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Tandem repeats (TRs) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows

for the accurate characterization of TRs; however, the underlying bioinformatics perspectives remain challenging. We pre-

sent otter and TREAT: otter is a fast targeted local assembler, cross-compatible across different sequencing platforms. It is

integrated in TREAT, an end-to-end workflow for TR characterization, visualization, and analysis across multiple genomes.

In a comparison with existing tools based on long-read sequencing data from both Oxford Nanopore Technology (ONT,

Simplex and Duplex) and Pacific Bioscience (PacBio, Sequel II and Revio), otter and TREAT achieve state-of-the-art genotyp-

ing and motif characterization accuracy. Applied to clinically relevant TRs, TREAT/otter significantly identify individuals

with pathogenic TR expansions. When applied to a case-control setting, we replicate previously reported associations of TRs

with Alzheimer’s disease, including those near or within APOC1 (P=2.63× 10−9), SPI1 (P=6.5× 10−3), and ABCA7 (P=0.04)

genes. Finally, we use TREAT/otter to systematically evaluate potential biases when genotyping TRs using diverse ONT and

PacBio long-read sequencing data sets. We show that, in rare cases (0.06%), long-read sequencing from coverage drops in

TRs, including the disease-associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TRmisgenotyping, ham-

pering the accurate characterization of TR alleles. Taken together, our tools can accurately genotype TRs across different

sequencing technologies and with minimal requirements, allowing end-to-end analysis and comparisons of TRs in human

genomes, with broad applications in research and clinical fields.

[Supplemental material is available for this article.]

Roughly 30% of the human genome consists of tandem repeats
(TRs) characterized by one or more repeat motifs that are defined
by their consecutive repetition (Hannan 2018). This repetitive pat-
tern often leads to DNA instability, facilitating not only expan-
sions and contractions of the repeating motif sequence, but also
allelic diversity within the sequence (Pearson et al. 2005; Lynch
et al. 2008). Several definitions of TRs have been introduced based
on the motif length and size variability, including microsatellites,
minisatellites, and macrosatellites. Microsatellites (or short tan-
dem repeats, STRs) are the most abundant TRs in the human ge-
nome, are characterized by a repetitive motif of <6 bp, and tend
to cluster in noncoding regions of the genome (Subramanian
et al. 2003). Minisatellites are characterized by a repetitive motif
with a size ranging 7–100 bp, and they are highly enriched in
the telomeric regions of the genome (Linthorst et al. 2020). Macro-
satellites are characterized by larger TRs units (>100 bp), and are

enriched in the telomeric and centromeric portions of the genome
(Dumbovic et al. 2017).

TRs can disrupt gene-expression regulation and contribute to
over 40 neurological disorders (McMurray 2010; Hannan 2018;
Khristich andMirkin 2020). Pathogenic TR expansions, surpassing
critical lengths, are linked to conditions like spinocerebellar atax-
ias, Huntington’s disease, Fragile-X syndrome, amyotrophic lateral
sclerosis (ALS), and myotonic dystrophy (McMurray 2010; Khris-
tich and Mirkin 2020; Stevanovski et al. 2022). For instance, Frag-
ile-X syndrome results from a GGC repeat expansion in the FMR1
gene,with affected individuals having up to 4000 copies compared
to <50 in healthy individuals (Yu et al. 1991). Similarly, ALS
is caused by an intronic hexa-nucleotide repeat expansion
(GCCCCG) in the C9orf72 gene, exceeding a critical length of
more than 200 copies (DeJesus-Hernandez et al. 2011). Beyond dis-
eases-causing, TRs have been also identified as risk factor for com-
plex human diseases: for example, the intronic TR in the ABCA7
gene is associated with a 4.5-fold increased risk of Alzheimer’s
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disease (AD) when the TR exceeds 5720 bp (On Behalf of the BEL-
NEU Consortium et al. 2018; De Roeck et al. 2019).

Traditionally, the evaluation of TR lengths and sequences has
been challenging. Conventional methods, such as repeat-primed
polymerase chain reaction (RP-PCR) and Southern blot assays,
are time-consuming and limited in detecting TRs within PCR-
based boundaries. Short-read sequencing approaches offer an al-
ternative, but their limited read lengths often fail to span repetitive
regions effectively. Despite heuristic methods and statistical mod-
eling (Gymrek et al. 2012; Gelfand et al. 2014; Kristmundsdóttir
et al. 2017; Bakhtiari et al. 2018; Dolzhenko et al. 2019; Eslami
Rasekh et al. 2021), accurately assessing clinically relevant TRs re-
mains difficult. The advent of long-read sequencing, particularly
with Pacific Bioscience’s (PacBio) High Fidelity (HiFi) and Oxford
Nanopore Technology’s (ONT) Duplex technology (10–20 kb on
average, >99% accuracy) (Wenger et al. 2019; Sereika et al. 2022),
has significantly improved TR evaluation by providing long and
accurate sequencing fragments.

Characterizing TRs with long-read sequencing technology
currently has twomain limitations. First, there is the need to char-
acterize TRs across different (long-read) sequencing technologies
and data-types (Chiu et al. 2021; Masutani et al. 2023;
Dolzhenko et al. 2024). This is critically important given the grow-
ing long-read sequencing initiatives aiming to comprehensively
assess TRs in large genomic data sets (Gustafson et al. 2024), span-
ning both population-wide and clinical contexts. For example,
some existing tools are constrained by predefined TR databases,
hindering the identificationof newTR features such as novelmotif
sequences (Ren et al. 2023); other tools are technology and data-
type-dependent (Dolzhenko et al. 2024), or do not produce gener-
alizable multisample outputs (Chiu et al. 2021; Masutani et al.
2023).

Second, there is a lack of comprehensive studies that have in-
vestigated potential biases when sequencing TRs. For example,
DNA methylation has been previously shown to impact basecall-
ing accuracy in long-read sequencing data (Gouil and Keniry
2019; Amarasinghe et al. 2020; Liu et al. 2021). Similarly, the for-
mation of secondary structures due to TRs could impact enzyme ef-
ficiency (e.g., polymerase or nanopores) (Mirkin 2007), potentially

reducing read quality and sequencing throughput in current long-
read sequencing technologies. Furthermore, some technologies re-
quire the alignment of noisy reads to generate high-quality con-
sensus sequences, which might be more difficult in case of
repetitive regions. These problemsmay impact genotyping accura-
cy and lead to incorrect assessments of allele-sequences, including
disease-associated TRs in patients.

Here, we present TREAT (Tandem REpeat Annotation
Toolkit), a unified workflow for characterizing TRs across multiple
genomes, cross-compatible with diverse long-read technologies
and data-types (e.g., read-alignments and de novo assemblies).
TREAT employs a novel generic targeted local assembler, otter,
that can adapt to different sequencing chemistries to accurately
characterize TRs. We benchmarked TREAT and otterwith currently
available tools for TR genotyping (PacBio’s TRGT and LongTR)
(Dolzhenko et al. 2024; Ziaei Jam et al. 2024) in terms of genotyp-
ing accuracy, motif identification, and running performances. We
then showcase TREAT and otter applicability in a population-, clin-
ical-, and case-control setting. Finally, we performed a systematic
analysis of ∼864K genome-wide TRs in CHM13 reference genome
to evaluate sporadic coverage drops that can affect TR genotyping
accuracy. We did so using the well-characterized HG002 genome
based on long-read sequencing data from ONT (Duplex and
Simplex), HiFi, and non-HiFi data from PacBio’s Revio and
Sequel II instruments.

Results

Cross-compatible workflow for characterizing tandem

repeats with otter and TREAT

We present otter and TREAT, two bioinformatic tools that enable
TR characterization across different long-read sequencing technol-
ogies and data-types with minimal input requirements (Fig. 1).
Otter is a stand-alone generic targeted local assembler for long-
read sequencing data, which automatically adapts to sequencing
error-rates and coverage levels per target region. TREAT integrates
otter to enable end-to-end unifiedworkflow for de novomotif char-
acterization and downstream analysis, including TR visualization,
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Figure 1. Schematic workflow of TREAT and otter. (A) TREAT workflow, highlighting the required inputs, the main features, and the main outputs of the
tool. The red box highlights the main genotyping engine based on otter. (B) The main algorithmic steps of otter, a novel targeted local assembler for long-
read sequencing data.
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outlier-based, and case-control comparisons (see Methods; Fig.
1A). Both tools require sequencing data aligned to a reference ge-
nome (BAM files), the reference genome used (FASTA file), and
the coordinates of the regions of interest (chromosome, start and
end positions encoded in a BED file). TREAT/otter outputs a multi-
sample gVCF (Genomic Variant Call Format) file reporting geno-
typed alleles, their size and relative repeat content (motif and
number of copies), of each TR in each sample.

Otter and TREAT enable accurate characterization of both

PacBio and ONT long-read data

We benchmarked TREAT and otter with TRGT and LongTR
(Dolzhenko et al. 2024; Ziaei Jam et al. 2024), currently available
tools to characterize TRs in long-read sequencing data. We com-
pared: (1) genotyping accuracy, i.e., the accuracy of the predicted
allele-sequences for a TR, (2) motif characterization accuracy,
and (3) computational resources. We varied different long-read se-
quencing technologies (PacBio Sequel II and Revio, ONT Simplex
and Duplex) as well as different coverages (5×, 10×, 15×, 20×,
25×, and 30×) of HG002 (Jarvis et al. 2022). We focused on a
set of 161,382 TRs from PacBio’s repeat catalog (see Methods).
Predicted TR alleles were compared to the expected alleles based
on the HG002 T2T assembly (see Methods).

In PacBio data, we found comparable genotyping accuracy be-
tween otter (TREAT genotyping engine) and TRGT, for both Sequel
II andRevio data sets, although otter generatedmore accurate geno-
types for larger TRs (e.g., >500 bp), achieving average error-rates of
0.2%–2.5%, compared to 0.6%–3.8% of TRGT. Bothmethods were
more accurate when increasing the coverage, although this was
less pronounced for larger TRs (>500 bp). Notably, genotyping ac-
curacy for both otter and TRGT was higher for PacBio’s Sequel II
data in comparison with Revio data (Fig. 2A; Supplemental Re-
sults). In ONT data, otterwas generallymore accurate than LongTR
althoughdifferences for large TRswere less clear. For both tools, we
observed better accuracies for Duplex data in comparison to Sim-
plex data (Fig. 2B; Supplemental Results). Altogether, our bench-
mark across all tools revealed that PacBio led to more accurate
genotypes for TRs <500 bp, with PacBio and ONT having similar
performances for TRs ranging 500–1000 bp, and ONT leading to
more accurate genotypes for TRs ≥1000 bp (see Fig. 2A,B; Supple-
mental Results).

The above observations remainwhen using different distance
metrics and partitioned by different TR-types. For example, we ob-
served similar performances when using the raw edit distance and
correlation between observed and expected allele sizes (Supple-
mental Fig. S1; Supplemental Results). Furthermore, we found
that TRs characterized by dinucleotide repeat motifs were on
average less accurate than TRs with longer motifs (Supplemental

A

B D

C

II

Figure 2. Benchmarking between TREAT/otter, TRGT, and LongTR. (A) Genotyping accuracy of otter and TRGT on PacBio Sequel II and Revio data, strat-
ified by TR size, and sequencing depth. (B) Genotyping accuracy of otter and LongTR onONT Simplex andDuplex data, stratified by TR size and sequencing
depth. (C) Motif identification accuracy of TREAT and TRGT on PacBio Sequel II and Revio data, showing the overlap of matchingmotifs, stratified by motif
size and sequencing depth. (D) Memory usage and running time of otter, TREAT, TRGT, and LongTR, across technologies and sequencing coverages.
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Fig. S2). The fraction of alleles perfectly genotyped (i.e., with an
edit distance of 0), compared to expected alleles, increased with
higher coverage across all technologies and tools (Supplemental
Fig. S3), with Sequel II data having the largest fraction of alleles
perfectly matched, and ONT Simplex having the least. In PacBio
Sequel II and Revio data, TRGT generated a slightly higher fraction
of perfectly matched alleles with respect to otter (max difference
2.8%). In ONT data, otter outperformed LongTR in all settings.

Similarly, TREAT, which makes use of TR-genotypes from ot-
ter, achieved similar motif characterization accuracy relative to
TRGT (Fig. 2C). In the GRCh38 reference genome, the motifs of
the 161KTRsweremostly dinucleotide (49%), followedby tetranu-
cleotide (22%) and 16+ bp motifs (11%) (Supplemental Fig. S4).
Because LongTR does not directly report the identified TR motifs,
we compared TR motifs between TREAT and TRGT. On average,
TREAT identified the same motifs as TRGT in 96% of cases (Fig.
2C), and this did not change for different technologies (Sequel II
or Revio) or different coverages. We observed a higher concor-
dance in motif detection between tools for shorter motifs (Fig.
2C). When looking at the motifs identified by TREAT on the
GRCh38 reference genome, thesematched known TR annotations
in 91% of the cases.

Finally, we evaluated the computational performances of otter
(stand-alone), TREAT (integrated workflow with otter), TRGT and
LongTR. When using four threads, TRGT and otter had similar
run-time performances, while bothwere slightly faster than the in-
tegrated workflow from TREAT (Fig. 2D). On the other hand, for
the ONT data, otter and TREAT were faster than LongTR. In terms
ofmemory consumption, performances were comparable between
TREAT and LongTR, while otter and TRGT used significantly less
memory (Fig. 2D). When evaluating the multithreading capabili-
ties in TREAT, we saw that when increasing the number of threads
to 6, 8, 10, and 12, the running times decreased by 1.3-, 1.5-, 1.6-,
and 1.8-fold (on average across the different technologies), com-
pared to four CPU threads (Supplemental Fig. S5).

In addition to the high-quality HiFi data, PacBio can output
non-HiFi data, i.e., reads that did not pass PacBio’s internal HiFi
quality thresholds, and that constitute a significant fraction of
all sequenced data (45% in HG002). We explored whether inte-
grating both HiFi and non-HiFi data could improve otter’s capabil-
ity to accurately characterize TR allele-sequences. Because Revio
uses a subset of these non-HiFi reads (those with at least 90%
read quality) to improve throughput and accuracy via DeepCon-
sensus (Baid et al. 2023), weperformed this analysis only for Sequel
II data. We found that non-HiFi data improved accuracy across all
TR lengths. Specifically, when integrating non-HiFi reads of at least
85%–90% read quality, genotyping accuracy improved by nearly
twofold (Supplemental Fig. S6).

TREAT’s unified workflow enables characterization of

diverse tandem repeats

We applied TREAT’s unified workflow to characterize TRs in a pop-
ulation and clinical setting. First, we genotyped the set of 161K TRs
in 47 genomes from theHuman Pangenome Research Consortium
(HPRC) (Wang et al. 2022), for which PacBio HiFi data were avail-
able.We then extracted the top 20%most variable TRs (N=32,208,
based on the coefficient of variation) (see Methods), and per-
formed a principal component analysis (PCA) (Fig. 3A) on the joint
allele sizes (i.e., the sum of the maternal and paternal alleles). We
found that PC1 explained 12% of the total variance and genetical-
ly represented the African-American axis, while PC2 explained

3.5% of variance and corresponded to the American-Asian axis.
The explained variance was similar to that of a PCA including
40/47 matching samples and 30,544 random common (minor al-
lele frequency >10%) single-nucleotide polymorphisms (SNPs;
PC1: 14%, PC2: 4%) (Supplemental Fig. S7).

We then used TREAT’s outlier analysis to detect and score ex-
treme TR expansions or contractions of 35 clinically relevant TRs
(Supplemental Table S1) in 47 genomes from the HPRC, as well
as two Dutch CANVAS patients and 10 parent–offspring duos
(see Methods; Salazar et al. 2023; van de Pol et al. 2023). The two
CANVAS patients were previously characterized to harbor expan-
sions in the intronic TR in RFC1 (van de Pol et al. 2023). For all
individuals, PacBio HiFi data were generated with Sequel II
instrument. In total, we identified 30 instances where the TR
length in certain samples were significantly different from the dis-
tribution of TR lengths across all 69 genomes. Themost significant
deviations were observed for the two CANVAS patients in the TR
intronic of RFC1 gene (P<2 ×10−16 for both patients) (Fig. 3B–
D). The joint allele size for these samples was 78- and 89-fold high-
er than the median TR size across all 69 genomes. Significant TR
expansions were also found in the TR in ATXN8 gene (HG01123
sample, P<2×10−16) (Supplemental Fig. S8), and in DMD gene
(HG02622 sample, P=6.90×10−3) (Supplemental Fig. S9). In the
TR intronic of RFC1 gene, we also observed a significant heterozy-
gous expansion in one parent of the parent–offspring duos (P=
1.7 × 10−3 and P=5.18×10−11, respectively, for the short and
long alleles) (Fig. 3B). Unexpectedly, the child reported a homozy-
gous nonexpanded genotype, suggesting a misassembly or an al-
lele dropout.

Finally, we applied TREAT to characterize unique TRs that are
present in CHM13 reference genome but absent in GRCh38 across
the 47 HPRC genomes. We first curated a set of ∼864K genome-
wide TRs in the CHM13 reference genome (seeMethods).We eval-
uated genotyping accuracy by applying TREAT/otter to CHM13-
aligned long-read data sets of HG002 (PacBio’s Revio and Sequel
II as well as ONT’s Duplex and Simplex). We observed similar per-
formances as those observedwhen using∼161K TRs fromGRCh38
(see Supplemental Fig. S10; Supplemental Results). These results
showcase otter and TREAT’s ability to de novo characterize TRs
across different reference genomes, and without prior knowledge
of TR motif composition. Based on a CHM13-to-GRCH38 liftOver
procedure, we found 1017 unique TRs present in CHM13 and ab-
sent inGRCh38, 37% of which overlapped coding sequences (Sup-
plemental Methods; Supplemental Table S2). We used TREAT/otter
to characterize these TRs across the 47 HPRC genomes and found a
mean TR size of 129 bp (median=45 bp), mainly composed of
trinucleotide motifs (42%), followed by homopolymers (26%),
and 6+ nt motifs (22%) (Supplemental Fig. S11).

Tandem repeats may be sensitive to coverage dropouts

in long-read sequencing

A closer investigation of PacBio long-read data revealed unexpect-
ed drops of coverage in clinical TRs, consequently leading to
misgenotyping of disease-associated TRs. One example is the
CANVAS-associated intronic TR in RFC1, where themost common
allele consists of an (AAAAG)11 motif, with a total size of ∼55 bp.
In CANVAS patients, the TR can range from 2 to 10 kbp in total
length (Fig. 3B–D; Supplemental Results). In one parent–child
duo, we found that the parent harbored an expanded heterozy-
gous version of the TR: a shorter allele with a total length of 244
bp with the (AAAAG)50 motif; and a longer allele with a total
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length of 2.49 kbp, composed primarily of the (AAGGG)490 mo-
tifs (Fig. 4A). Long-read sequencing of brain tissue from the same
individual (PacBio Sequel II) confirmed these results, although
the longer allele was further expanded by 180 bp (36 additional
motif-copies), suggesting a somatic expansion in the brain relative
to blood (Fig. 4A). However, long-read data from the child yielded a
homozygous allele-sequence of 63 bp with the (AAAAG)12 motif
(Fig. 4A). This was unexpected as at least one of the two allele-se-
quences from the parent should be inherited in the child. A closer
analysis of HiFi long-read-pileup strongly supported this genotype.
However, we observed an abnormal coverage drop in both the par-
ent and child for this TR, which was alleviated when including
non-HiFi data (Supplemental Results). After merging HiFi and
non-HiFi data of the child, TREAT/otter correctly assembled the ex-
panded allele-sequence at 2.65 kbp in size with (AAGGG)>374.
Penta-repeat-primed PCR (RP-PCR) confirmed that both parent

and child harbored repeat expansions separately composed of
the (AAAAG) and (AAGGG) motifs (Supplemental Fig. S12).
Therefore, HiFi data alone failed to capture this expanded allele-se-
quence, which was recoverable when including the non-HiFi data.

We observed similar situations of abnormal coverage drops
in PacBio data in a separate intronic TR in ABCA7, previously as-
sociated with AD. We experimentally validated the lengths of
this TR using Southern blotting in a subset of nine centenarians
for which long-read sequencing was performed (Supplemental
Fig. S13; Supplemental Methods). The local HiFi coverage for
these individuals ranged 1–7× (Fig. 4B; Supplemental Results).
The correlation between experimentally validated alleles and
HiFi-based alleles was 0.58 (Pearson’s correlation) (Fig. 4B).
However, the inclusion of non-HiFi data increased read support
by fourfold to an average coverage of 22×. As a result, the cor-
relation with experimentally validated allele sizes increased to

A
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Figure 3. TREAT visualization and analysis modules. (A) The PCA of the ancestry-based analysis based on the 20% most variable TRs across 47 HPRC
genomes. (B) The main TR is in the RFC1 gene. y-axis: individuals, x-axis: TR size (in bp). Blue dots: smaller allele, orange dots: larger allele, red dots: ho-
mozygous genotypes. Dashed line: the allele in the reference genome GRCh38. The right side of the plot reports, for each sample and each allele, themotif
and relative number of copies. The TR lengths of the two CANVAS patients were identified as significant outliers compared to the length-distribution of 47
samples from the HPRC. (C) The distribution of allele sizes for the TR in RFC1 gene. (D) Motif representation in CANVAS patients, as produced with
MotifScope (Zhang et al. 2024).
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0.99 (Fig. 4B). These results highlight standing challenges of
characterizing TRs with long-read sequencing data, and suggest
systematic biases of long-read sequencing in certain genomic
regions.

The above observations motivated us to systematically char-
acterize genome-wide coverage drops of TRs across long-read se-

quencing technologies. We did this by
investigating coverage drops in the curat-
ed set of ∼864K genome-wide TRs in
the CHM13 reference genome, using
both PacBio and ONT long-read data
sets of HG002 at ∼38× coverage (see
Supplemental Results and Methods).
The average TR length in this curated
set was 93 bp, with motifs being mostly
16+ bp motifs (23%), followed by dinu-
cleotide (18%), tetranucleotide (14%),
and homopolymers (13%) (Supplemen-
tal Fig. S4). For each TR, we defined the
coverage ratio by dividing the local TR cov-
erage versus global genome-wide cover-
age. We found the average coverage ratio
to be 1.01, 1.02, 0.99, and 1.03, respec-
tively, for Sequel II, Revio, ONT Simplex,
and Duplex technologies. This indicated
generally no unexpected coverage drops
in TRs (Supplemental Fig. S14A). Howev-
er, 486 (0.06%) unique TRs had ratios be-
low 0.25 (i.e., a fourfold lower coverage
than expected based on the global aver-
age coverage), of which 454 (93%) were
present in the HG002 T2T reference as-
sembly (Supplemental Table S3). Thema-
jority of the low-coverage TRs (294/454,
65%) overlapped gene annotations, po-
tentially leading to misgenotyping that
may impact biological interpretation.
Furthermore, we observed that some of
these TRs were within 5 kbp of each oth-
er, suggesting that coverage drops can ex-
tend across multi-kbp regions. Overall,
we observe significantly more low-cover-
age TRs in PacBio data sets compared to
ONT (OR=9.4, P-value<2×10−16, Fish-
er’s exact test), with N= 437 TRs (89%)
being specific to PacBio data sets. More-
over, 22% of these TRs (N=98) had low
coverage in both Sequel II and Revio
data sets, suggesting potential systematic
challenges in both technologies (Supple-
mental Fig. S14B–G). This included the
intronic TR in ABCA7, previously associ-
ated with AD. The average number of
non-HiFi reads in these TRs was 10, indi-
cating that although reads were generat-
ed for these TRs, most were flagged as
low-quality during HiFi data generation.

Within the ONT data sets, we ob-
serve significantly more low-coverage
TRs in the Duplex data set relative to
the Simplex data set (OR=2.6, P-value =
1.76×10−3, Fisher’s exact test).

We characterized the sequences of all low-coverage TRs to in-
vestigate potential characteristic features. When comparing the
454 low-coverage TRs with the remaining of ∼864K genome-
wide TRs, we found that low-coverage TRs were longer (P-value=
8.68×10−14; 493 bp longer on average) and harbored higher GC-
content (P-value=2.28×10−50; 17.4% higher on average). A

A

B

II

Figure 4. Coverage drops in TR in RFC1 and ABCA7 genes, associated with CANVAS and AD. (A) The
genotyped TR alleles and relative motif characterization in a parent–child duo using only HiFi data,
and HiFi + non-HiFi data. Long-read data from the brain of the parent were also available. Adding non-
HiFi data rescued the missing allele in the child. (B) The comparison between experimentally validated
alleles in the TR intronic of ABCA7 gene, and genotyped alleles based on HiFi data alone, and HiFi +
non-HiFi. Experimental validation of TR alleles was performedwith Southern blot assay, and was available
for nine individuals for which long-read data were also available. When adding non-HiFi data, we could
recover the expanded alleles in the child that were missed by HiFi data alone.
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comparison of dinucleotide content revealed that AG,CC, CG, CT,
and GG dinucleotides were significantly enriched in the low-cov-
erage TRs (Supplemental Fig. S14H,I). Moreover, we found that G-
quadruplexDNA secondary structures (G4s)weremore likely to oc-
cur in low-coverage TRs (P-value=2.48×10−45; 3.76% higher)
(Supplemental Fig. S14H; Supplemental Methods).

Comparing tandem repeats across multiple genomes

in a case-control setting

With the acquired knowledge about possible allele dropouts in
TRs, we used TREAT/otter in a case-control setting to replicate the
association of four TRs that were previously shown to associate
with AD risk (Table 1, Supplemental Table S4). We did so by using
a set of 246 ADpatients (mean age= 67.9± 9.8, 70% females) andN
=248 cognitively healthy centenarians (mean age= 101.2±2.5,
70% females) that were sequenced with PacBio Sequel II instru-
ment (Methods; Supplemental Fig. S15; Salazar et al. 2023).
Across all 494 genomes, we observed a median coverage (HiFi
data) of 14, 15, 14, and 4, respectively, for the TRs in APOC1,
SPI1, FERMT2, and ABCA7 (Fig. 5A). The combined allele size
(i.e., the sum of thematernal and paternal alleles) of the TR nearby
APOC1 (Chr 19:44921096–44921134) was significantly expanded
in ADpatients compared to cognitively healthy centenarians (beta
= 0.38, P=2.63×10−9) (Table 1; Fig. 5B). In contrast, the short al-
lele of the TR within SPI1 gene was significantly contracted in
AD patients compared to cognitively healthy centenarians (beta
=−0.03, P=6.5 × 10−3) (Table 1; Fig. 5B). The direction of effect
of these TRs was in line with the original studies (Guo et al.
2023; Wang et al. 2023). We could not replicate the association
of the TR within FERMT2 (beta = 0.01, P=0.27, short allele)
(Table 1; Fig. 5B).

For the intronic TR in ABCA7, we found significant expan-
sions in AD cases after integrating non-HiFi data (beta = 8.63×
10−5, P=0.04, joint allele size) (Fig. 5C,D). We note that 22 sam-

ples were omitted due to reduced coverage levels even after inte-
grating HiFi and non-HiFi data. We then identified TR size
boundaries in the centenarian controls corresponding to the 5th
and 95th percentiles of the joint TR allele sizes (2.2 kbp and 8.4
kbp, respectively). The number of centenarians with a TR size low-
er than the 5th percentilewas threefold higher than that of AD cas-
es (1-tailed Fisher’s exact test P=0.023, OR=3.2) (Fig. 5E), and the
number of AD cases with a TR size larger than the 95th percentile
was twofold higher than that of centenarians (1-tailed Fisher’s ex-
act test P=0.04,OR=2.0) (Fig. 5E). Given the difficulties in correct-
ly assessing the allele-sequences of this TR, we cannot exclude that
additional samples suffer from allelic dropouts, especially for the
larger expanded allele-sequences.

Discussion

In this study, we provide novel contributions to better characterize
TRs with long-read sequencing data. First, we present our novel
tools, otter and TREAT, that provide a unifiedworkflow to accurate-
ly characterize TRs using both PacBio and ONT data sets. This en-
abled us to characterize genome-wide TRs in patients with
neurodegenerative diseases and genomes from the HPRC. Second,
we show that in rare instances, long-read sequencing technologies
can suffer from abnormal coverage drops in TRs due to potential
systematic challenges, particularly in PacBio’s HiFi technology.
These coverage drops can lead to TR misgenotyping, as we ob-
served in CANVAS and AD-associated TRs. Finally, we applied
TREAT/otter to a case-control setting and replicated TRs previously
associated with AD across 494 long-read sequenced AD patients
and cognitively healthy centenarian genomes.

Our benchmark of otter and TREAT highlighted state-of-the-
art performances of our tools in terms of TR genotyping andmotif
identification accuracy. We showed that otter, TREAT, and other
existing tools provide generally accurate characterizations of TRs

Table 1. Replication of TRs previously associated with Alzheimer’s disease

TRs previously associated with AD

Region Chr 19:44921096–44921134 Chr 11:47775208–47775243 Chr 19:1049436–1050066 Chr 14:52832909–52832938

Gene APOC1 SPI1 ABCA7 FERMT2

Best model Joint alleles Short alleles Joint alleles Short alleles

Beta (OR) 0.38 (1.46) −0.03 (0.97) 8.63 × 10−5 (1.01) 0.01 (1.01)

P-value 2.6 ×10−9 6.5 × 10−3 0.041 0.27

Original study 38014121 37745545 29589097 37745545

Original OR NA −0.01 (0.99) 4.5 0.01 (1.01)

Original model Longer allele Joint alleles Individuals with alleles >5720 bp Joint alleles

Original method Logistic regression Mixed linear models Fisher’s exact Mixed linear models

Original P-value 4.3 ×10−10 NA 0.008 NA

Original samples 1489 AD versus 1492 controls 6328 AD versus 6580 controls 275 AD versus 177 controls 6328 AD versus 6580 controls

Data type Short-read sequencing Short-read sequencing Southern blot Short-read sequencing

Region: genomic coordinates of the TR with respect to GRCh38; Gene: the closest gene as reported in the original publications; Best model: model
that yielded the most significant association, in our comparison: short allele, long allele, or joint alleles size; Beta (OR): effect size and relative Odds
Ratio with respect to AD: an increased TR size leads to increased AD risk for positive estimates; P-value: P-value of association. We used logistic regres-
sion models using TR size (short allele, long allele, and combined allele size) as predictor for AD case-control status, using 246 AD patients (cases) and
248 cognitively healthy centenarians (controls); Original study: the PubMed ID of the original study; Original OR: the odds ratio as reported in the orig-
inal study; Original model: model used for association in the original study; Original method: method used for association in the original study;
Original P-value: the P-value reported in the original study; Original samples: the number of AD cases and controls used in the original study; Data
type: the data on which the association were identified.
(TR) Tandem repeat, (AD) Alzheimer’s disease.
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on both PacBio and ONT data sets, and with improved accuracies
at higher sequencing coverages. Across technologies, our bench-
mark revealed that PacBio leads to generally more accurate geno-
types for relatively smaller TRs, with PacBio and ONT having
similar performances for TRs ranging 500–1000 bp, and ONT lead-
ing to more accurate genotypes for larger TRs. These results re-
mained when using other distance metrics as well as in a similar
benchmark using the CHM13 reference genome and a larger set
of genome-wide TRs.

Our systematic analysis of coverage drops revealed that over-
all, coverage drops of TRs are rare (0.6%), and do not impact the
overall genotyping performances of TREAT/otter and other tools.
However, our analysis relied on HG002, a highly homozygous ge-
nome sequenced at high coverage (38×). Hence, TR coverage drops
may be more prevalent in other (low-coverage) genomes that har-
bor expanded TR sequences, especially those with GC-rich se-
quences. TRs with coverage drops were often large (>500 bp),
high in GC-content, and with higher densities of predicted G4s.
G4s have been previously reported to reduce polymerase efficiency
(Lago et al. 2021). As PacBio’s HiFi technology relies on multiple

successful passes of a DNA polymerase
in a circular DNA template (Wenger
et al. 2019), we speculate that the inter-
ference of G4s might reduce the number
of passes in the circular template, possi-
bly leading to lower quality reads (non-
HiFi reads). Altogether, incidents of TR
coverage drops were enriched in PacBio’s
Revio and Sequel II data sets, and to a
lower extent in ONT’s Duplex and Sim-
plex data sets, with ONT Simplex suffer-
ing the least. Although rare, we showed
and experimentally validated that cover-
age drops in TRs can occur at clinically
relevant TRs, requiring extra attention
when characterizing these TRs. To this
end, we showed that local versus global
coverage ratio is an effective way to iden-
tify such problematic regions, and that
for PacBio, these regions can be (in part)
rescued by adding noisier non-HiFi
data, as shown for the TRs in ABCA7
and RFC1 genes.

TREAT and otter can be used to geno-
type and characterize potentially any
type of repetitive sequences. However,
this remains challenging for very large
TRs spanning several kilobases, for exam-
ple, those in telomeric and centromeric
regions of the genome. We also note
that regions where sequencing error-
rates exceed interallele dissimilarities
may still be difficult to genotype. As the
error rate in ONT Simplex data is relative-
ly higher than PacBio and ONT Duplex,
this is likely driving the lower genotyp-
ing accuracy observed in ONT Simplex.
These limitations are not only specific
to TREAT and otter, but extend to other
existing tools. With newer sequencing
technologies bringing longer read
lengths (e.g., ONT ultra-long reads), to-

gether with more complete reference genome assemblies, it might
become possible to genotype any satellite region (micro-, mini-,
and macrosatellites) in the genome with TREAT and otter.

We were able to replicate previously reported TRs associated
with AD by comparing a cohort of AD patients and cognitively
healthy centenarians. We acknowledge that these TRs were previ-
ously identified using different experimental methods (e.g., short-
read sequencing, Southern blotting), and analyses strategies (logis-
tic regressions, linear mixed models, Fisher’s exact test) (On Behalf
of the BELNEU Consortium et al. 2018; Guo et al. 2023; Wang
et al. 2023). While this heterogeneity hampers the direct compari-
son of the effect size estimates, all associations we observed were
in the same direction as the original studies. In particular, the TR
intronic of ABCA7 was shown to carry an odds ratio for AD of 4.5
when one allele was expanded >5.7 kbp (On Behalf of the BELNEU
Consortium et al. 2018). Similarly, we observed that individuals car-
rying larger allele-sequences were significantly associated with AD.
However, in our cohort, the effect wasmainly driven by cognitively
healthy centenarians having a shorter joint allele size (i.e.,more AD-
protection), rather than AD cases having a more expanded TR sizes.

A
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Figure 5. Replication of the association with AD of TRs in APOC1, SPI1, FERMT2, and ABCA7. (A) The
coverage distribution of the four TRs in AD patients and cognitively healthy centenarians. (B) The TR
size difference between AD patients and cognitively healthy centenarians in APOC1, SPI1, and
FERMT2. For the associations, we used logistic regression models using the TR size as predictor for AD
case-control status. (C) HiFi and combined HiFi + non-HiFi coverage distribution of the TR intronic of
ABCA7 gene. (D) Comparison of the joint allele size of ABCA7 TR between AD cases and cognitively
healthy centenarians, respectively, using HiFi data, non-HiFi data, and the merged data set of HiFi and
non-HiFi. (E) Number of AD cases and cognitively healthy centenarians in the lower 5th quantile and up-
per 95th quantile. Quantiles were defined based on the distribution of the joint TR allele size in the cen-
tenarians. We tested for the differential enrichment of AD and centenarians in each quantile with Fisher’s
exact tests.
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While we cannot exclude that we have missed some expanded ge-
notypes due to allele dropouts, the centenarians that we included
were previously shown to be enriched with the protective alleles
in the majority of SNPs associated with AD (Tesi et al. 2024).

In summary, otter and TREAT are flexible and accurate bioin-
formatics tools compatible with different sequencing platforms
and requiring minimal input requirements, that enable end-to-
end analysis and comparisons of TRs in human genomes with
broad applications in research and clinical fields.

Methods

TREAT

The main analysis is the assembly analysis, which uses otter for TR
genotyping, and is followed by TR content characterization (iden-
tification of motif and number of copies) on the individual TR
alleles. In addition to the assembly analysis, TREAT implements
a reads analysis (Fig. 1A). Here, TR genotyping is performed
using an iterative clustering framework based on TR sizes
(SupplementalMethods). This is followed by TR content character-
ization, which is done on all individual reads (Supplemental
Methods; Supplemental Results). This analysis may be preferred
when information from all reads is needed, for example, for per-
forming amultiple sequence alignment, orwhen studying somatic
instability.

In all cases, TR content characterization is performed with
pytrf (https://github.com/lmdu/pytrf). When multiple motif an-
notations for the same sequence are found by pytrf, a consensus
representation of the repeat content is generated. Briefly, if the
fraction of sequence annotated with a given motif is >95%, then
the relative motif is regarded as the best motif describing the TR.
In case two or more motifs are found, each describing a portion
of the sequence, then the intersection is calculated by intersecting
the motif-specific start and end positions. If the intersection is
<90%, then the motifs and the relative number of copies are com-
bined. For example, for sequence TGTGTGTGTGTGTGGAGAGA
GAGAGAGA, pytrf identifies (1) seven copies of TG (ranging posi-
tions 1–14, 50% of the sequence covered), and (2) seven copies of
GA (ranging positions 15–28, 50% of the sequence covered). In
this case, the combined sequence annotation will be TG+GA, re-
peated 7+7 times (see Supplemental Methods).

TREAT’s analysis module consists of an outlier-detection
framework, and a case-control analysis. The outlier-detection
scores extreme variations in TR allele sizes across a set of samples.
Outliers are detected using a normalized distance that quantifies
how far each allele size is from the median allele size, scaled by
the variability of the data (Supplemental Methods). A P-value for
each individual is then calculated by comparing each data point’s
distance to a χ2 distribution. The case-control analysis employs lo-
gistic regression models to compare allele sizes (short allele, long
allele, and joint allele size) between cases and controls.

Otter: a stand-alone, fast, local assembler

Otter is a generic stand-alone method for generating fast local as-
semblies of a given region or genotyping whole-genome de novo
assemblies. Otter in the main genotyping engine of TREAT assem-
bly analysis. Briefly, given a region of interest, otter uses the htslib
library to identify spanning reads (region of interest is fully con-
tained in the reads) and nonspanning reads (only partially con-
tained) in a given BAM file, and extracts the corresponding
subsequence per read based on their alignment (Fig. 1B; Bonfield
et al. 2021). When a reference genome is provided, it will perform
local read-realignments on nonspanning reads if it detects a clip-

ping-signal, which can indicate suboptimalmappings to due high-
ly divergent sequences (Fig. 1B). This is done by aligning (using
WFA2-lib alignment library) (Marco-Sola et al. 2023) the flanking
sequences of a region (100 bp by default, modifiable with “‐‐flank-
size” parameter) derived from the reference genome onto each
read, which are then used to recalibrate the corresponding subse-
quence of the region of interest. Recalibrated nonspanning reads
are reclassified as spanning if both flanking sequences are success-
fully aligned with a minimum length and sequence similarity
(by default, 90% sequence similarity, modifiable with “‐‐min-
sim” parameter). In the context of TRs, this realignment procedure
often correctly recalibrates the alignments of TRs with major
length and/ormotif-compositiondifferences relative to a reference
genome.

Otter identifies unique allele-sequences by clustering span-
ning reads via pairwise-sequence alignment (Fig. 1B; Supple-
mental Methods). To manage high somatic variation and/or
sequencing errors, otter estimates local baseline error-rates per re-
gion using a Gaussian-kernel density estimator. This produces a
one-dimensional distribution of spanning pairwise-sequence dis-
tances. In single homozygous allele-sequences, the distribution
is unimodal centered at 0. With multiple allele-sequences, the dis-
tribution ismultimodal, where peaks represent sequence errors be-
tween reads from different allele-sequences. Otter identifies these
peaks and performs hierarchical clustering, stopping when dis-
tances exceed the densest peak, partitioning reads into initial clus-
ters. This procedure is followed by a curation step to ensure
sufficient read support, adapting to local coverage (Fig. 1B). If no
maximum number of alleles (α) is enforced, otter outputs all clus-
ters. Otherwise, clusters below the coverage threshold are merged,
and if clusters exceed α, hierarchical clustering continues until α
clusters remain. Otter then generates a final consensus sequence
per cluster via pseudo-partial order alignment procedure of span-
ning and nonspanning reads inspired from Ye and Ma (2016).

Genomes included for testing

HPRC

Publicly available PacBio long-read HiFi data of 47 individuals
from the HPRC were downloaded (https://github.com/human-
pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-file)
(Wang et al. 2022). For the well-characterized HG002 genome
(Jarvis et al. 2022), we also downloaded data generated with ONT
(Duplex and Simplex chemistries) and PacBio Revio technologies.
Finally, we generated long-read sequencing data for HG002 using
the PacBio Sequel II instrument across three SMRT cells, keeping
both HiFi and non-HiFi data. ONT data were aligned to the refer-
ence genomes (GRCh38 and CHM13) using minimap2 (2.21-
r1071, specifying -x map-ont) (Li 2018). PacBio data were aligned
using pbmm2 (1.9.0, specifying –preset CCS and –preset
SUBREADS, respectively, for HiFi and non-HiFi data) (Wenger
et al. 2019).

100-plus Study cohort and Alzheimer Dementia Cohort

For the replication of TRs previously associated with AD, we used
HiFi sequencing (Sequel II) data from the bloodDNAofN=246 pa-
tients with AD from the AmsterdamDementia Cohort (ADC) (van
der Flier and Scheltens 2018; Salazar et al. 2023), and N=248 cog-
nitively healthy centenarians from the 100-plus Study cohort
(Holstege et al. 2018; Salazar et al. 2023). Ten cognitively healthy
centenarians were sequenced as a trio, including the blood-derived
DNA from the centenarian, the brain-derived DNA from the cente-
narian and blood-derived DNA from a child of the centenarian.
The combined set of a centenarian and child is referred to as

Tesi et al.

1950 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
https://github.com/lmdu/pytrf
https://github.com/lmdu/pytrf
https://github.com/lmdu/pytrf
https://github.com/lmdu/pytrf
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279351.124/-/DC1
https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-file
https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-file
https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-file
https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-file
https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-file
https://github.com/human-pangenomics/HPP_Year1_Data_Freeze_v1.0?tab=readme-ov-file


parent–child duo throughout the manuscript. Sequencing data
preprocessing was conducted as previously described (Supplemen-
tal Methods; Salazar et al. 2023). Long-read sequencing data
for these individuals is available on the Alzheimer Genetics Hub
(AGH, https://alzheimergenetics.org/) upon submission of a re-
search project proposal through the contact form (https://
alzheimergenetics.org/contact/).

CANVAS patients

We used the HiFi data (Sequel II) of two patients diagnosed with
CANVAS (Cerebellar ataxia with neuropathy and vestibular are-
flexia syndrome), caused by a TR expansion in RFC1 gene (van
de Pol et al. 2023).

Evaluating otter and TREAT performances

Comparison with existing tools

We compared TREAT/otter to TRGT and LongTR (Dolzhenko et al.
2024; Ziaei Jam et al. 2024). For the comparison, we used the
HG002 genome and a set of 161,382 TRs from PacBio’s repeat
catalog (version 0.3.0, available at https://github.com/Pacific
Biosciences/trgt/tree/main/repeats).We compared the tools’ geno-
typed alleles to the expected alleles from the T2T assembly of
HG002. As metrics, we used (1) normalized edit distance, (2) raw
edit distance, (3) allele size correlation between the observed and
expected alleles, and (4) fraction of perfectly genotyped alleles.
In addition, we evaluated motif identification accuracy, and com-
putational resources.

TREAT/otter applications

We compared the performances of TREAT assembly and reads anal-
yses by correlating the estimated TR allele sizes with each other
(Supplemental Results). Then, we used TRs for a population strati-
fication analysis: using the set of 161K TRs, we selected the top
20% most variable TRs based on the coefficient of variation (ratio
of standard deviation to themean TR joint allele size). Thenwe ap-
plied PCA based on the joint allele sizes. For 40/47 matching sam-
ples with SNP data from the 1000 Genomes Project (1000
Genomes Project Consortium2015), we also performed PCA based
on 30,544 randomly sampled common (minor allele frequency
>10%) SNPs.

To evaluate clinical applicability, we applied the TREAT/otter
outlier analysis module on the combined data set of 47 HPRC ge-
nomes plus the two CANVAS patients and the 10 parent–child
duos. For this analysis, we focused on 35 clinically relevant TRs
(Supplemental Table S1), that were previously associatedwith neu-
rological diseases (McMurray 2010; On Behalf of the BELNEU
Consortium et al. 2018; Khristich and Mirkin 2020). Finally,
TREAT/otter case-control analysis module was used to replicate
the association of four TRs that were previously associated with
AD (On Behalf of the BELNEU Consortium et al. 2018; Guo et al.
2023; Wang et al. 2023). The commands used for the outlier and
case-control analyses are available in Supplemental Methods.

Systematic analysis of allele dropouts in tandem repeats

Curated set of TRs in CHM13

We downloaded and curated repeat annotations for the CHM13
reference genome (version 2.0, https://github.com/marbl/
CHM13) (Supplemental Methods). This curated data set counted
864,424 TRs genome-wide.We extracted the corresponding paren-
tal andmaternal allele-sequences in HG002 for these TRs by align-

ing the HG002 T2T assembly (version 0.7) to CHM13 (Jarvis et al.
2022).

TRs unique to CHM13

We first genotyped the 864K TRs using otter in HG002 from differ-
ent technologies (Sequel II, Revio, Simplex andDuplex), and at dif-
ferent coverage levels (5×, 10×, 15×, 20×, 25×, and 30×), and
calculated the normalized edit distance between observed and ex-
pected TR alleles (Supplemental Results). We then focused on a set
of TRs present in CHM13 and absent in GRCh38, and used TREAT/
otter to characterize the repeat content of these TRs in 47 genomes
from HPRC.

Evaluation of coverage drops in TRs

UsingHG002 data fromSequel II, Revio, Simplex andDuplex tech-
nologies (∼30× coverage each), we calculated the ratio between lo-
cal TR coverage and average global coverage. TRs where this ratio
was <0.25were regarded as low-coverage TRs.We then investigated
sequence characteristics of low-coverage TR, including average
size, dinucleotide content, and propensity to formG4s. For the lat-
ter, we used pqsfinder (v2.10.1) with “min_score = 20” parameter
(Hon et al. 2017).

Consent statement

The Medical Ethics Committee of the Amsterdam UMC and
Radboud UMC approved all studies. All participants and/or their
legal representatives provided written informed consent for partic-
ipation in clinical and genetic studies.

Software availability

Otter is written in C++ and the source code is freely available at
https://github.com/holstegelab/otter.

TREAT is written in Python and R (for plots). The source code
is freely available at https://github.com/holstegelab/treat along
with example data sets, documentation, a dedicatedConda config-
uration file and a Docker image to ease the installation.

The source code of TREAT and otter are also available as
Supplemental Code.
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