a positive control in the context of resistome analysis. In
particular, we found that multiple genomes in the mock commu-
nity contained the sameARGs.Due to the fragmented state of both
enriched and nonenriched metagenomic data sets, it is challeng-
ing to conclusively trace ARGs back to their original bacterial
host genomes. As a result, the majority of ARGs within the mock
community could not serve as a reliable “ground truth” due to
the inability to determine their relative abundance distributions
at the genomic level. Consequently, our analysis was restricted
to employing GT-ARGs (ground truth ARGs), which are ARGs
found in a single genome. Nevertheless, calculating the expected
relative abundances of these GT-ARGs proved difficult, as the
denominator representing the total community’s abundance was
unclear. Themanufacturer’s stated 15%deviation in relative abun-
dance compounds this problem. In summary, our results from the
mock community analysis confirm previous discussions about the
necessity and challenge of developing controls for metagenomic
workflows (Sczyrba et al. 2017; Meyer et al. 2022). Future research
should concentrate on addressing this complex, technical
problem.

Methods

Sample collection and storage

Fresh feces were collected from a healthy human donor participat-
ing in the University of Minnesota School of Medicine Fecal
Microbiota Transplant program (“FMT” sample). Donor enroll-

ment criteria were followed as part of the Investigational New
Drug Application 15071. Strict donor exclusion criteria based on
biometric and clinical variables were followed as previously de-
scribed (Hamilton et al. 2012). Previous stool samples collected
from this donor had tested negative for viral, parasitic (including
Giardia and Cryptosporidium), and specific culturable vancomy-
cin-resistant Enterococci, methicillin-resistant Staphylococcus aure-
us (MRSA), carbapenem-resistant Enterobacteriaceae, E. coli O157:
H7, Salmonella spp., Shigella spp., and Yersinia spp. pathogens.
The fecal sample used in the current study was collected in a sin-
gle-use toilet hat and was allotted into multiple 50 mL conical
polypropylene tubes and immediately transferred to a−80°C freez-
er for storage after 30 min of initial collection. All donor-specific
activities were approved by the University of Minnesota
Institutional Review Board.

Fresh feces were collected from a periparturient Holstein
Friesian dairy cow (“BF” sample) during a routine field medical ex-
amination for herd health (e.g., metritis, metabolic disorders, in-
fectious diseases, etc.) on a commercial Midwestern U.S. farm.
This cow was deemed systemically healthy and was kept in a free-
stall alongside other cows that were not exposed to oral or systemic
antimicrobial drugs. Approximately 250 g of fresh feces were col-
lected per rectum and placed into 50 mL conical vials and imme-
diately placed on ice. Samples were transferred to a −80°C freezer
for storage within 2 h of collection. All cattle handling procedures
and sample collection were performed by veterinarians in accor-
dance with the University of Minnesota Institutional Animal
Care and Use Committee (IACUC).

Historically PPS sample was collected in 2019 from a strip of
perennial grasses and forbs in Mower County, Minnesota, USA.
The Tripoli clay loam (Fine-loamy, mixed, superactive, mesic,
Typic Endoaquolls; pH=6.2; OM=9.6%; moisture= 58.0%; P:K=
0.052), was composited from three pointswithin 10mof each oth-
er following collection at a depth of 0−20 in on a 0%−2% gradient
footslope. The homogenized samplewas sealed in an air-tight con-
tainer and stored at 4°C during chemical and physical characteriza-
tion. A subsample of this soil was transferred to a −80°C freezer for
storage before gDNA extraction.

gDNA extraction

Before extraction, 50 g portions of the BF and FMT, and 250 g por-
tions of PPS were thawed at room temperature. Following a 5 min
manual homogenization, the samples were disbursed in 0.25 g al-
iquots into PowerBead Pro tubes containing zirconium beads and
800 μL lysis buffer for extraction using the Qiagen DNEasy
PowerSoil Pro kit (Qiagen 163044275). Molecular-grade sterile wa-
ter was placed into four randomly selected tubes to serve as nega-
tive controls (extraction blanks). After 6 sec of vortexer-mediated
homogenization, samples were placed on a 115 V Mini-
Beadbeater-96 (BioSpec Products) for mechanical lysis. Sample
bead beating proceeded at 2400 rpm for 30 sec for a total of three
rounds with a 2 min pause on ice between each round, to prevent
overheating. The remainder of the extraction procedure followed
the PowerSoil Pro recommendations with inhibitor removal steps,
and the final 50 μL of eluted gDNA was stored at −20°C.

For the ZymoBIOMICSmock community, all extraction proce-
dures, including additional preextraction steps to ensure that the
final gDNA maintained optimal fragment length and species
representation after isolation from the native DNA/RNA shield stor-
age solution, were followed according to the methods outlined by
Nicholls et al. (2019). The standard was divided into ten 75 μL ali-
quots, each centrifuged at 8000×g for 3.5 min before removing
and retaining the supernatant, which contained lysed Gram-nega-
tive species in the DNA/RNA shield storage solution. The pellets
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were resuspended in 700 μL lysis buffer and were transferred to zir-
conium-containing PowerBead Pro tubes of the Qiagen DNEasy
PowerSoil Pro kit (Qiagen 163044275).Molecular-grade sterilewater
was added to four randomly selected tubes to serve as negative con-
trols (extractionblanks). After 6 sec of vortexer-mediatedhomogeni-
zation, sampleswere placed on a 115VMini-Beadbeater-96 (BioSpec
Products) for mechanical lysis. Sample bead beating proceeded at
2400 rpm for 5 min for a total of four rounds with a 5 min pause
on ice between each round. The resulting ∼500 μL of supernatant
was retained and recombined with the supernatant retained earlier,
and the samples were subjected to the remaining recommended
procedures of the PowerSoil Pro kit, including inhibitor removal
steps. The final 50 μL of eluted gDNA was stored at −20°C.

Quantitation of all isolated gDNA was performed using the
Qubit 4 Fluorometer (Invitrogen) using the dsDNA high-sensitiv-
ity assay kit. Electrophoretic assessment of DNA quality was per-
formed using a genomic screen tape and reagents on a 4200
TapeStation (Agilent). All extraction blanks contained no quantifi-
able gDNA and therefore were not carried forward into library
preparation, targeted enrichment, and sequencing. All sample pro-
cessing occurred in a Class II Biological Safety Cabinet andwas per-
formed by a single laboratory technician following standard
decontamination practices using 70% ethanol and irradiation.

Probe design

Targeted enrichment was performed using a custom-designed bio-
tinylated cRNA probe panel for selective hybridization and cap-
ture. For probe design, a comprehensive list of predefined
publicly available unique nucleotide sequences was compiled for
7868 ARGs fromMEGARes v2.0 (Doster et al. 2020), including ac-
cessions for: drug resistance, metal resistance, multicompound re-
sistance, and biocide resistance; and for 738 MGE accessions,
including full-length sequences for: (1) integrative and conjuga-
tive elements (ICE) from ICEberg v2.1 (Liu et al. 2019) and (2) plas-
mid replicons of Enterobacteriaceae and Gram-positive bacteria
from PlasmidFinder v2.1 (Carattoli et al. 2014). These ARG and
MGE sequences comprised 8.55 Mb of total sequence. Full-length
MGE accessions from ICEberg and PlasmidFinder were utilized,
and some of these accessions contained ARGs. Posthoc analysis us-
ing alignment with minimap2 showed that 980 of the 7868 ARGs
contained in MEGARes v2.0 were also contained within the 738
MGE accessions (at a coverage of 100%), meaning that there was
some overlap between the three resulting probe panels, described
below. The CATCH pipeline (Metsky et al. 2019) was used to gen-
erate custom probe panels using the following parameters: probe
stride: 120; probe length: 120; mismatches: 5; extension coverage:
100. Probes were manufactured by Agilent with additional “bait-
boosting” to amplify GC-rich regions (defined as GC >65%) for
fast hybridization reactions to produce a final panel of probes
that were then manufactured. Probes were stored at −80°C before
use. Three probe panels were designed to test the efficiency of ei-
ther resistome and mobilome recovery by TELSeq:

1. MOB panel consisted of the probe set generated using
only all mobilome reference databases (i.e., ICEberg and
PlasmidFinder) as sequence input. The MOB panel contained
55,710 unique 120-mer oligos providing 100% horizontal cov-
erage across 15,343,808 MGE bases, with a median 1.75 depth
of probe coverage for every nucleotide.

2. RES panel consisted of the probe set generated using only the
MEGARes resistome reference database for sequence input to
formulate a final 16,007 120-mer oligos providing 100% hori-
zontal coverage across 8,106,325 ARG bases, with a median
1.83 depth of probe coverage for every nucleotide.

3. Combo panel consisted of the probe set generated using all
resistome and mobilome accessions concatenated into a singu-
lar FASTA file (i.e., 8606 accessions) and used as input to formu-
late a final 71,302 unique 120-mer oligos providing 100%
horizontal coverage across 23,450,133 bases, with a median
1.81 depth of probe coverage for every nucleotide.

TELSeq library preparation and enrichment

gDNA purification and preparation

Aliquots of the 50 µL gDNA eluates were subjected to 0.6 (vol/vol)
AMPure XP bead-based purification (Agencourt Biosciences Corp.)
and an elution time of 10 min in room temperature. Transposable
element (TE) buffer (1×, pH 8.0) was used to reconstitute all gDNA
into the solution. Purified aliquots were subjected to further DNA
fragmentation to achieve an ∼5 kb insert range. For all samples
(i.e., BF, FMT, PPS, and MOCK), technical triplicate libraries were
prepared using two equimolar gDNA aliquot pools of each sample
type to achieve ∼4 μg gDNA input for an ∼5 kb insert range.
Fragmentation proceeded for all triplicates using COVARIS
miniTUBEs (COVARIS Inc.) and mechanical fragmentation using
an M220 COVARIS focused ultrasonicator (COVARIS Inc.) with
the following settings: peak power 6 W, duty factor 20%, cycles/
burst 900, 500 sec, 4°C. All libraries were then subjected to 0.8
(vol/vol) AMPure XP bead purification (Agencourt Biosciences
Corp.) and electrophoretic verification using an Agilent
TapeStation 4200 (Agilent).

Sheared and purified aliquots were subjected to further DNA
size selection by removing fragments <1 kb using a 0.75% agarose
gel DF cassette (cat no. BLF7510)with S1marker (Sage Science Inc.)
on a BluePippin pulse-field electrophoretic size selector (Sage
Science Inc.). All aliquots were eluted using 10 µL of supplied elu-
tion buffer to obtain a final volume of 40 µL.

TELSeq library construction

Sampleswere subjected to two targetedDNAenrichment protocols
based on modifications to the Agilent high gDNA input
SureSelectXT and low gDNA input SureSelectXT-HS2 systems
(Agilent). For libraries subjected to SureSelectXT system (2–4 μg
gDNA), procedures for DNA end-repair, adapter ligation, precap-
ture amplification, bead-based purification, and quality control
were performed as previously described (Slizovskiy et al. 2022).
Following lyophilization and redilution to the appropriate vol-
ume, triplicate libraries across all sample sources were then hybrid-
ized with the addition of equimolar quantities of custom-designed
biotinylated probes from panels of either RES, MOB, or Combo,
along with 10% RNase block solution. Incubation proceeded for
16 h at 65°C with the heated lid set to 75°C to minimize evapora-
tion and maintain the integrity of longer fragments. Subsequent
capture steps were performed using per-protocol conditioned
MyONE streptavidin T1 beads (Invitrogen Co). Hybridization
was facilitated by placing samples on a plate mixer (1200 rpm)
for 5 min at room temperature. The mixer was paused and incuba-
tion proceeded for an additional 55 min at room temperature,
while manually mixing (i.e., pipetting up and down 10 times) ev-
ery 7 min in order to maintain capture and amplification of larger
fragments for long-read library preparation. Following hybridiza-
tion steps, we performed capture steps using per-protocol reagents
and sample-to-reagent ratios, as well as temperatures and dura-
tions. We performed three additional bead-washing cycles to opti-
mize the retentionof probe-mediated capturedDNA fragments. All
subsequent steps, including postcapture indexing and amplifica-
tion, bead-based purification, and quality control were performed
as previously described (Slizovskiy et al. 2022).
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For libraries subjected to SureSelectXT-HS2 system (600–1000
ng gDNA), libraries were subjected to DNA end-repair and dA-tail-
ing usingmodified thermocycling parameters: (1) 20°C for 15min;
(2) 68°C for 15 min; and unique molecular oligos (UMIs) were li-
gated per manufacturer’s protocol. AMPure XP bead purification
using a 0.8 (vol/vol) bead:sample mixture was performed and elut-
ed libraries were immediately subjected to prehybridization PCR
amplification using Herculase II DNA polymerase with dNTPs in
buffer. Each library was amplified according to the following ther-
mocycling program: (1) 2 min at 96°C; (2) 10 cycles of the follow-
ing: 20 sec at 96°C, 30 sec at 65°C, and 6min at 72°C; (3) 10min at
72°C, and ramped down to 4°C. Precapture amplified libraries were
subjected to 0.8 (vol/vol) AMPure XP bead purification (Agencourt
Biosciences Corp.) and electrophoretic verification using an
Agilent TapeStation 4200 (Agilent).

The amplified gDNA in each library was subjected to hybrid-
ization to equimolar amounts of one of the three custom-designed
biotinylated probe sets which were suspended in combination
with RNase, 25% (vol/vol) index blockers, and fast hybridization
buffer. Following initial thermocycling for 5 min at 95°C and 10
min at 65°C, libraries began hybridizing using 60 cycles of: (1) 1
min at 62°C; (2) 3 sec at 37°C. Following this high-temperature cy-
cling, the hybridization reaction was allowed to continue for an-
other 1 h held constantly at 21°C. Subsequent capture steps were
performed using per-protocol conditioned MyONE streptavidin
T1 beads (Invitrogen Co). Hybridization was facilitated by placing
samples on a plate mixer (1200 rpm), and incubation proceeded
for 55min at room temperature. After the first 25min of vortexing,
the incubation was paused in order to manually mix the hybrid-
ized library with the capture beads (i.e., slowly pipetting up and
down 10 times) to maintain capture and amplification of larger
fragments for long-read library preparation. Resuspension and
bead washing in a series of wash buffers was conducted per proto-
col for five total washes using Wash Buffer 2.

Postcapture amplification steps were performed after combin-
ing captured libraries with the appropriate volume of amplifica-
tion reagent, and the following modified thermocycler program
was used: 2 min hold at 96°C followed by 18 cycles of ramping be-
tween 96°C (20 sec), 65°C (30 sec), and 72°C (6min). Libraries were
held for an additional 5 min at 72°C. Indexed and amplified cap-
tured libraries were eluted from the streptavidin-coated beads fol-
lowing resuspension and incubation at room temperature in a
magnetic rack for 10 min. The amplified captured libraries were
subjected to 0.8 (vol/vol) AMPure XP bead purification
(Agencourt Biosciences Corp.), and bead elution in 1× TE was per-
formed following 10min of incubation at room temperature. Final
electrophoretic verification using an Agilent TapeStation 4200
(Agilent) was performed for all libraries.

Circular consensus sequencing

All prepared SMRTbell templates were prepared according to the
manufacturer’s protocol for TELSeq and nontargeted long-read li-
braries, and thesewere pooled and sequenced using two serial runs
of equal sequencing depth on a Pacific Biosciences Sequel 6.0 sys-
tem (Pacific Biosciences) using two Sequel SMRT cells (1Mwith 3.0
chemistry). A 20 h movie runtime was used for each cell. PacBio
CCS reads (minPassess = 3;MinAccuracy=90%)were generated us-
ing SMRT Link v 7.0.

Bioinformatic analysis

Rarefaction, quality filtering, and deduplication

Since the target enrichment protocol uses PCR which introduces
the possibility of duplicated reads at higher levels thanwhat is nor-

mally expected in nonenriched metagenomic data (Noyes et al.
2017), we used the deduplication procedure of Slizovskiy et al.
(2022) to remove duplicate CCS reads produced by both the TEL-
Seq and nonenriched protocols. We briefly describe the procedure
and discuss the minor modifications that were made. First, if the
sample had <200 reads, then we implemented an unclustered
deduplication option that adds all of the reads into one cluster
file and keeps the remaining 199 cluster files empty; for samples
with >200 reads, the cluster-based deduplication method is the
same as described in Slizovskiy et al. (2022). We note that the clus-
tering was based on read length and was achieved through the
sklearn.cluster.KMeans class using 200 clusters. This step required
parsing the FASTQ files through the use of the SeqIOmodule from
Biopython. All CCS reads in one nonempty cluster file were then
pairwise aligned using the BLAST-like alignment tool (BLAT)
(Kent 2002). The PSL output files from BLAT were parsed through
the SearchIO module from Biopython as follows: for each high-
scoring segment pair, if the span of the hit and query was at least
90% of the hit and query read length, respectively, then the reads
were considered duplicates. Such reads were aggregated into sets,
and when generating the deduplicated FASTQ files, only one ran-
dom read per set was retained.

Resistome and mobilome analysis

For all original libraries and subsamples (which will be collectively
referred to as samples fromhereon), alignment of the deduplicated
CSS reads was donewithminimap2 with the -ax flag set tomap-pb
(Li 2018). The reads were aligned to MEGARes v2.1 (Doster et al.
2020) with all the genes requiring SNP confirmation removed for
resistome analysis; and to the combination of ICEberg v2.0 (Liu
et al. 2019), PlasmidFinder v2.1 (Carattoli et al. 2014), and
ACLAME v0.4 (Leplae et al. 2010) for mobilome analysis. This re-
sulted in two Sequence Alignment Map (SAM) files per sample.
To avoid misidentifying ARG sequences as MGE sequences, a
new sample-by-sample approach was implemented in a custom
Python script whereby the SAM files yielded from a sample were
parsed with Pysam (2023) in order to identify MGE alignments
that overlapped with ARG alignments. For any pair of ARG and
MGE sequences in the SAM file, the MGE sequence was subse-
quently removed from the downstream mobilome analyses for
the sample if there was an overlap in the alignments that covered
at least 50% of the smallest sequence.

Next, for each sample, the two SAM files from the alignment
stepwere passed to additional customPython scripts formobilome
and resistome characterization. This script used a parameter re-
ferred to as gene fraction cutoff, defined as the proportion of nucle-
otides in a reference gene accession that was aligned to by one or
more reads in a sample. The first step of this script removed any sig-
nificantly overlapped MGE reference sequences and small ARG or
MGE alignments contained within an MGE or ARG alignment.
The next step identified all alignments where the gene fraction
cutoffwas at least 80%and 50% for resistome andmobilome acces-
sions, respectively. Additionally, mobilome characterizations used
ISfinder (Siguier et al. 2006) and ISbrowser (Kichenaradja et al.
2010) to parse PlasmidFinder and ACLAME sequences to identify
insertional sequence (IS) and TE families through BLASTN.
Sequences were considered to be in an IS or a TE family if and
only if the E-value was no >1×10−10, and the minimal identity
reached 80% over at least 80% of the query length. Any reference
sequences that were no longer listed in NCBI were given the label
“Unclassified.” The counts of unique resistome and mobilome ac-
cessions identified within each sample were used to describe rich-
ness and diversity.
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Statistical analysis

The resistome relative abundance was calculated for each ARG
group within each library i as follows:

Resistome relative abundancex[i

= log10
∑n

j=1

(100× count(xj)/(length(xj)× yi))

⎛

⎝

⎞

⎠,

where xj is the jth gene accession in a group, n is the number of ac-
cessions in a group, and yi is the sequencing yield for each library.
Quantifying the relative abundance of the mobilome, for each
MGE gene accession x sequenced by the probe-enrichment combi-
nation i was calculated by using the formula

Mobilome relative abundancex[i

= log10(100× count(x)/(length(x)× yi)),

where yi is the sequencing yield for each library. Statistical assess-
ment of the differences in the relative abundance of ARG groups
and MGE accessions achieved by TELSeq sequencing relative to
nonenriched PacBio sequencing (set as reference) was performed
using a zero-adjusted gamma distribution parameterized within a
generalized additive model using the gamlss (version 4.3-3) pack-
age in R (Stasinopoulos and Rigby 2008). This approach was
chosen to optimize handling of the response variable with
distributions between 0 and 1 especially for highly skewed and
kurtotic (near-zero) events as observed in ecological data.
Individual models were used for either the resistome or mobilome
of BF, FMT, and PPS samples. Explanatory variables included indi-
vidually the enrichment protocol (XT, XT-HS2, nonenriched),
probe type (RES, MOB, or Combo), as well as the interaction of
the two variables. Significance across all statistical comparisons
was determined with a predefined alpha set at 0.05. The distribu-
tion of relative abundances by sample type, enrichment protocol,
and probe system for resistome andmobilome genes were summa-
rized in violin plots that are log10-scaled to optimize visualization.

To assess differences in resistome and mobilome richness be-
tween the enrichment platform, probe set, and sample type, we
used linear mixed-effects regression (LMER) models built using
the lmer function of the lme4 library in R (Bates et al. 2015). For
these models, only TELSeq libraries were used, as nonenriched li-
braries were not subjected to the different probe sets and therefore
could not be compared by probe set. Additionally, theMOCK sam-
ple was not included in the analysis due to its very low richness.
Due to large differences in library yield between XT and XT-HS2,
we first rarefied the XT and XT-HS2 data sets, as follows: First,
four libraries with very low sequencing yield were removed from
regression analysis, leaving 50 libraries for rarefying; among these
50 libraries, the lowest library size was 5033 reads, and this library
was used to set the rarefying level; next, reads from the remaining
49 libraries were randomly subsampled down to 5033 reads using
the seqtk toolkit (Li 2013), to achieve the same read count across
all 50 libraries. Rarefied data sets were then subjected to the
samededuplication, alignment, resistome, andmobilome analyses
as described above for the nonrarefied data sets. All initial, full
models contained the same four fixed-effect predictors, namely,
sequenced base pairs (i.e., yield), enrichment protocol, probe set,
and sample type; in all models, sample ID was specified as a ran-
dom effect to account for repeated measures by triplicate testing.
Model testing was conducted via backward stepwise model reduc-
tion (i.e., systematically removing fixed effects) until the lowest
possible Akaike information criterion (AIC) was observed. The
REML criterion value for each model was retrieved directly from
the merMod object given by the lmer function, whereas the AIC

value and the R2 values required the merMod’s class extractAIC
function and MuMIn’s (Bartoń 2023) r.squaredGLMM function,
respectively. Finally, 95% confidence intervals were calculated
for fixed-effect parameters using the Wald method.

Analysis of beta-diversity of ARG andMGEs across all samples
was performed following the Hellinger transformation of resis-
tome andmobilome counts stored in the Phyloseq object to reduce
the influence of rare accessions. Bray–Curtis distances were calcu-
lated and directly used in ordination analysis to the resulting prin-
cipal components and loadings as implemented in the microViz
package (version 0.12.1). Beta-diversitywas assessed at the “group”
level for ARGs; and at the accession level for MGEs; with a prede-
fined alpha of 0.05 for all statistical tests. Differences in resistome
and mobilome composition were assessed independently for each
sample type, and statistical differences in the composition accord-
ing to independent variables including enrichment platform and
probe set were assessed via the omnibus analysis of similarities
test (ANOSIM). Pairwise permutational multivariate analysis of
variance (PERMANOVA) was further performed using adonis2 as
implemented in the pairwiseAdonis package (version 0.4) based
on 1000 permutations.

Figure generation

All the heatmaps and violin plots were generated with the Python
seaborn module (Waskom 2021).

Analysis of mock community ARGs

Reference genomes for the mock community bacteria were down-
loaded from https://files.zymoresearch.com/protocols/_d6331_
zymobiomics_gut_microbiome_standard.pdf and BLAST v2.13.0
was used to identify ARGs within each individual genome, using
MEGARes v3.0.0 database as a reference (Bonin et al. 2023). The
gene fraction coverage for each ARG was calculated as the propor-
tion of nucleotides within each ARG that matched to the reference
ARG. ARGs with ≥95% gene fraction coverage were considered as
potential ground truth ARGs (GT-ARGs), with the exception of a
single ARG (MEG_3084) in the genome ofVeillonella rogosae, which
contained a GT-ARGwith 93% gene fraction coverage; this GT-ARG
was retained. Accessions in MEGARes that contained the flag
“RequiresSNPConfirmation” were removed from consideration.
The MEGARes ontology was then used to group potential GT-
ARGs by their “group”-level classification. The group-level list was
then used to generate a dictionary that mapped each of the mock
community genomes to its corresponding groups. Groups that
were found inmore than one genomewere then filtered out, leaving
only groups that were unique to a singlemock community genome.
All MEGARes accessions within these remaining “unique” groups
were then extracted from the MEGARes v3.0.0 database in order
to construct the GT-ARG database. Raw reads from each sample
were aligned to the GT-ARG database with minimap2 v2.26 using
the “-ax” flag for PacBio HiFi sequence reads as input. The
ResistomeAnalyzer fromAMR++was used to calculate the gene frac-
tion for each identified GT-ARG, and GT-ARGs that achieved >95%
gene fraction were considered present.

Data access

All raw sequence data and sample metadata generated in this
studyhave been submitted to theNCBI BioProject database (https://
www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA1081843. Sample metadata was recorded using the MIM-
ARKS host-associated metagenomic sample guidelines (Bowers
et al. 2017). All source code that was used in this study is pub-
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licly available at GitHub (https://github.com/jonathan-bravo/
TELCoMB) and as Supplemental Code. Custom Python scripts are
also available as Supplemental Code.
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