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Direct nanopore-based RNA sequencing can be used to detect posttranscriptional base modifications, such as N6-methyl-

adenosine (m6A) methylation, based on the electric current signals produced by the distinct chemical structures of mod-

ified bases. A key challenge is the scarcity of adequate training data with known methylation modifications. We present

Xron, a hybrid encoder–decoder framework that delivers a direct methylation-distinguishing basecaller by training on syn-

thetic RNA data and immunoprecipitation (IP)-based experimental data in two steps. First, we generate data with more

diverse modification combinations through in silico cross-linking. Second, we use this data set to train an end-to-end neural

network basecaller followed by fine-tuning on IP-based experimental data with label smoothing. The trained neural network

basecaller outperforms existing methylation detection methods on both read-level and site-level prediction scores. Xron is a

standalone, end-to-end m6A-distinguishing basecaller capable of detecting methylated bases directly from raw sequencing

signals, enabling de novo methylome assembly.

[Supplemental material is available for this article.]

RNA modification plays essential roles in various biological pro-
cesses, including stem cell differentiation and renewal, brain func-
tions, immunity, aging, and cancer progression (D’Aquila et al.
2017; Sun et al. 2019; Qin et al. 2020; Boulias and Greer 2023).
Among the various types of RNAmodifications, N6-methyladeno-
sine (m6A) is one of themost abundant versions and is involved in
various biological processes including mRNA expression, splicing,
nuclear exporting, translation efficiency, RNA stability, and
miRNA processing (Boulias and Greer 2023). Accurate detection
and quantification ofm6Amodifications is crucial for understand-
ing their impact on gene regulation and cellular processes (Fu et al.
2014; Murakami and Jaffrey 2022).

High-throughput sequencing from Illumina, also known as
sequencing by synthesis (SBS), identifies nucleotides through syn-
thesis, leading to the loss of posttranscriptional information
(Buermans and Den Dunnen 2014). Therefore, indirect methods
are required to detect RNA modifications with SBS. These ap-
proaches first isolate the modified RNA and then conduct reverse
transcription and cDNA sequencing to reveal the modifications.
Two primary strategies are used to experimentally isolate RNA
modifications. One type of approach involves immunoprecipita-
tion (IP). Examples of methods using this approach include
MeRIP-seq (Meyer et al. 2012), m6A-seq (Dominissini et al.
2012), PA-m6A-seq (Chen et al. 2015), m6A-CLIP/IP (Ke et
al. 2015), miCLIP (Linder et al. 2015), m6A-LAIC-seq (Molinie
et al. 2016), m6ACE-seq (Koh et al. 2019), and m6A-seq2 (Dierks
et al. 2021). Thesemethods rely on antibodies that target themod-
ified ribonucleotide and enrich the RNA fragments with the target
modified bases. The other type of approach is chemical-based
detection. Examples of methods using this approach are Pseudo-

seq (Carlile et al. 2014), AlkAniline-Seq (Marchand et al. 2018),
MAZTER-seq (Garcia-Campos et al. 2019), m6A-REF-seq (Zhang
et al. 2019), DART-seq (Meyer 2019), RBS-Seq (Khoddami et al.
2019), and m6A-SAC-seq (Hu et al. 2022). These techniques use
chemical compounds or enzymes that selectively interact with
the modified ribonucleotide, either cleaving or modifying the
RNA reads to halt or disturb the reverse transcription process.
This is followed by short-read cDNA sequencing, which identifies
the RNAmodifications by comparing the read ends of the cDNAor
the base mismatches/deletions in cDNA. Although these methods
were able to generate detailed maps of RNA modification sites,
they all use external compounds which makes it hard to obtain
the required single-base resolution. They also face other challenges
and shortcomings including the limited availability of antibodies
or compounds for specific modifications (Ryvkin et al. 2013), non-
specific antibody binding (Helm et al. 2019; McIntyre et al. 2020;
Zhang et al. 2021), low single-nucleotide resolutions (Dominissini
et al. 2012; Meyer et al. 2012), and, importantly, an inability to
identify the exact location of a modification.

Direct RNA sequencing using nanopores offers a promising
alternative (Garalde et al. 2018). An RNA molecule can be se-
quenced by measuring the intensity of the current flowing
through the pore as the RNA molecules pass through it.
Modified RNA nucleotides produce different signals than their un-
modified counterparts, providing information about themodifica-
tions at the single-molecule read resolution (Jenjaroenpun et al.
2021; Leger et al. 2021). However, to detect specific modifications
from subtle signal changes we need an optimized algorithm,
which is normally obtained through supervised learning or a com-
parative approach (Wan et al. 2022). Unfortunately, current data
are not immediately suitable for supervised learning due to the
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lack of experimental techniques for identifying the methylation
state at the single-read resolution.

In vitro transcription (IVT) data, which are transcribed from
either experimentally synthesized DNA sequences or native DNA
(Liu et al. 2019; Jenjaroenpun et al. 2021), can provide reads that
are either completely methylated or not methylated at all (all-or-
none). However, the diversity of the sequence compositions in
synthesizedDNA data sets is limited due to constraints concerning
themaximumDNA length that can be synthesized and the associ-
ated costs. In addition, the IVT data set lacks partially methylated
reads with known methylation states. Although partially methyl-
ated reads can be generated by introducing a mixture of modified
and canonical adenine during IVT, the location of methylation re-
mains unknown because in such mixtures the RNA polymerase
randomly selects adenine from either type during the transcrip-
tion process. Models trained to identify modifications on all-or-
none modified reads perform poorly on biological reads, which
are usually sparsely methylated, regardless of the training feature
used, such as basecalling error or signal difference (Liu et al.
2019; Zhong et al. 2023). Methods using such synthesized data
sets include training a classifier to predict sequence segments
(5-mers) given their corresponding nanopore raw signal segments
(Gao et al. 2021) or features of these segments (Liu et al. 2019;
Jenjaroenpun et al. 2021; Leger et al. 2021; Pratanwanich et al.
2021). The signal segments are extracted from the raw signal after
performing basecalling and alignment, using models trained on
canonical data (datawith nomethylation). Aswe show, the perfor-
mance of such a classifier is limited since it is only trained on iso-
lated short segments, losing contextual information. In addition,
these models are trained solely on manually selected features in-
cluding mean, standard deviation, and duration of isolated signal
segments corresponding to five bases, which can lead to the loss of
more detailed signal information. Recently, a new method,
CHEUI, was trained using longer signal segments, yielding impres-
sive results on IVT data (Acera Mateos et al. 2024). However, it suf-
fers from overfitting when applied to real biological samples (Fig.
2; Hendra et al. 2022).

IP data from assays such as m6ACE-seq andm6A-CLIP-seq re-
lies on the use of antibodies (Schwartz et al. 2013; Ke et al. 2015;
Linder et al. 2015). However, this strategy only provides the mod-
ification proportion for each reference transcriptomic position,
i.e., a site-level modification rather than the modification state
for each individual read (read-level). m6Anet (Hendra et al.
2022) employs multiple-instance learning (Amores 2013) to train
a classifier using IP data leading to improved site-level accuracy.
However, IP data misses many methylation sites, particularly in
low-coverage regions (McIntyre et al. 2020). Additionally, due to
nonspecific antibody binding, the methylation detection results
obtained through IP experiments produced a false-positive rate
of ∼11%, which can vary between studies (Ke et al. 2017; Garcia-
Campos et al. 2019). m6Anet also requires a minimum coverage
level of 20 reads for a site to be detected due to the way the model
is trained. The training involves maximizing the probability of de-
tecting at least one methylated read among the reads covering a
known methylated site. Such coverage depth is not always avail-
able. Finally, as in the other existing models, m6Anet relies on a
basecaller and segmentation tools that are trained onnonmodified
reads (canonical reads).

In summary, previous approaches try to identifym6A sites us-
ing basecalling errors (Liu et al. 2019; Jenjaroenpun et al. 2021;
Leger et al. 2021; Pratanwanich et al. 2021), by comparing between
control samples (Leger et al. 2021; Abebe et al. 2022), trained on

IVT data (Gao et al. 2021; Acera Mateos et al. 2024), or trained on
noisy labels from IP data (Hendra et al. 2022). As we will show,
the fact that they are only trained on one type of data limits their
performance. This work aims to address these limitations by intro-
ducing a framework that integrates multiple data types to improve
the identification ofm6A sites in nanopore direct RNA sequencing.

Results

We present a method that takes a different approach by detecting
methylation during the basecalling phase. We predict methylated
bases directly from the current signal by training a methylation-
distinguishing basecaller. To achieve this, we developed Xron, a
hybrid encoder–decoder framework (Fig. 1). The encoder is a con-
volutional recurrent neural network (CRNN) encoding the observ-
able signal into a k-mer representation. After it has been trained
and fine-tuned, the CRNN serves as a methylation-distinguishing
basecaller for new data. The decoder is a nonhomogeneous hidden
Markov model (NHMM), which serves as a generative model for
achieving signal segmentation and alignment when preparing
the training data set. Applying the NHMM, we created a partially
methylated data set to train the CRNN and produce a methyla-
tion-distinguishing basecaller. The CRNN is then fine-tuned using
IP data, further enhancing the basecaller’s generalizability
(Supplemental Fig. S2). This framework enables us to obtain a
highly accurate methylation-distinguishing basecaller by exploit-
ing both IVT data and IP data, rather than using just one type of
data (Supplemental Table S1). This approach outperforms all previ-
ousmethods on synthesized and biological samples and provides a
comprehensive, end-to-end solution for methylation base detec-
tion (Table 1; Fig. 2A,B; Supplemental Fig. S4).

Applying Xron to identify m6A methylation on direct

RNA sequencing data sets

Xron performs methylation-distinguishing basecalling, output-
ting methylated bases directly from the raw sequencing signal
emitted from the nanopore. Its neural network basecaller is trained
on an augmented partially methylated data set and then fine-
tuned using IP data. We tested Xron on three public direct RNA se-
quencing data sets: an IVT data set (Liu et al. 2019), a yeast data set
(Liu et al. 2019), and a human embryonic kidney cells (HEK293T)
data set (Hendra et al. 2022).

The IVT data set (Liu et al. 2019) was synthesized from artifi-
cially designed sequences followed by IVT. The data set contains
either fully methylated or fully unmethylated reads. Signal inten-
sity shows differences around the center base of the k-mer between
modified and unmodified sites (Fig. 3A; Supplemental Fig. S1). The
sequences are designed to contain all 5-mers, including the most
common k-mer (GGACT) and all 18 DRACH motifs (Fig. 3A,B).

The yeast data set (Liu et al. 2019) contains direct RNA se-
quencing reads from two strains, a wild-type strain, and a
“ime4Δ” knockout strain, in which IME4was deleted. The deletion
of IME4 results in the complete elimination of m6A bases, making
it a negative control. The yeast data set contains three independent
biological replicates for each strain. Two were used in this study;
the first replicate was used for training, and the second was used
for evaluation.

The human HEK293T cell data set (Hendra et al. 2022) con-
tains direct RNA-seq data from theHEK293T cell line (Pratanwanich
et al. 2021), with methylation sites identified by m6ACE-seq (Koh
et al. 2019) and miCLIP data (Linder et al. 2015) on the same cell
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line. The data set contains three replicates, andwe used the first rep-
licate to evaluate the method. (See Methods for details about repli-
cates and data sets used for training and evaluation.)

The Arabidopsis data set (Parker et al. 2020) contains direct
RNA sequencing reads fromwild-typeArabidopsis (Col-0), mutants
(vir-1) defective in m6A writer, and VIR-complemented lines. We
used the three replicates of the wild-type line to evaluate the
method.

Xron accurately identifies m6A sites

To evaluate the performance of Xron, we applied Xron that is fine-
tuned on yeast data to direct RNA sequencing data derived from the
human HEK293T cell line (Pratanwanich et al. 2021). Although
Xron is pretrainedusinghuman IVT reads (seeMethods), nohuman
methylation information is used during training since all human
reads are canonical. Tovalidate themodel,weused them6A sites de-

tected by m6ACE-seq and miCLIP from the human HEK293T cell
line as the true labels during evaluation, following previous work
(Hendra et al. 2022). We used the m6A sites identified by
m6ACE-seq and miCLIP as positive samples and the other sites
with the same 5-mer as negative samples. Xron achieved the best
area under the receiver operating characteristic curve (AUC-ROC)
of 0.91 (Fig. 2A; Supplemental Fig. S5A) compared with those of
EpiNano (0.69) and m6Anet (0.83) and the best precision–recall
(PR) AUC of 0.456 (Fig. 2A; Supplemental Fig. S5B) compared to
m6Anet (0.342) and MINES (0.256; Lorenz et al. 2020).

Xron is sensitive to IME4 knockouts

In addition, we also evaluated Xron on a yeast data set using a
ime4Δ knockout Saccharomyces cerevisiae strain where the m6A
modification was completely eliminated (Schwartz et al. 2013) as
the control data set, following a previous study (Liu et al. 2019).

A

D E

B C

Figure 1. Schematics of Xron model and the data augmentation process through cross-linking and sampling. (A) Xron consists of two parts: a NHMM
and a CRNN with a connectionist temporal classification (CTC) decoder. (B) Comparison between HMM and NHMM. The transition matrix of a HMM
(yellow) encodes the whole Markov chain of k-mers, while the transition matrix of the NHMM (blue) at time t only encodes the Markov chain of the
five nearby k-mers given the predicted k-mer (shown in red) at time t. The Markov chain is also expanded to include the k-mers with all combinations
of the A and M (m6A) bases. We create partially methylated reads using data augmentation, first segmenting the signal and then cross-linking the reads
and their corresponding signal in silico. To achieve this, we design a novel NHMM that can be trained to conduct signal segmentation in a semisupervised
fashion on modified reads, even when lacking methylation labels. The NHMM is trained using the forward–backward algorithm with its transition matrix
conditioned on a canonical basecalled sequence and its alignment, thus giving the maximum likelihood estimation of the model parameters regarding the
methylation base. The Viterbi path of the NHMMgives the alignment between the current signal and sequence. Following the signal segmentation process
performedwith theNHMM, theNHMMwas used to create a training data set with partiallymethylated reads and their true labels formethylation detection
training by augmenting all-or-none modified reads. (C ) The transition process of the NHMM is constrained by the neural network’s output, leading to a
smaller probability space and making it easier for the model to find the optimal alignment. (D) The NHMM is trained in a semisupervised manner on IVT
data sets, including fullymodified, unmodified, and partiallymodified reads. It provides accurate signal segmentation results for both unmodified andmod-
ified sequences. (E) In silico read cross-linking. The fully modified or unmodified reads are first broken into segments at the invariant k-mers to form a signal-
k-mer graph, whose nodes are k-mers and whose edges are signal segments. Then, a partially methylated read is sampled from the k-mer signal graph.
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We used the second replicate sample of the data set for evaluation,
as we had fine-tuned Xron on a subset of the first replicate. We
treated the m6A sites in the wild-type strain as modified sites
and the same sites in the ime4Δ knockout strain as unmodified
sites. We compared Xron with other models for predicting modi-
fied/unmodified sites. Xron achieved an AUC-ROC score of 0.90
(Fig. 2B) on this task, providing a 21% increase over the second-
best model, EpiNano (0.72). To fairly compare with other models
that may not have been exposed to the yeast data set, we evaluated

the performance of an Xron model fine-tuned on the human
HEK293T cell line on yeast data and obtained similar accuracy
(Supplemental Fig. S3A).

Xron detects more methylation sites and achieves high accuracy

under low-coverage settings

Asm6Anet intrinsically requires aminimumcoverage of at least 20
to obtain site methylation predictions. This results in a much
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Figure 2. Comparison of Xronmodels across two different species. (A) ROC and PR curves of m6A prediction on human HEK293T cell line, produced by
Xron and other models. (B) ROC curves produced by Xron and other models on yeast data. (C,D) Venn diagram showing the overlapping sites predicted by
Xron and other methods on yeast (C) and HEK293T (D) data. (E) ROC curves produced by Xron for detectingm6Amethylation in yeast data under different
minimum sequence coverage thresholds. (F) ROC curves generated by Xron for detecting m6A methylation in down-sampled yeast data with different
coverage. (G) Distribution of AUC score of Xron on down-sampled yeast data.
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smaller sample size (11 sites detected). In the same setting, Xron
yields 171 sites with a minimum coverage of 20 on the yeast
data set, which results in higher AUC-ROC accuracy than
m6Anet (0.90 vs. 0.69). In total, Xron detects 272 sites reported
in the IP data, compared to the 156 sites detected by EpiNano
and the 93 sites detected by CHEUI (Fig. 2C). Sites detected by
Xron also show higher support from the IP technique (124) com-

pared to m6Anet (107) in the HEK293T cell line (Fig. 2D). While
different methods identify various m6A methylation sites, many
sites are detected exclusively by one method. This observation
aligns with previous reports (Koh et al. 2019; Hendra et al. 2022).

Wenext tested if includingmore low-coverage sites by setting
different minimum sequencing coverage thresholds would influ-
ence the prediction accuracy of Xron (Fig. 2E). We found that

Table 1. Reported performance of m6A modification identification achieved by existing works

Method

AUC-ROC

Read-levela Site-levela Yeast KOb Humanc

EpiNano (2019) (Liu et al. 2019) – 0.90 0.680 –

ELIGOS (2021) (Jenjaroenpun et al. 2021) – 0.756 0.287 (F1) –

Nanocompore (2021) (Leger et al. 2021) – – 0.18 (F1) –

Nanom6A (2021) (Gao et al. 2021) – 0.97 0.71 –

CHEUI (2022) (Acera Mateos et al. 2024) 0.806 0.92 – –

m6Anet (2022) (Hendra et al. 2022) 0.90 0.94 – 0.83

Xron (this work) 0.93 >0.99 0.90 0.91

Bold values: P < 0.001 (∗∗∗).
aThese results were reported on the IVT data set (Liu et al. 2019), in which single-read m6A modifications were known.
bYeast ime4Δ knockout data set from Liu et al. (2019).
cHuman HEK293T cell data set from Chen et al. 2021.
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Figure 3. Evaluation of the m6A detection results obtained for synthesized IVT RNA reads and stoichiometry prediction. (A) Box plot comparing the dis-
tribution of the mean, standard deviation, and length for the signal segmented by NHMM with 5232 modified sites and 18,464 unmodified sites for the
GGACT motif. Horizontal lines show the median, the box denotes the interquartile range, and the whiskers extend to 1.5 times the interquartile range.
Points beyond this range are considered outliers and are removed from the plot. (B,C ) ROC curves of Xron against m6Anet and CHEUI for read-level (B)
and site-level (C) m6A modification predictions. (D) Bar plot showing the relative proportion of DRACH 5-mer motif for 84,919 modified and 179,717
unmodified positions. (E) Box plot showing the m6A ratio predicted by Xron with different proportions of IVT control and IVT m6A RNA mixing.

Direct m6A RNA detection via nanopore sequencing

Genome Research 1991
www.genome.org



increasing the read coverage yielded superior site-level methyla-
tion prediction accuracy, increasing from a 0.825 AUC-ROC score
for a minimum read coverage level of 4 to a 0.930 AUC-ROC score
with a minimum read coverage level of 28. This suggests that with
higher sequencing depth, Xron can further enhance the precision
and accuracy of methylation detection. Meanwhile, Xron outper-
forms other models by a large margin even when setting the min-
imum read coverage level to 4, with AUC 14% more than the
second-best model, EpiNano (0.825 vs. 0.72). Furthermore, to eval-
uate Xron’s performance in low-coverage regions, we down-sam-
pled the reads to limit the maximum coverage at each site to a
range of 10–70. Xron achieved an accuracy of 0.725 with maxi-
mum coverage of 10, outperforming other models with full data
(Fig. 2F,G).

With the ability of Xron to detect methylation in low-cover-
age regions or even at the single-read-level, we were able to check
the read-level statistics of methylated k-mers. A comparison of the
read-wise and site-wise relative frequency of methylated k-mers in
yeast, human, and Arabidopsis shows differences in k-mer profiles
across species. Site-wise counting treatsmultiple reads at one site as
a single occurrence, while read-wise counts k-mer occurrence for
each read and each site separately (Supplemental Fig. S7A–E). For
yeast, the most frequently used motifs AGACA, GGACA, AGACT,
and GGACT from the read-wise counting are also the most widely
used motifs from the site-wise counting. But in human cell lines
and Arabidopsis, read-wise counting indicates the most frequently
used motif is different than the previously reported site-wise most
“frequently” usedmotif, which is indicated by the site-wise count-
ing. Motif GAACA in human cell lines has the highest (>17%) rel-
ative frequency in the read-wise count, exceeding the previously
reported most methylated motif GGACT (∼12%), but it only
possesses <8% relative frequency in the site-wise count while
GGACT has >12% relative frequency. Motif TAACT in
Arabidopsis has the highest (≈15%) relative frequency in the
read-wise count, but drops to <10% in the site-wise count. The var-
iation in k-mer profiles across different species offers an ideal sce-
nario for assessing the generalizability of Xron. When comparing
the Xronmodel fine-tuned on yeast and human data sets with dif-
ferent k-mer profiles, we found they give similar accuracy on yeast,
human, and Arabidopsis data sets (Fig. 2A,B; Supplemental Fig.
S3A–C).

Xron achieves nearly optimal site-level prediction on a

synthesized RNA data set

We evaluated Xron on a synthesized RNA IVT data set (Liu et al.
2019) obtained from a different replicate than the training data
set (see Methods). In this data set, the true methylation modifica-
tions were known for each position in each read, as the reads were
either from a fully modified or a fully unmodified run. Our model
achieved an AUC-ROC of 0.93 on the single-read-level prediction
task (Fig. 3C), in which the model has to predict m6A bases or A
bases for each read at DRACH sites identified by previous antibody
IP experiments (Schwartz et al. 2013). Our model outperforms the
second-best read-level model (m6Anet) by 3% (0.93 vs. 0.90) and
achieves an almost optimal AUC-ROCof >0.99 for site-level predic-
tion (Fig. 3D), outperforming the second-best site-level model
(CHEUI) by nearly 2% (≈1 vs. 0.98).

Xron provides m6A stoichiometry

By aligning the reads to the reference genome and piling up the
single-read m6A modification predictions for different sites,

Xron can predict site-level m6A modification stoichiometry, i.e.,
the fraction ofmodified bases at a site.We evaluated this ability us-
ing a synthetic data set.

The data set was a mixture created by randomly sampling
reads from fully modified or unmodified IVT data sets (Liu et al.
2019) with specific mixture proportions, which included 0%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%.
We calculated themodel-predictedm6Aproportion as the number
of m6A bases called per site divided by the total number of reads
aligned to this site. The median relative modification proportion
followed the same trend as the expected methylation proportion.
The trend in stoichiometry level was successfully recovered (Fig.
3E).

Xron achieved high accuracy on SQK-RNA004 data

We trained anXronmodel on aHEK293T cell line data set from the
SG-NEx project, generated using the SQK-RNA004 direct RNA se-
quencing chemistry, a recently released sequencing kit that offers
a higher sequencing rate and presumably better accuracy. Xron
achieved an AUC of 0.91 and a PR-AUC of 0.438 for all sites (Fig.
4A), and an AUC of 0.92 and a PR-AUC of 0.578 for dense sites
(Fig. 4B), surpassing theOxfordNanopore Technologiesm6Abase-
caller Dorado and other methods tested on the SQK-RNA002 data
set in the sameHEK293T cell line. A larger number of detected sites
weremutually agreed uponbyXron andDorado andwere also sup-
ported by IP methods compared to the SQK-RNA002 data set on
the same cell line, where most of the sites are detected by only
one method (Figs. 4C, 2C,D). Modified sites detected from SQK-
RNA004 data are enriched in the 3′ end of the coding sequence
along the transcript coordinates, as expected for m6A (Fig. 4D).

Clustering analysis shows asynchronous modification

Xron enables direct access to read-level modification information,
allowing us to examine the modification states across multiple
sites within each read. Genes that have at least twom6Amodifica-
tion sites and with at least 500 coverage reads were selected.
We found asynchronous modification states around the end of
the coding sequence (CDS) and in the 3′-UTR region among these
reads (Fig. 4E; Supplemental Fig. S8), wherem6Amethylation does
not occur synchronously but in a combinatory pattern. For in-
stance, in the TSR3 gene transcript (ENST00000007390.2) at posi-
tions 1041, 1096, 1105, and 1151, all 16 possible combinations of
modification status at these four sites were observed with varying
frequencies. This pattern suggests a complex regulatory mecha-
nism based on m6A methylation.

Xron performs consistent basecalling on m6A-modified data sets

To compare the performance of Xron as a basecaller with a canon-
ical basecaller, we evaluated the basecalling accuracy of Xron and
compared it with that of the Guppy ONT basecaller (Table 2;
Supplemental Table S2). We evaluated the basecall quality
achieved on three data sets: the synthesized IVT RNA data set,
the S. cerevisiae yeast data set, and the human HEK293T cell line
data set, considering both modified and unmodified reads.
When comparing the identity rate, only reads with potential mod-
ified sites are taken into account. For the synthesized IVT RNA and
yeast data sets, we used the second replicate, whichwas not used as
training data. Xron suffers less (or no) accuracy drop on data sets
with m6A modifications. It exhibited no performance loss on
data sets with methylation compared to the control data set. On
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the other hand, Guppy showed performance decreases on all three
data sets with methylation compared to its performance on the
unmodified control data sets, including a 14.47%drop in the iden-
tity rate on the synthesized reads and a 7.55% drop in the identity
rate on the HEK293T reads. Guppy also shows a larger context bias
for k-mers from DRACH motifs, comparing to Xron on the
HEK293T reads (Supplemental Fig. S6), explaining the identity
rate drop on basecalling m6A-modified reads.

Discussion

Several computational methods (Liu et al. 2019; Gao et al. 2021;
Jenjaroenpun et al. 2021; Leger et al. 2021; Acera Mateos et al.
2024) have been used to detect m6A methylation. These methods
require accurate training data, usually obtained using synthesized
RNA reads containing the modification of interest, obtained
through experimental methods such as m6ACE-seq or miCLIP,
or from a comparative analysis against control data. However,
these methods exhibit a performance drop when they are applied
to other data sets, implying the existence of overfitting. In addi-
tion, these methods usually can only provide site-level methyla-
tion, losing read-level resolution. We developed an end-to-end
m6A modification detection system for nanopore direct RNA se-
quencing and were among the first to create an m6A-distinguish-
ing base caller. Our system, Xron, includes an NHMM model for
k-mer decoding and a neural network basecaller. By employing
data augmentation and semisupervised learning, we constructed
an NHMM that is capable of performing accurate signal sequence
alignment and introduced a novel training data set for m6Ameth-
ylation detection. The training pipeline established in our work fa-

cilitates supervised basecaller training without necessitating
complex feature engineering and using both IVT and IP data avail-
able to overcome overfitting.

Quantifying the transcriptome-widemodification rates is one
of the key challenges in methylation detection. From the read-
level methylation states given by Xron, the modification stoichi-
ometry for each site can be obtained. Meanwhile, our method
does not require a high minimum coverage depth, which is
essential for detecting methylation in low-expression regions.
Comparative methods detect methylation by analyzing data
from different conditions (Leger et al. 2021; Pratanwanich et al.
2021). While Xron does not require a control sample to detect
methylation, it can facilitate the use of a control sample by com-
paring the same site across samples. In addition, compared to oth-
er methods where the model performance is influenced by aspects
such as basecalling algorithms, accuracy in the alignment of the
reference sequence to signal, and segmentation of the raw signal,
Xron reads out methylation information directly from the raw sig-
nal. More training data on different experimental protocols and
different organisms will likely further improve the accuracy of
Xron and other supervised approaches, while the training frame-
work of Xron can easily adopt these additional training data into
the fine-tuning pipeline.

As a basecaller, Xron achieves a consistent identity rate
among methylation and unmethylation data sets. Although there
is a performance gap in terms of identity rate between Xron and
the basecaller Guppy, this is likely due to the different neural net-
work architecture used. In future research, it would be beneficial to
investigate various neural network structures since previous stud-
ies have shown that alterations to the CRNN architecture can yield
enhanced basecalling accuracy. For example, Guppy uses
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Figure 4. m6A detection on SQK-RNA004 data set. (A) ROC and PR curve of Xron on SQK-RNA004 data against Dorado. Results of m6Anet and MINES
from SQK-RNA002 data on the sameHEK293T cell line are also plotted for comparison. (B) Comparison of ROC and PR curves for Xron andDorado on 2070
dense sites where neighboring modification sites exist within five bases. (C) Venn diagram showing the overlapping sites predicted by Xron and other
methods on the HEK293T cell line. (D) Coordinate distribution of the m6Amethylated sites predicted by fivemethods against the background distribution
of all DRACH sites. Only sites with at least 20 coverage were chosen. (E) Clustering plot showing the modification of the TSR3 (ENSG00000007520) mRNA
transcript over 780 reads. A modification is called if the predicted probability is >0.9 and is marked with a green dot.
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QuartzNet (Kriman et al. 2020), a neural network designed initially
for speech recognition. SACall (Huang et al. 2022) employs an at-
tention mechanism, while RODAN (Neumann et al. 2022) inte-
grated squeeze-and-excitation (Hu et al. 2018) layers into a base
convolutional neural network (CNN).

Currently, the NHMM takes only raw signal as its input. This
has several advantages, including being easy to train and having a
closed-form solution for parameter estimation. However, addition-
al input features can be added to the NHMM, including the encod-
ed representation from the neural network base caller. The strategy
used by NHMM can also help provide more accurate signal seg-
mentation in other downstream current-based applications, such
as postbasecalled sequence correction (e.g., Nanopolish by
Simpson et al. [2017]). We leave this as future work. Xron was
used to detect m6A modification; however, our framework is suit-
able for training a basecaller for detecting any natural posttran-
scription modification, including DNA methylation such as 5mC
and other types of RNA modification. Xron can also be retrained
to detect artificial modifications at a single-molecule level, such
as detecting modifications introduced in small noncoding RNA
(Shi et al. 2022).

Methods

Xron is trained using both IVT and IP data sets to obtain better per-
formance. It was first trained on a surrogated IVT data set and then
fine-tuned on IP data. To make efficient fine-tuning and to avoid
overfitting to the all-or-none methylated reads in IVT data when
training with the long current signal, we create partially methylat-
ed reads using data augmentation, first segmenting the signal and
then cross-linking the reads and its corresponding signal in silico.
To achieve this, we design a novel NHMM that can be trained to
conduct signal segmentation in a semisupervised fashion onmod-
ified reads, even when lacking methylation labels. The NHMM is
trained using the forward–backward algorithm with its transition
matrix conditioned on a canonical basecalled sequence and its
alignment, thus giving the maximum a posteriori estimation of
the model parameters regarding methylation base. The Viterbi
path of the NHMMgives the alignment between the current signal
and sequence. Following the signal segmentation process with the

NHMM, we prepared a partially methylated data set through data
augmentation, splicing the fully methylated and unmethylated
segments. Training on this augmented data set diminishes the in-
ductive bias of the model on partially methylated reads when
training with entirely methylated or nonmethylated reads. We
then trained an end-to-end methylation detection basecaller on
the augmented data set, and it achieved high-accuracy methyla-
tion base detection at a single-read resolution. We further im-
proved the basecaller by applying a fine-tuning procedure on IP
data with label smoothing to obtain a more accurate basecalling
model. Finally, we benchmarked differentm6A detectionmethods
on three data sets, including a synthetic IVT data set, a yeast data
set, and a human HEK293T cell line, demonstrating that Xron
yields accurate methylation-aware basecalls and generalizes to dif-
ferent species.

NHMM trained using semisupervised learning

We design a hybrid framework to conduct signal segmentation
and alignment when methylated bases are present. A homoge-
neous HMM (we refer to thismodel as an HMM throughout the re-
mainder of this paper for convenience), as employed in the
Nanopolish preprocessing tool (Simpson et al. 2017), faces chal-
lenges when applied to sequences withmethylation bases. The ab-
sence of ground truth for themethylation states in each basecalled
sequence prevents supervised HMM training. However, training
the HMM unsupervised, using only signal and reference genome,
is difficult due to the high noise contained in nanopore sequenc-
ing signals, the long lengths of the electrical signals, and the sim-
ilar signal levels between certain k-mers and their methylated
counterparts. Additionally, totally unsupervised training is not
necessary as we already have the canonical basecalled sequence
with alignment given by the canonical basecaller and the reference
genome. Although the signals are error-prone in the methylated
region, they still provide a general sketch of the sequence. Thus, in-
stead of performing unsupervised learning with the HMM, we
develop a semisupervised training process using anNHMM,where
we use the basecalled canonical sequence as a prior when building
the transition chain backbone in the NHMM. In contrast with an
HMM possessing a homogeneous transition matrix that remains
constant over time t, an NHMM possesses a nonhomogeneous
transitionmatrix that depends on the external variables and varies

Table 2. Accuracy comparison between Xron and Guppy on three different data sets and their control data sets

Condition Model Identity rate (%)(↑) Identity rate change (%)

IVT Control Xron 87.35 –

Guppy 92.75 –

IVT m6A Xron 88.48 1.13

Guppy 78.28 −14.47

Yeast ime4Δ KO Xron 83.42 –

Guppy 92.50 –

Yeast Xron 83.96 0.54

Guppy 91.94 −0.56

HEK293T METTL3 KO Xron 85.91 –

Guppy 93.19 –

HEK293T Xron 87.12 1.21

Guppy 85.64 −7.55

The identity rate (%) was defined as the number of matched bases in the query sequence divided by the number of bases in the reference sequence
(the higher the better). All reported rates are mean values among the aligned reads.
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over time t, allowing the use of dynamic control for the transition
process. Various NHMMs have been used in meteorology (Hughes
et al. 1999) and economics (Meligkotsidou and Dellaportas 2011;
Neumann et al. 2022) by constructing transition matrices that
depend on time-varying covariates, such as seasonality (Hughes
et al. 1999) or economic cycle indicators (Meligkotsidou and
Dellaportas 2011). In our case, the base probabilities along time t
predicted by an existing canonical basecaller (a base caller trained
to predict only canonical bases) are used as the time covariates of
the transitionmatrix. This approach enables themodel to concen-
trate on the section of the Markov chain guided by the predicted
base probability (Fig. 1C), rather than dealingwith the entire chain
as is required in unsupervised learning using HMM, which is more
challenging and error-prone.

NHMM for methylated sequence segmentation and alignment

TheNHMMrepresents the input sequence of raw current signals as
X= (x1, …, xT) for a given k-mer sequence Z= (z1, …, zT) inside a
nanopore over the sequencing durationT. Each signal point xt rep-
resents a normalized current value, while zt is a variable indicating
the k-mer at time t. The transition matrix of the NHMM is con-
strained on the basecalled sequence and its alignment given by
the canonical basecaller. More specifically, suppose we are given
the base probability matrix H= (h1, …, hT)∈RB×T, where B is the
number of bases and hb

t is the probability of base b at time t, which
is obtained from an existing canonical neural network basecaller
(Fig. 1A; Graves et al. 2006; Teng et al. 2018). From the base prob-
abilitymatrixH, we extract themost probable basecalled sequence
Y = {yt} and its corresponding alignmentA(t) which aligns the sig-
nal point time t to sequence index τ, giving t→ τ. After correcting
the basecalled sequence with the reference genome, we construct
a reference k-mer sequence C by sliding a window of size k (in
our case, k=5) across the basecalled sequence, moving one base
at a time. Each windowed segment forms a k-mer and is added to
the sequence C = {ct}. From now on, to simplify the notation,
we use ct to denote the corresponding k-mer at time t after transi-
tioning through alignment cA(t). All time offsets of the k-mer
sequence reside in the sequence domain, meaning ct−1 refers to
cA(t)−1. Finally, we derived the k-mer transition matrix Ψ from
k-mer sequence C; for details, see the next section. Then, the like-
lihood of observing an electrical signal X is given by

P(X|C) =
∑

Z

∏T

t=1

P(xt |zt )
∏T

t=1

P(zt |zt−1, ct−⌊m/2⌋, . . . , ct+⌊m/2⌋)

[ ]
. (1)

Here, Z is the hidden state representing the underlying k-mer se-
quence, zt is the k-mer at time t, and cA(t) is the corrected k-mer rep-
resentation at time t acquired from the canonical neural network
output H (Fig. 1A). T is the maximum time stamp for a given se-
quence segment.m is the window size for the k-mers to be consid-
ered. P(x|z) is the emission probability of the signal x given the k-
mer z, as modeled by a Gaussian distribution.

Constructing a transition matrix from the basecalled sequence

and its alignment

We loosely constrain the transition matrix at time t in the nonho-
mogeneous HMM by using the base prediction output H derived
from a canonical basecaller, thereby using the segmentation re-
sults provided by the basecaller in an error-tolerant manner (Fig.
1B). By calculating the most probable path from H, we can obtain
both the basecalled sequence and the alignment between each
base within the most probable path and the sequencing time t.
Following this, we correct the basecalled sequence using the refer-
ence genome, and we alsomake appropriate revisions to the align-

ment to address the deletion or insertion errors in the basecalled
sequence. We transform the corrected sequence into a k-mer se-
quence C= {ct:t=1, …, T}, incorporating the k bases surrounding
each base in the basecalled sequence; then, this k-mer sequence
is reformatted into transitionmatricesΨ= {ψt:t=1,…,T} by includ-
ing at mostm transitions, where each ψt is the temporal transition
matrix at time t. During the process of constructing the k-mer se-
quence C from H, the basecalled RNA sequence is corrected by
aligning it to a reference genome through the following steps:

• Formismatched bases, we replace the bases in the k-merwith the
reference bases.

• For insertions/deletions in the basecalled sequences that are
smaller than five bases, we determine the new signal alignment
boundary of the inserted/deleted bases by evenly merging/split-
ting the signal boundaries of nearby bases; i.e., we redistribute
the occupancy of the inserted bases to the nearby bases and allo-
cate occupancy for the deleted bases from the nearby bases.

• We skip the sequence segments with insertions and deletions
that are larger than five bases for quality control purposes.

The transition matrix Ψ is then constrained by C, masking out
the irrelevant transition paths so that only transition paths
that are likely to occur at time t are retained. To more clearly
see what these temporal transition matrices stand for, let
ct
i,j = Pr(zt = i|zt−1 = j, ct−⌊m/2⌋, . . . , ct+⌊m/2⌋) be the transition

probability from k-mer i to k-mer j given constraint k-mers ci
from a time window with a width of at most m, i.e., from
t − ⌊m/2⌋ to t + ⌊m/2⌋. At the start and end of sequence, the win-
dow size is less than k due to boundary constraints. In comparison
with the transition matrix ϕi,j=P(zt= i|zt−1 = j) of a homogeneous
HMM, the transition matrix now changes over time t:

ct
i,j =

∑t+⌊m/2⌋

t ′=t−⌊m/2⌋
ect′ ⊗ ect′+1

⊙ fi,j, (2)

where ⊗ is the tensor product operation, ⊙ denotes elementwise
multiplication, ei is a one-hot vector where only the ith element
is 1, and ϕi,j is the transitionmatrix in which ϕi,j =1 if the transition
from k-mer i to k-mer j is valid (otherwise, it is 0). For example,
AAACT to AACTA is valid, while AAACT to ACTCC is not, as we
only allow 1 base step. ct

i,j is the k-mer transition matrix from
the k-mer sequence described above; it is a binary value matrix in-
dicating the k-mer transition i→ j at time t, where 1 denotes a pos-
sible transition and 0 represents an impossible transition.

We construct the transition matrix from m nearby k-mers in-
stead of only the k-mer at time t from k-mer sequenceCbecause the
base probability predicted by the canonical basecaller is not exact
due to the CTC loss used (Graves et al. 2006; Teng et al. 2018) and
the insertion/deletion errors in the sequence, nor is it totally cor-
rect due to the previously unseen modified bases. Thus, we allow
the NHMM to explore the alignment space in two ways. First, at
each time point, the transition matrix of the NHMM is restricted
to the current transition probability and the m nearby transition
probabilities, where m is a hyperparameter (Eq. 2). This is done
to make sure that the final alignment output by the NHMM is
not too far away from the given the alignment from canonical
basecalling but still allows for exploration within the m-base win-
dow. Second, the transition path of the underlying Markov chain
is broadened to encompass all possible modified counterparts for
each k-mer along the path (Fig. 1C). As an example, AACGT is ex-
tended to include four alternative k-mers with modified bases,
AACGT (the original k-mer), AMCGT,MACGT, andMMCGT, lead-
ing to expanded paths. After the transition matrix is constructed
for all the time points, the NHMM is then trained using the
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expectation–maximization (EM) algorithm (Baum et al. 1970) un-
til it converges (Supplemental Fig. S2B).

Preparing the training data with data augmentation

and read sampling

All-or-nonemethylated reads exhibit either completemethylation
of all adenine (A) bases or none at all, whereas in actual biological
samples, methylation typically occurs less frequently and is more
sporadically distributed. To prevent the neural network from over-
fitting to all-or-none methylation reads, we create a training data
set containing partially methylated reads with labels. This is ac-
complished by dividing the signals from the all-or-none modified
reads into smaller segments and subsequently splicing them to-
gether. The corresponding sequences are recombined according
to their alignment with the signal, as provided by the NHMM.
Merging the signals generated from distinct k-mers at their junc-
tion points can result in substantial discrepancies between the
combined signal and the actual signal obtained from a real se-
quencing run. To avoid such deviations caused by k-mer mis-
matches, we ensure that the preceding and succeeding k-mers at
the joint sections are identical. For instance, we canmerge the sig-
nal segmentswith basecalled sequences such asGGMCGTTCXXX
and XXXCGTTCTAG to form GGMCGTTCTAG. To achieve this,
we define nonmethylatable k-mers as k-mers without adenine
(CGTTC in the example). They have the same sequencing signal
distributions in both modified and unmodified reads, making
them suitable for use as joint anchors. We employ the trained
NHMM to decode both the canonical and fully modified reads in
the training IVT data set, using the base probability prediction
from the canonical basecaller as described before. The alignment
between the sequence and signal is established through a Viterbi
path, which assigns each signal point to its corresponding k-mer
(Fig. 1D). Each read is subsequently divided into segments at non-
methylatable k-mers. These segments are used to construct a k-mer
signal graph, where each node represents an invariant k-mer. Each
edge corresponds to a signal segment whose aligned sequence be-
gins and ends at the respective k-mers of the connected nodes (Fig.
1E). We then perform a random walk on the graph, choosing the
next edge via an e-greedy sampling strategy with an upper confi-
dence bound (UCB) (Sutton and Barto 2018), as used in the multi-
armed bandit algorithm, to ensure maximum diversity in the
sampling sequence (see Algorithm 1 in Supplemental Material).

Data processing

Acquisition and processing of direct RNA sequencing data sets

All data sets used in this study are acquired from Liu et al. (2019),
Jenjaroenpun et al. (2021), Workman et al. (2019), Hendra et al.
(2022), and Chen et al. (2021). We obtained both replicates (repli-
cate 1 and replicate 2) from the EpiNano-synthesized IVT RNA data
set (Liu et al. 2019) and the only single replicate from the ELIGOS-
synthesized IVT RNA data set (Jenjaroenpun et al. 2021). Both of
these data sets contain fully modified reads and unmodified con-
trol reads. We also obtained all the NA12878 IVT RNA reads
from the Oxford Nanopore human reference data set repository:
https://github.com/nanopore-wgs-consortium/NA12878/blob/
master/RNA.md (Workman et al. 2019). For the yeast data set, we
obtained all three replicates of the wild strain and ime4-knockout
strain (ime4Δ) (Liu et al. 2019). Reads are extracted if mapped to
m6A-modified RRACH sites previously identified by antibody IP
(Schwartz et al. 2013). For the human HEK293T cell line, we ob-
tained two replicates (replicate 1 and replicate 2) of the wild-type
human HEK293T cell (Hendra et al. 2022) to evaluate models.
Following a previous study (Hendra et al. 2022), we used the refer-

ence transcriptome and its genome annotation provided by SG-
NEx project: https://github.com/GoekeLab/sg-nex-data (Chen
et al. 2021). We used the same m6A DRACH sites in the m6Anet
paper (Hendra et al. 2022), which were originally identified by
m6ACE-seq and miCLIP experiments (Linder et al. 2015; Koh
et al. 2019). We also obtained the first replicate of the wild-type
cell line, generated using the SQK-RNA004 sequencing kit from
the SG-NEx data repository v5.0.1 (Chen et al. 2021). Currently,
there is only one replicate of this data set available. Therefore, we
split the data set randomly by reads for training and evaluation
purposes. For the Arabidopsis data set, we obtained three wild-
type replicates (Col0-1 to Col0-3) from Parker et al. (2020). We
used the TAIR10 reference transcriptome (cDNA) and genome
from Ensembl: https://plants.ensembl.org/Arabidopsis_thaliana/
Info/Index. All replicates in the data sets are biological replicates,
which are independent biological samples sequenced using the
same direct RNA nanopore sequencing protocol. As for synthe-
sized IVT reads, RNA replicates were transcribed from synthesized
DNA reads with different sequences. See the sections below for de-
tails on replicates used for training and evaluating. All SQK-
RNA002 samples were generated using the Nanopore R9.4.1 flow
cell, except for the human IVT data, which came from the R9.4
flow cell. The only significant difference between the two flow
cells is the slightly improved yield in the R9.4.1. SQK-RNA004
samples were generated using the FLO-PRO004RA flow cell
(Chen et al. 2021).

The IVT RNA data sets were obtained from the EpiNano pro-
ject (Liu et al. 2019) from the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE124309. The ELIGOS IVT RNA data sets were obtained
from the ELIGOS Project (Jenjaroenpun et al. 2021) from the
NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih
.gov/sra) under accession number SRP166020. The yeast data sets
(wild and ime4-knockout) were obtained from the EpiNano project
(Liu et al. 2019) through the GEO database (GSE126213). The
HEK293T cell lines data were obtained from the SG-NEx Project
(Chen et al. 2021) through the European Nucleotide Archive
(ENA; https://www.ebi.ac.uk/ena/browser/home) (PRJEB40872).
The Arabidopsis data were obtained through ENA (PRJEB32782).
The SQK-RNA004 data were an early access data set obtained
from the SG-NEx data repository v5.0.1.

Canonical basecalling and mapping

All reads in the training data set were basecalled using the Guppy
5.0.11 ONT basecaller (https://pypi.org/project/ont-pyguppy-
client-lib/5.0.11/) and then mapped to the reference genome us-
ing minimap2 v2.24 (Li 2018) with the settings “-ax map-ont -uf
‐‐secondary=no ‐‐MD”. The mapped reads were then transferred
to the BAM format using SAMtools 1.11.0 (Li et al. 2009). A canon-
ical neural network basecaller with the same structure as theCRNN
was then trained using the NA12878 IVT reads, and this basecaller
was then used to produce the base probability prediction. This ca-
nonical basecaller is used as a startingmodel when we retrain it on
the augmented IVT data and subsequently fine-tune it on the yeast
data (Liu et al. 2019).

Training data sets

We randomly selected 300,000 canonical (unmodified) read
chunks and 300,000 fully modified read chunks from replicate 1
of each of the two synthesized IVT RNA data sets (Liu et al. 2019;
Jenjaroenpun et al. 2021), as well as the first 300,000 canonical
read chunks from the Oxford Nanopore Human IVT reference
data set (Workman et al. 2019) to construct the k-mer signal graph
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we described above. Reads were filtered out if the corresponding
basecalled sequence was shorter than three bases, if the signal
had a dwell time (the putative duration a k-mer remains in the
pore) exceeding 2000 signal time points, if the basecalled sequence
could not be aligned to the reference genome, or if a single base
type comprised more than 60% of the basecalled sequence. This
filtering process resulted in 228,983 canonical read chunks and
204,822 methylated read chunks from the first synthesized IVT
data set (Liu et al. 2019), 195,161 canonical read chunks and
213,085 methylated read chunks from the second synthesized
IVT data set (Jenjaroenpun et al. 2021), and 188,004 canonical
read chunks from the Human IVT reference data set (Workman
et al. 2019). Methylation sites identified by antibody IP
(Schwartz et al. 2013), derived from the first replicate of the wild-
type and the first replicate of the ime4Δ from the yeast data set
(Liu et al. 2019) were used to create the fine-tuning data set. We re-
garded all sites from thewild-type strain asmethylated and all sites
from the ime4Δ strain as unmethylated. However, we considered
these classifications noisy labels and used label smoothing during
fine-tuning.HumanHEK293T cell data set (Hendra et al. 2022)was
not used for training and only used in the evaluation.

Evaluation data sets

All the accuracy evaluation data sets we used are sourced from pre-
viously published resources. These include a synthesized IVT data
set (Liu et al. 2019), a yeast data set (Liu et al. 2019), and a human
HEK293T cell data set (Hendra et al. 2022). We used the second
replicate from both the synthesized IVT and yeast data sets, as
we had already used the first replicate of these two data sets for
training and fine-tuning, and we used the first replicate of the hu-
man HEK293T cell data set as it was not included in training. A
subset of the human HEK293T cell data set containing 500 genes
was randomly sampled from the original data set. For the yeast
data, we assessed model performance based on the sites identified
by m6A-seq (Schwartz et al. 2013) for the wild-type strain, and the
ime4Δ strains where no methylation should be observed. For the
evaluation on human data, following previous work (Hendra
et al. 2022), we regarded the combined sites identified by
m6ACE-seq (Koh et al. 2019) and miCLIP (Linder et al. 2015) as
methylated sites, and other randomly selected sites with the
DRACH motif as unmethylated sites.

Training and fine-tuning a m6A methylation-sensitive neural network

basecaller

We used the partially modified reads sampled from the signal k-
mer graph to retrain a canonical basecaller. Before performing re-
training on the pretrained canonical basecaller, we reinitialized
the parameters of the last fully connected hidden layer with ran-
dom weights but kept the same standard deviation. We then re-
trained the model using a smaller learning rate (0.00001) than
the usual learning rate (0.001). We fine-tuned our model on bio-
logical samples withm6A sites identified by antibody experiments
(Liu et al. 2019), labeling theA base at eachmodified site as anm6A
base for every read (Supplemental Fig. S2B). Since the bases at
methylation sites are usually notmethylated in every read, this ap-
proach would introducemany false-positive labels. To address this
issue, we applied label smoothing to the CTC loss that was used to
train the basecaller. A label sequence of length Lwas defined as S=
{si:i=1, 2,…, L}, and each si belonged to the set {A, C, G, T,M}. The
base probability logit output H∈RT/K×N was a (T/K)-by-N matrix
derived from the basecaller’s CRNN, where K is the total number
of strides (i.e., the number of steps the convolutional filter moves
across the input at each operation), and N is the number of bases

used for prediction plus 1 (a blank symbol). The altered CTC loss
with label smoothing under a strength factor represented by 1

was then defined as

L = eLCTC(SM�A, H)+ (1− e)LCTC(S, H), (3)

where M stands for the m6A base, LCTC is the usual CTC loss, and
SM→A is the sequence in which every m6A base is replaced with an
A base.We set 1 = 0.1 empirically for the fine-tuning process, with
an expectation that the methylation label is correct with probabil-
ity 1− 1.

Software availability

Code for Xron is available at GitHub (https://github.com/
haotianteng/xron) and as Supplemental Code. Xron is available
under a GNU GENERAL PUBLIC LICENSE v3.0. Xron is built
with Python 3.8 and PyTorch 1.12, and has been tested on
PyTorch 1.13 and 2.0.
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