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Abstract

Data integration, the joint statistical analysis of data from different observation

platforms, is pivotal for data-hungry disciplines such as spatial ecology. Pooled data

types obtained from the same underlying process, analyzed jointly, can improve

both precision and accuracy in models of species distributions and species–habitat
associations. However, the integration of telemetry and spatial survey data has

proved elusive because of the fundamentally different analytical approaches

required by these two data types. Here, “spatial survey” denotes a survey that

records spatial locations and has no temporal structure, for example, line or point

transects but not capture–recapture or telemetry. Step selection functions (SSFs—
the canonical framework for telemetry) and habitat selection functions (HSFs—
the default approach to spatial surveys) differ in not only their specifications but

also their results. By imposing the constraint that microscopic mechanisms (animal

movement) must correctly scale up to macroscopic emergence (population distri-

butions), a relationship can be written between SSFs and HSFs, leading to a joint

likelihood using both datasets. We implement this approach using maximum like-

lihood, explore its estimation precision by systematic simulation, and seek to

derive broad guidelines for effort allocation in the field. We find that com-

plementarities in spatial coverage and resolution between telemetry and

survey data often lead to marked inferential improvements in joint analyses

over those using either data type alone. The optimal allocation of effort

between the two methods (or the choice between them, if only one can be

selected) depends on the overall effort expended and the pattern of environ-

mental heterogeneity. Examining inferential performance over a broad

range of scenarios for the relative cost between the two methods, we find

that integrated analysis usually offers higher precision. Our methodological

work shows how to integrate the analysis of telemetry and spatial survey

data under a novel joint likelihood function, using traditional computa-

tional methods. Our simulation experiments suggest that even when the

relative costs of the two methods favor the deployment of one field

approach over another, their joint use is broadly preferable. Therefore, joint

analysis of the two key methods used in spatial ecology is not only possible

but also computationally efficient and statistically more powerful.
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INTRODUCTION

There is a wide variety of technologies and field protocols
for collecting spatial data on the distribution of animals.
However, the majority of the resulting data fall into one
of two broad classes (Matthiopoulos et al., 2023), either
telemetry (radiotelemetry, satellite tracking, geolocators,
archival tags; Cagnacci et al., 2010) or spatial surveys
(line transects, strip transects, point transects, grid counts;
Buckland et al., 2005).

Here, and throughout the paper, we use “spatial sur-
vey” as a shorthand for an observation process that
records locations in space and that has no temporal struc-
ture. It may represent observation at a single time giving
a partial snapshot of the locations of individuals, or
observations at multiple fixed times provided that they
are sufficiently separated in time that, given the animals’
long-term distribution, there is no temporal depen-
dence between the different times. So our usage
includes, for example, line or point transects but not
capture–recapture—spatial or otherwise—or telemetry.
(We will sometimes simply refer to “survey” data
where no ambiguity results.) There is a clear concep-
tual divide between these two data types. Spatial sur-
veys focus on particular regions of space and can in
principle observe any individual from the population
that comes into detection range. In contrast, telemetry
studies focus on particular individuals and can in prin-
ciple observe any region in space visited by the tagged
animals. Analytically, the two data types correspond to
two different ways of thinking about spatial processes
(Phillips et al., 2019; Turchin, 1998). The Lagrangian
viewpoint, which best aligns with telemetry data, con-
siders trajectories through space–time and often gives rise
to microscale models of individual movement. The
Eulerian perspective, which has more affinity with spatial
survey data, considers the density of utilization of any
given point in space and often gives rise to macroscale
models of population distribution. The links between
these formalisms are a fruitful area of research in spa-
tial ecology, looking at how small-scale processes of
movement give rise to spatial heterogeneity in
large-scale usage (Moorcroft & Lewis, 2006; Okubo,
1980; Turchin, 1998).

Ostensibly, both of these observation platforms are
extracting data from the same underlying biological pro-
cesses (habitat preferences and spatial abundance), which

form the focus of our statistical inference. Therefore,
despite their fundamental differences in perspective, both
telemetry and spatial survey data have been used in the
past to derive species distribution maps (e.g., compare
Matthiopoulos et al. (2004) and Herr et al. (2009) using
telemetry and surveys, respectively, to model the distribu-
tion of the same species) and to model species–habitat
associations (e.g., telemetry: Aarts et al., 2008; survey:
Hedley & Buckland, 2004).

As datasets from spatial surveys that coincide or over-
lap with tagging projects are increasingly being stored
and visualized on common software platforms (Fujioka
et al., 2014; Marvin et al., 2016), it seems opportune to
combine these datasets quantitatively, not only to
increase the effective sample size of the resulting data,
but also to explore whether the datasets have comple-
mentary inferential value (Gonz�alez-Solís &
Shaffer, 2009).

Early work on combining telemetry with spatial sur-
vey data made the plausible assumption that the results
obtained from analyzing telemetry and survey data
should agree. Therefore, some papers in this area (Ball
et al., 2005; Pinto et al., 2016; Prichard et al., 2019) have
used one datatype for validation of the results of the anal-
ysis of the other type.

Other studies have exploited the different information
carried by spatial survey and telemetry data for purposes
of calibration. For example, Matthiopoulos et al. (2004)
and Jones et al. (2015) use survey data to constrain the
utilization distributions generated by telemetry analysis;
Bächler and Liechti (2007), Udevitz et al. (2008), Popescu
et al. (2017), Willson et al. (2018), and Boback et al.
(2020) use telemetry to ground-truth the absolute detec-
tion probabilities of surveys; Louzao et al. (2009) and
Camphuysen et al. (2012) use telemetry to generate
foraging-specific distributions from survey data; and
Yamamoto et al. (2015) try to understand the composi-
tion of survey maps in terms of population components
observed by tracking.

The above efforts are all good examples of the com-
plementary use of telemetry and spatial surveys, recog-
nizing that their joint inferential power goes beyond a
simple increase in effective sample size. Hence, rather
than thinking of data integration solely as a route to
improve precision, we are also recognizing it as a route
for correcting bias. More broadly within ecology, the
notion of complementarity in data integration is making
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a remarkable impact on how traditional analyses are
viewed, leading to the re-examination of problems of bias
for different types of data (Fletcher et al., 2016, 2019;
Matthiopoulos et al., 2022; Miller et al., 2019; Nelli
et al., 2019; Pacifici et al., 2017; Reich et al., 2018).

However, full integration between telemetry and spatial
survey data has not yet been possible without severe infor-
mation losses. The few studies (Louzao et al., 2009; Pikesley
et al., 2018) that have attempted a joint analysis have
tended to use purely graphical methods or telemetry censor-
ing and abundance thresholding to convert the data into a
similar form, amenable to the same likelihood. A major
obstacle to joint inference is the incongruence between the
statistical frameworks used for these two data types.
Telemetry data are most conveniently analyzed via step
selection functions (SSFs; Thurfjell et al., 2014), while
resource or habitat selection functions (HSFs; Boyce et al.,
1999) are most appropriate for survey data. These
approaches do not, by default, lead to the same results.
Specifically, scaling up by simulation the microscopic model
obtained via SSFs does not yield the same steady-state dis-
tribution generated by an HSF (Barnett & Moorcroft, 2008;
Moorcroft & Barnett, 2008; Signer et al., 2017).

A promising development in this area is the conver-
gence between the frameworks of resource selection and
step selection analyses both in discrete time (Michelot,
Blackwell, Chamaillé-Jammes, et al., 2019; Michelot,
Blackwell, & Matthiopoulos, 2019) and in continuous time
using a Langevin diffusion (Michelot, Gloaguen, et al.,
2019). This work has established the conditions under
which SSF and HSF frameworks agree, and has derived
methods for HSF-type inference from telemetry (Michelot,
Blackwell, Chamaillé-Jammes, et al., 2019; Michelot,
Blackwell, & Matthiopoulos, 2019; Michelot, Gloaguen,
et al., 2019). These new methods rely on implicit assump-
tions of representativeness. In particular, they require that
the telemetry tagged individuals are randomly and
cross-sectionally selected from the same population
mapped by the spatial survey methods. They also require
that any aspects of selection that are not modeled explic-
itly in terms of covariates—that is, aspects subsumed in
the stochastic terms of the model—do not vary systemati-
cally between the environment within the survey study
area and the environment explored by the spatially
unconstrained tagged individuals. Of course, such assump-
tions about the limited effects of unmodeled structure are
pervasive, perhaps inevitable, in modeling, and certainly
far from unique to that approach.

Related work concerns the incorporation of teleme-
try data into spatial capture–recapture (SCR) modeling;
typically, the implicit spatial modeling that underlies
SCR is much simpler than is used in the analysis of
telemetry, but McClintock et al. (2022) give a review

and discussion of recent developments. For example,
Chandler et al. (2022) use an Ornstein–Uhlenbeck (OU)
process (see Localization using the OU process) to model
the underlying movement and to accommodate autocor-
relation in detection probabilities. Hostetter et al. (2022)
avoid the usual assumption of stationary home ranges
by modeling capture probabilities conditionally on ran-
dom walk movement models, incorporating covariate
information, though their distributions for initial loca-
tions do not use the covariate information in a way that
is coherent with the movement modeling. Bassing et al.
(2022) use telemetry data only as “used” locations in an
HSF, for comparison with occupancy modeling, and so
do not allow for the autocorrelation and local dynamics
of movement. Perhaps the SCR approach most closely
related to our work here is that of Gardner et al.
(2022), who use a discrete-time version of the Langevin
process of Michelot, Gloaguen, et al. (2019) to represent
both movement and initial expected locations in a
coherent way. Their simulations discretize the initial
spatial distributions, and include cases with SCR data
only and with auxiliary telemetry data.

Glennie et al. (2021) use movement data in a different
way to augment data arising from distance sampling, when
the assumption that the sampling is effectively instanta-
neous is not tenable. They assume that individuals follow a
relatively simple movement model (Brownian motion) and
that an individual’s probability of detection in the distance
sampling depends on the whole of its path during the time
of the sampling. They then use telemetry data that are inde-
pendent of the distance sampling and jointly estimate the
movement and detection parameters, correcting the inter-
pretation of the distance sampling data to allow for move-
ment during the survey.

Here, we focus on developing an expandable analyti-
cal framework for joint analysis of telemetry and spatial
survey data when the spatiotemporal frames and popula-
tion members observed by survey are representative of
those observed by telemetry, and vice versa. We investi-
gate the quality of inference in different scenarios of data
availability and thus derive insights on how effective sam-
ple size and complementarity work in this setting. In our
Discussion, we revisit some of our assumptions and con-
sider potential avenues for relaxing them.

ANALYSIS FRAMEWORK

Modeling philosophy

The motivation for the approach adopted by Michelot,
Blackwell, and Matthiopoulos (2019) and Michelot,
Blackwell, Chamaillé-Jammes, et al. (2019) originates

ECOLOGY 3 of 20



from computational methods for statistical inference,
and in particular, the broad class of Markov chain Monte
Carlo algorithms (Hastings, 1970). Computational infer-
ence methods often involve a procedure in which a search
particle moves through parameter space, responding to
density gradients (density is usually either the posterior
probability density in Bayesian approaches or the normal-
ized likelihood in frequentist approaches, but might also
cover other quantities such as entropy in machine learn-
ing algorithms [Phillips et al., 2006] or fitness in genetic
algorithms [Barricelli, 1957]). Unlike maximum likeli-
hood algorithms, which perform optimization, MCMC
does not prioritize searching for the point of peak den-
sity (the mode, or maximum likelihood point), but,
rather, tries to faithfully approximate the entire density
landscape. It achieves this by adopting a search pattern
that is guaranteed to visit locations in parameter space
with a relative frequency proportional to their underly-
ing density. The distribution of such visits thus gives an
approximation of the underlying density landscape.
Therefore, the derivation of MCMC algorithms prizes the
property that individual (microscopic) particles describe
with their movement an underlying steady-state (macro-
scopic) distribution. Borrowing the properties of these
algorithms for specifying the rules of movement for SSFs
is therefore guaranteed to give us steady-state distribu-
tions, the surfaces of population space-use (utilization)
described by HSFs. Imposing this requirement on the
two inferential frameworks of SSF and HSF leads to a
tractable mathematical relationship between their selec-
tion coefficients. Such a relationship can allow us to
conduct joint inference of telemetry and spatial survey
data because they are essentially being used to estimate
only one set of coefficients.

A key challenge of this approach therefore is to for-
mulate movement models for use by the SSF framework
that maintain the essential MCMC scaling properties,
while at the same time being realistic models for animal
movement. It transpires that this class of models is suffi-
ciently broad to cover many of the movement models
commonly used in the ecological literature. A minimally
realistic model for movement in SSFs must encompass
stochasticity (e.g., diffusive movement such as a random
walk) and should allow for the existence of a central
point of attraction (advective movement toward, e.g., a
nest or colony) and of environmental gradient climbing
(advective movement toward locations of higher habitat
suitability). It should also be defined in continuous time
since the arbitrary (and often irregular) sampling intervals
of telemetry studies are not necessarily the most appropri-
ate scales for defining movement processes. We describe
such a minimally realistic movement model in the follow-
ing section.

Movement modeling

We envisage an underlying utilization distribution π xð Þ
which emerges from the long-term use of space by multiple
moving individuals. The model describing the movement of
each individual that satisfies our minimally realistic require-
ments, above, is a Langevin diffusion (see Michelot,
Gloaguen, et al., 2019 for its original application to animal
movement), a modification of Brownian motion. Like the
Ornstein–Uhlenbeck (OU) process (Uhlenbeck &
Ornstein, 1930), better known in movement modeling
(Blackwell, 1997; Dunn & Gipson, 1977) and discussed in
Localization using the OUprocess, the Langevin diffusion adds
a drift (i.e., expected movement) term to the random move-
ment of Brownian motion; in contrast with the OU process,
in the Langevin case, the drift term can vary flexibly from
place to place. Specifically, the form of the drift term is
related to the utilization distribution, giving rise to the rela-
tionship between short-term and long-term distributions.

More precisely, the Langevin diffusion for location x
satisfies the stochastic differential equation (e.g.,
Klebaner, 2012; Øksendal, 2010)

dx¼ b x tð Þð Þdt+
ffiffiffi
Γ

p
dW tð Þ, ð1Þ

where W tð Þ is a two-dimensional Brownian motion, Γ
controls the speed of the process, and

b x tð Þð Þ¼Γ
2
r log π x tð Þð Þð Þ, ð2Þ

is the drift term related to the utilization distribution
π xð Þ. The operator r �ð Þ represents the vector gradient of
a surface.

In practice, we work with a time-discretization of this
process. The standard Euler–Maruyama approach
approximates the process over a short time step δt by

x t+ δtð Þ¼ x tð Þ+ b x tð Þð Þδt + ϵ, ϵ�N 0,ΓδtIð Þ, ð3Þ

where I is the 2 × 2 identity matrix. The key mathemati-
cal properties of the process hold exactly only in the
continuous-time case (i.e., in the limit as δt! 0). For
simulation, we can choose δt to be small compared with
the timescale of the observations; details are given in
Simulations. For inference, Michelot, Gloaguen, et al.
(2019) show in the telemetry-only case that this approxi-
mation, with δt the interval between observations, can
enable us to make inference about selection parameters,
provided the interval between observations is not too
long. However, here we use an improved estimation
approach, as discussed in the next section.
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Movement likelihood

We assume that telemetry data x0,…,xn are collected
sequentially at times t0,…, tn, and write δtj for tj+1 − tj.
Often, all δtjs will be equal, but because of the
continuous-time formulation that is not required.

To carry out inference for the movement model of
Movement modeling, one possibility is to apply directly
the approximation of Equation (3), as in Michelot,
Gloaguen, et al. (2019). Each observation x1,…,xn has a
normal distribution that depends on the previous one,
and as is typical in movement analysis we assume that
the initial location x0 carries no relevant information,
and simply condition on it (see the Discussion for alterna-
tives). The overall likelihood from the movement data is
therefore

lM β,Γð Þ¼
Yn− 1

j¼0

ϕ xj+1jxj + b xj
� �

δtj,ΓδtjI
� �

, ð4Þ

where β denotes the parameters of the utilization distri-
bution π �ð Þ and ϕ xjμ,Σð Þ denotes the density at x of the
bivariate normal distribution with mean vector μ and
covariance matrix Σ, giving the log-likelihood

LM β,Γð Þ¼
Xn− 1

j¼0

logϕ xj+1jxj + b xj
� �

δtj,ΓδtjI
� �

: ð5Þ

Note that if the utilization distribution π �ð Þ is flat, then
b �ð Þ� 0 and the movement process is just Brownian
motion.

Michelot, Gloaguen, et al. (2019) show, however, that
this relatively simple approach to inference from the
Langevin diffusion is susceptible to bias. This potential
for bias is a limitation of the inference algorithm, not
inherent in the movement data. It arises because the
discretization in Equation (3) depends on b �ð Þ being
approximately constant along the animal’s path between
observations. If b �ð Þ were constant over the path from xj
to xj+1, then the likelihood contribution from xj+1 j xj
would be exactly as implied by Equation (3); there would
be no approximation, and no possibility of bias. The
bias therefore depends in a complex way on the rate of
change of b :ð Þ along the individual’s possible paths, rela-
tive to the interval between observations, and thus on
the speed of movement as determined by the diffusion
rate Γ and the drift term b :ð Þ itself, on the interval
between observations δt, and on the spatial variation in
b :ð Þ, that is the rate of curvature in the logarithm of the
utilization distribution π �ð Þ. More frequent observations,
a lower diffusion rate, and a utilization distribution that

is slowly varying will all tend to lead to lower bias, but in
general, these cannot be guaranteed. Approaches that
involve reconstructing the movement trajectories in detail,
for example, Parton et al. (2017), would be more accurate,
because they could use information about the drift term
b xð Þ along the trajectory, but they are computationally
infeasible for large datasets. Instead, here we modify the
approximation of Equation (3) in a way that can be com-
putationally cheap but which reduces the bias effectively.
Instead of using the drift term b xj

� �
defined as a function

of the gradient at xj, as in Equation (2), we use the
corresponding drift integrated over points (here denoted
by z) in a neighborhood of xj; more precisely, we define

~b xj
� �¼Γ

2

ð
r log π zð Þð ÞdG zjxj,ζ

ffiffiffiffiffiffi
δtj

p� �
, ð6Þ

where G � jxj,ζ
ffiffiffiffiffiffi
δtj

p� �
represents a symmetric distribution

centered at xj with scale parameter ζ
ffiffiffiffiffiffi
δtj

p
. Choosing the

scale parameter to be comparable with the distance
moved in time δtj means that the gradient term used
matches more closely the true gradient of the process
over that time interval. Note that in the limit for small
δtj, this is equivalent to using Equation (2). Theoretically,
G �ð Þ would be a continuous distribution, with density
g �ð Þ say so that

~b xj
� �¼Γ

2

ð
g zjxj,ζ

ffiffiffiffiffiffi
δtj

p� �r log π zð Þð Þdz, ð7Þ

but empirically, even a very simple discrete choice for
G �ð Þ can address the issue of bias; see Inference for an
example of the choice of G �ð Þ and of ζ. It is important to
note that G �ð Þ and ζ are not part of the model, and so do
not have biological meanings; they simply give a mecha-
nism for more accurate fitting of the model in
Equation (1). Specifically, replacing b �ð Þ with ~b �ð Þ in
Equation (3) improves that approximation, as used for
inference, but the underlying “true” continuous-time
model is still defined in terms of the original b �ð Þ in
Equation (1), and the utilization distribution is
unchanged and given by π �ð Þ (e.g., as in Equation 9
below).

Environment model

As is widespread in modeling species distributions
(Matthiopoulos et al., 2023), we take the utilization
distribution for all individuals to be propor-
tional to the exponential of a linear predictor η xð Þ writ-
ten as a linear combination of spatially varying
covariates ci �ð Þ:
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π xð Þ/ exp η xð Þð Þ ð8Þ

¼ exp β1c1 xð Þ+ � � �+ βkck xð Þð Þ: ð9Þ

Formally, each ci �ð Þ is a smooth (differentiable) function
over continuous space. In practice, each ci �ð Þ is likely to
be a smoothed version of a grid of observed values; see
Simulations for details. These results can be generalized
to include higher order terms of the covariates, as well as
interaction terms between them.

With this utilization distribution, the Langevin drift
term is

b xð Þ¼Γ
2

Xk
i¼1

βirci xð Þ, ð10Þ

and the improved approximation of Equation (6) is

~b xð Þ¼Γ
2

Xk
i¼1

βi
ð
rci zð ÞdG zjx,ζ ffiffiffiffiffiffi

δtj
p� �� �

: ð11Þ

Spatial survey model

We take the simplest possible model of the survey process:
an instantaneous “snapshot” over a particular region, A,
which may represent a single connected area, or a collec-
tion of strips or neighborhoods of points. Each individual
in A at the survey time has some common probability of
being observed. Observations therefore form an inhomo-
geneous Poisson process (IPP) with intensity

λ xð Þ/ π xð Þ: ð12Þ

For applications of IPP for species distribution models,
see Matthiopoulos et al. (2023). We can write

λ xð Þ¼ exp α+ η xð Þð Þ, ð13Þ

where the intercept α will depend on population size,
detectability, and survey effort.

If observed locations are y1,…,ym, then the likelihood
from the survey data is

ls α,βð Þ¼ exp −

ð
A
λ yð Þdy

� �Ym
i¼1

λ yið Þ ð14Þ

¼ exp −

ð
A
exp α+ η yð Þð Þdy

� �Ym
i¼1

exp α+ η yið Þð Þ ð15Þ

¼ exp − exp αð Þ
ð
A
exp η yð Þð Þdy

� �
exp mαð Þ

Ym
i¼1

exp η yið Þð Þ:

ð16Þ

The log-likelihood is therefore

Ls α,βð Þ¼ − exp αð Þ
ð
A
exp η yð Þð Þdy +mα+

Xm
i¼1

η yið Þ:

ð17Þ

Overall likelihood

The diffusivity parameter Γ scales the variance in
Equation (3); for convenience, we work with γ¼ log Γð Þ.
The combined log-likelihood is

L α,β,γð Þ¼ Ls α,βð Þ+LM β,γð Þ ð18Þ

¼ − exp αð Þ
ð
A
exp η yð Þð Þdy +mα+

Xm
i¼1

η yið Þ

+
Xn− 1

j¼0

logϕ xj+1jxj + ~b xj
� �

δtj, exp γð ÞδtjI
� �

,

ð19Þ

and is a function of three groups of parameters:
β¼ β1,…,βk, which define resource selection; γ, which
relates to speed of movement; and α, which relates to
effective population size, observability, and survey effort.

Strictly, ~b �ð Þ and η �ð Þ depend on the parameters too,
so more precisely we should write the combined
log-likelihood as

L α,β,γð Þ¼ − exp αð Þ
ð
A
exp η y,βð Þð Þdy +mα+

Xm
i¼1

η yi,βð Þ

+
Xn−1
j¼0

logϕ xj+1jxj + ~b xj,β,γ
� �

δtj, exp γð ÞδtjI
� �

:

ð20Þ

The function ~b �ð Þ also depends on G �ð Þ and ζ, but these
relate to the discretization approximation rather than
having any biological meaning, and are fixed empirically
to optimize the approximation, rather than being for-
mally estimated, so are omitted here.

For abundance estimation, the intercept parameter
α would be of central importance. Studies of animal
mobility might focus on the diffusivity parameter γ.
However, the key application of this framework of joint
inference is in species–habitat association studies. There,
α and γ are nuisance parameters; β affects selection and
is the parameter of interest, although in some cases, ele-
ments of β may effectively be nuisance parameters too—
see Selection and localization.
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Selection and localization

For the idea of a utilization distribution to be meaningful
as a probability density function, it is necessary for π xð Þ
to integrate to 1, or equivalently for the integral of
exp η xð Þð Þ to be finite.

One way is for the available area to be finite—an
“island” model—and for the movement model to respect
this through the so-called reflecting boundary conditions.
Alternatively, to capture “nomadic” behavior, a finite
region can be used to represent an unbounded space by
using periodic boundary conditions, treating a modeled
rectangular region as a torus. A third possibility is an
“oasis” model, where covariates representing tangible,
desirable resources (i.e., with positive selection coeffi-
cients) decrease markedly with distance away from some
more desirable area, leading naturally to a finite integral
for η xð Þ over an infinite modeled area. A fourth way is to
allow additional covariates, perhaps entirely notional,
that are separate from the selected resources of interest
and represent a localizing tendency due to memory,
social behavior, or some other phenomenon distinct from
resource selection, that is, an “attraction” model.

This last approach is used in the simulation examples
here; practicalities, and the mathematical details of one
specific form of localizing tendency, are discussed in
Localization using the OU process. This approach has the
appealing feature that the additional covariates simply
appear as extra terms, with corresponding coefficients βi,
in the same form as those already appearing in the equa-
tions defining the utilization distribution (9) and the
Langevin drift terms (10 and 11).

In any given analysis, the choice between these
approaches is largely one of biologically appropriate
modeling of the animals’ space use. Where there is a
well-defined natural boundary to the region used, for
example, for terrestrial species on an actual island,
then it makes sense to use an “island” approach that
respects that boundary and needs no other mecha-
nism for localization. Similarly, in a case where space
use is limited through the spatial distribution of mea-
surable covariates, the “oasis” model applies natu-
rally, and no explicit localization is needed (except
perhaps to constrain the sign of one or more coeffi-
cients). Alternatively, if no such covariate is available,
but the localization is thought to represent a prefer-
ence for being near a central place, or just a general
preference for familiar places, that suggests an
“attraction” model as detailed in the examples below.
If the previous cases do not apply, then the
“nomadic” approach gives a way of ensuring that the
necessary integral is finite, provided covariate infor-
mation is available over a sufficiently large region.

All these cases would be straightforward to include in
the current framework, since they require only minor
changes to boundary conditions or construction of
“latent” covariates (as detailed in Localization using
the OU process). If none of these apply, that would
typically suggest that the movement modeling needs to
take into account the values of covariates in locations
that are not observed, which is problematic for any
inference framework, not just the one proposed here.
An exception would be where movement and covariates
are at a large enough scale that it is appropriate to use
the whole of Earth as the space over which distribution
is defined, for example, long-range movement by
marine mammals (Brillinger & Stewart, 1998); in that
case, the conceptual framework still applies, but some
adjustment is necessary to take into account the appro-
priate spherical geometry (Brillinger et al., 2002;
Brillinger & Stewart, 1998).

Localization using the OU process

The OU process is a simple diffusion process with a sta-
tionary distribution, and therefore a special case of the
Langevin diffusion; its stationary or utilization distribu-
tion is just a bivariate normal distribution. As such, it is a
convenient way of addressing the “localization” issue
raised in Selection and localization. It may also serve as
an illustrative example or building block for representing
habitat selection more generally.

As an aside, the OU process is unique in that
Equation (3) holds exactly; steps within a purely OU
movement model follow a normal distribution without
any approximation. This is important when the OU
process is used as a movement model in its own
right (Blackwell, 1997, 2003; Chandler et al., 2022;
Dunn & Gipson, 1977) but less useful here, since we
are mainly interested in combining it with less tracta-
ble elements.

A general OU process has

π xð Þ¼ϕ xjμ,Λð Þ ð21Þ

/ exp −
1
2
x−μð ÞTΛ− 1 x−μð Þ

� �
: ð22Þ

Here, we consider only the circular case, Λ¼ λI, with
λ>0. Writing x¼ x,yð Þ and μ¼ μx ,μy

	 

, we have

x−μð ÞTΛ−1 x−μð Þ¼ λ−1 x−μð ÞT x−μð Þ ð23Þ

¼ λ− 1 x− μxð Þ2 + y− μy
	 
2

� �
ð24Þ
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¼ λ−1 x2 + y2 − 2μxx− 2μyy+ μ2x + μ2y
	 


, ð25Þ

and hence, treating μx and μy as constants,

π xð Þ/ exp λ− 1 μxx+ μyy−
1
2

x2 + y2
� �� �� �

, ð26Þ

so the OU model can be written as a selection model in
the form above, with each ci �ð Þ a simple function of the
coordinates of x. We have

π xð Þ/ exp β1c1 xð Þ+ β2c2 xð Þ+ β3c3 xð Þð Þ, ð27Þ

where c1 xð Þ¼ x,c2 xð Þ¼ y,c3 xð Þ¼ − 1
2 x2 + y2ð Þ and

β1 ¼ μx=λ,β2 ¼ μy=λ,β3 ¼ 1=λ. The parameters β1 and β2
can take any values; because λ is positive, β3 must also be
positive, and this constraint should be incorporated dur-
ing estimation.

The general bivariate case for Λ leads to a similar
form, with five terms (x,y,x2,y2,xy). Constraints are
needed on Λ to ensure that the process has a well-defined
stationary distribution and that it makes sense biologi-
cally as a model that is independent of the coordinate sys-
tem; for details, see Blackwell (1997).

It is therefore straightforward to add a localization
term to the habitat selection model, and estimate its
parameters jointly with the selection parameters and nui-
sance parameters, by simply adding a few terms to η �ð Þ.
This automatically incorporates the localization terms
into the likelihoods from both the movement and the sur-
vey data, through their inclusion in η �ð Þ,π �ð Þ and ~b �ð Þ.
Like the selection terms, they will correspond to known
spatial covariates—in this case, just constructed from the
coordinates—and unknown parameters so that
the details of the localization do not have to be specified
in advance. That is, by including these “polynomial”
covariates as well as observed environmental ones, we
can readily include the case where the utilization distri-
bution is the product of a resource selection term and a
bivariate normal density, and estimate all parameters
straightforwardly.

SIMULATION EXAMPLES

Simulations

For our examples, we focus on learning about a single
selection parameter from combinations of telemetry and
spatial survey data. We use an attraction approach based
on an OU process to localize the model, in the sense of
Selection and localization; we therefore have

π xð Þ/ exp β1c1 xð Þ+ β2c2 xð Þ+ β3c3 xð Þ+ β4c4 xð Þð Þ, ð28Þ

where c1 �ð Þ is a known spatial covariate representing a
resource with selection coefficient β1 and c2 �ð Þ,c3 �ð Þ,
c4 �ð Þ are simple known functions of x, with associated
nuisance parameters β2,β3,β4.

The covariate c1 �ð Þ is based on a grid of values simu-
lated from a Gaussian random field, using the R package
“geoR” (Ribeiro et al., 2022), and then interpolated
bilinearly as in Michelot, Gloaguen, et al. (2019) to pro-
vide values of c1 �ð Þ, and hence π �ð Þ, and of the gradient
needed by the Langevin movement model.

Given the central tendency built into the model, our
simulation is an appropriate model for central-place for-
agers, that is, territorial individuals or colonial species.
We simulate a colony of individuals, moving indepen-
dently around the utilization distribution π �ð Þ according
to Equation (1), and we observe them in two ways: a
number of them are “tagged” and their locations
recorded at regular intervals, and a single “snapshot” sur-
vey is carried out on a rectangular region, observing
those individuals who happen to be in the region at a
given time. These observation processes introduce addi-
tional parameters α and γ relating to the colony size and
the speed of movement, respectively, both treated as
unknown nuisance parameters.

In detail, we simulated five resource maps from each
of two Gaussian random field models using the exponen-
tial covariance function, both with variance parameter
0.1 but with two different values for the spatial range
parameter, 0.1 and 0.2, over the region − 1,1½ �× − 1,1½ �
with grid size 0.005. These two values for spatial range
give different levels of spatial autocorrelation in the
resource map. Using a selection parameter β1 ¼ 2:0, each
map was combined with a circular OU attraction model
centered at the origin with λ¼ 0:2ð Þ2 to give a utilization
surface that is essentially confined to the simulated
region, but where the fine-scale structure is dominated
by the effect of β1.

On each map, we carried out five replicates of a series
of simulation experiments. These involved simulating the
movement of a colony of 100 individuals using a
fine-scale approximation to the Langevin movement
model using time steps of 0.1, duration 500, and speed
parameter Γ¼ 10− 5. Within each replicate, the move-
ment simulation was carried out twice. The first run used
starting locations sampled from a bivariate normal distri-
bution, centered at the origin and with SD 0.05 so that
the initial locations carried no information about β;
thinned to unit time intervals, this run was used to simu-
late telemetry data with δt¼ 1 from between 5 and 50
individuals. The second run used starting locations sam-
pled from the utilization distribution itself; by taking a
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“snapshot” of final locations that were inside a square
centered at the origin, this run was used to simulate a
spatial survey over that region, with the side length of the
square varying from 0.1 to 1.0. Strictly speaking, simulat-
ing movements to generate the survey data was unneces-
sary, since we can simulate directly from the utilization
distribution, but taking the survey after simulated move-
ment provides reassurance and better comparability.

Inference

We obtained estimates of all the parameters from the simu-
lated datasets by maximizing the combined likelihood from
Equation (20) numerically. This can be interpreted as maxi-
mum likelihood estimation or as Bayesian maximum a
posteriori (MAP) estimation using a flat prior distribution.
The SE/posterior SD was obtained numerically from the
Hessian matrix, after maximization. The algorithm used
was the “L-BFGS-B” quasi-Newton method with (very
wide) bounds based on Byrd et al. (1995), as implemented
in “optim” in R Core Team (2021).

To calculate ~b xj
� �

, the “locally averaged” gradient
term in the movement likelihood, we took a weighted
average of b �ð Þ at xj and at four points

xj + ζ
ffiffiffiffiffiffi
δtj

p �1x �1y
� �

, ð29Þ

with weights 1=2,1=8,1=8,1=8,1=8, where 1x and 1y are
unit vectors in the x and y directions, respectively, that is
at four points equidistant from xj in the diagonal direc-
tions defined by the coordinate system. This can be
thought of as an exceptionally simple, discrete choice of
G �ð Þ in the integral in (6). A more typical choice would
be to take G �ð Þ to be a circular bivariate normal distribu-
tion; nevertheless, our choice largely eliminates the bias
in estimation based on the telemetry data in our experi-
ments. In theory, ζ should be related to the movement
parameter γ, but instead, we fixed it based on the empiri-
cal distances moved, since this means that the additional
computational cost over the simpler Langevin algo-
rithm (3) is minimal, and the movement (as opposed to
selection) parameters are generally very well estimated.
Since the points in (29) are at a distance ζ

ffiffiffiffiffiffiffiffi
2δtj

p
from xj,

we took

ζ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nstep

X
j

xj+1 − xj
�� ��2

δtj

( )vuut , ð30Þ

where the summation is over all nstep of the steps ana-
lyzed so that those distances were on average the same as
the distances moved over the same time interval. The

spread of points around each location over which the
gradient was averaged depended on the duration of the
associated step, but not on the length of that individual
step or on values of the covariates. For simplicity, the
same choice of ζ and G �ð Þ was used for the OU localiza-
tion terms as for the selection parameter; the
localization terms could be calculated analytically using a
different choice of G �ð Þ, but this would complicate the
algorithm and its interpretation without any guarantee of
improved performance, while any computational gain
would be minor in these examples. For other possible
choices of ζ and G �ð Þ, see The effect of G �ð Þ and the
Discussion.

Estimation was carried out for all combinations of the
number of telemetry tracks and all sizes of the survey
area, plus cases where either no telemetry or no
survey was used. This gave a total of 143 different
“designs,” in each of two types of environment defined
by the two levels of the spatial scale of the Markov ran-
dom field, each replicated 25 times over the same
five maps.

Main results

For each design and each environment, we calculated the
mean estimate of β1 over the 25 replicates, and similarly
the mean of the precision, defined to be 1=σ2 where σ is
the SE calculated from the Hessian after estimation.
Defining sample size for serially correlated data is chal-
lenging. For instance, the effective sample size in transect
surveys is a number between the independent observa-
tion blocks (e.g., observation platforms or survey dates)
and the total number of transect segments. Similarly, the
effective sample size in telemetry studies is a value
between the number of animals tagged and the fixes
obtained per animal. Combining these two types of data
makes the definition of sample size or information con-
tent an even less tractable problem. However, pragmati-
cally, we can treat precision as a post hoc proxy for
effective sample size.

In this simulation study, the true model is known,
and the model we are fitting is essentially the same, albeit
approximated as described in Movement likelihood. As we
would therefore hope, the mean estimates were all close
to the true value of β1, within sampling variation for all
cases and with no consistent sign in the error. In particu-
lar, the improved Langevin estimation successfully elimi-
nates bias in these cases. The mean precision varied with
the design of the experiment, naturally. To investigate
the interaction between the two data types, we com-
pared the mean precision for each design involving both
telemetry and spatial survey (the majority of designs)
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with the corresponding values from using that amount of
telemetry data and that size of survey separately. The pre-
cision from the combined analysis was always close to
the sum of the precisions from the two data sources sepa-
rately (within 10% in 97% of cases and within 5% in 71%
of cases, with no apparent systematic differences).

For use in the comparison scenarios below, we sum-
marized precision using a generalized additive model
consisting of a linear term in the number of telemetry
tracks plus a smooth term in the size of the survey area,
constrained to give precision zero when both arguments
were zero, that is, when there were no data.

In all cases, the precision was lower in the environ-
ments with the higher value for the spatial range of the
underlying Markov random field, that is, with higher spa-
tial autocorrelation. This reflects the fact that both telem-
etry and the kind of single-region survey that we are
considering involve locations that are close together spa-
tially, so typically higher autocorrelation leads to a drop
in effective sample size. However, the different structure
of the data types means that the size of this drop may dif-
fer between them. This is crucial to interpreting some of
the results from combined analyses below, but before
exploring those in detail, it is worth pointing out some of
its simpler consequences. There are a number of cases
where a given number of telemetry tracks n gives a lower
precision than a survey of area a when autocorrelation is
high, but the same amount of telemetry gives a higher
precision than the same survey when autocorrelation is
low. For example, with low spatial autocorrelation, spa-
tial range parameter 0.1, a telemetry-only analysis with
50 tracks performed better than a survey-only analysis
with survey area of 0.5, giving a precision higher (and
therefore a variance lower) by 7%. Comparing the same
experiments when the spatial range parameter is 0.2 and
the autocorrelation is higher reverses the inequality, with
the telemetry-only precision being lower (and the vari-
ance higher) by 15%. Thus, all other things being equal,
the spatial autocorrelation in the covariate of interest can
determine whether telemetry or surveying is preferable
for estimating its selection coefficient, regardless of the
particular form of their relative costs.

To fully understand the performance of the integrated
analysis, a key consideration is how the accuracy of esti-
mation relates to the effort involved in data collection.
Considering the data types separately, the results in our
experiments show that for telemetry, the precision of esti-
mation is very close to being linear in the number of ani-
mals tracked, as expected, and so it is reasonable to think
of it as being proportional to effort. For our simple survey
designs, it is natural to think of the effort involved as
being proportional to the area surveyed; however, the
precision increases more slowly than area, with an

element of “diminishing returns.” Figure 1 shows the
precision achieved by designs of each type in the two dif-
ferently correlated environments.

This affects the potential choice between using telem-
etry, spatial survey, or both, to collect data to estimate
selection, given a total amount of available effort.
Without specifying a particular study area or species, it is
not possible to know the relative efforts of telemetry and
surveying. Instead, we choose exchange rates that repre-
sent situations where neither approach dominates
completely, and look at the effect of varying the exchange
rate and the total effort available. Figure 2 represents a
case where the total effort is equivalent to tracking 50 ani-
mals, and shows the effect of different assumptions about
how that effort is spent. The x-axis indicates the effort
spent on telemetry, from 0 to 50; the remaining
effort (increasing from right to left) is converted into a
possible size of survey area, with an exchange rate arbi-
trarily set to 1 in this case. The y-axis then shows the pre-
cision, proportional to effective sample size, achieved for
that combination of observations, based on the simula-
tion experiments. The upper/blue solid curve corresponds
to lower spatial autocorrelation (spatial range parameter
0.1) and the lower/red dashed curve to higher autocorre-
lation (range parameter 0.2). On each curve, the triangle
indicates the optimal combination in that environment.

In these cases, the optimal allocation of effort is
always a mixture of spatial survey and telemetry, but the
optimal proportions differ; when SR = 0.1, the proportion
is 54%, and when SR = 0.2, it is 32%. Thus, when a mixture
of data types is allowed, the optimal mix can vary substan-
tially, depending on the spatial covariance structure of the
resource of interest. Figure 2 also illustrates the earlier point
about survey-only and telemetry-only designs. The points at
the left- and right-hand ends of the curves represent
survey-only and telemetry-only designs, respectively; for
this combination of parameters, telemetry alone is better
when autocorrelation is low, but survey alone is better
when autocorrelation is high.

In the high autocorrelation case in particular, the dif-
ferences in precision obtained are not all that high; their
practical importance will depend on the actual costs
involved and the value of precise estimation of β in a
given application. Our point here is that such compari-
sons can be made within this framework, will sometimes
favor mixed designs, and will depend on the autocorrela-
tion in the covariate.

Figure 3 shows the effect of varying the relative cost
of surveying (rows) and the total effort available (col-
umns). The central sub-figure is identical to Figure 2. For
the highest level shown for relative survey cost, the opti-
mal design is always to use telemetry only; in nearly all
other cases, the optimal allocation differs between the
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two environments with different scales of spatial autocor-
relation (indicated by color and by solid/dashed lines).
Where they do differ, in all cases, higher spatial autocor-
relation in the resource leads to a lower proportion of
effort being allocated to telemetry.

Reducing the relative cost of surveying generally
decreases the proportion of effort that it represents in
an optimal allocation, essentially due to diminishing
returns. However, this effect is not universal; in some
cases, the change in optimal proportion is not a mono-
tonic function of relative cost. For example, in the col-
umn of Figure 3 representing a total available effort
equivalent to tracking 35 animals (second column from
the left), it can be readily seen that as the relative cost
of surveying decreases (down the column), the optimal
surveying proportion decreases and then increases
again.

The optimal allocation also depends heavily on the
total effort available, even when relative costs remain
the same. For example, when the relative cost is held
fixed at the same value as in Figure 2 (middle row of
Figure 3), a total budget equivalent to 25 tracks should be
allocated primarily on a survey (at least 90%), whereas a
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total budget equivalent to 100 tracks should be allocated
mainly to telemetry (at least 60%).

Again, the magnitude of these differences varies, and
their practical importance will be a function of factors
outside the scope of this study. Our simulations show,
however, that a mixture of telemetry and spatial survey
can be optimal over a wide range of scenarios and that
the optimal design depends in a complex way on rela-
tive costs, available effort, and the spatial pattern of
the resource.

The effect of G �ð Þ

For the results in Main results, the distribution G �ð Þ used
to improve the Langevin approximation always takes the
same form, described in detail in Inference, since empiri-
cally that reduces the bias caused by the approximation.
In this section, we look more closely at this effect in
a particular case, and briefly consider other possible
choices of G �ð Þ. Obviously, the choice of G �ð Þ affects only

the inference from the telemetry, so in this section we
consider telemetry only.

We focus on the case covered in Figure 2, with spatial
range parameter 0.1, that is, a “low autocorrelation” envi-
ronment as described above. The 25 simulated datasets
each of 50 telemetry tracks, across five maps, are each
analyzed in three ways: using the unsmoothed gradient
function b �ð Þ; using the smoothed version ~b �ð Þ as in the
main simulation experiment, with four additional points;
and using a potentially better approximation based on
eight additional points, again equidistant from the
starting point x; see Figure 4.

In each smoothed case, the gradient is a weighted
average, with weight one-half at the central point, and
the remaining weight split equally between the outer
points. The estimated biases are − 0:302 for the
unsmoothed method, − 0:017 with four additional
points, and − 0:023 with eight additional points. This
illustrates the general result found that smoothing with a
simple choice of G �ð Þ essentially eliminates bias in the
cases considered and that additional computational effort
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in the smoothing does not necessarily give any further
improvement.

It is also informative to look at the individual esti-
mates obtained using these different forms for G �ð Þ with
the same datasets.

Figure 5 shows the estimates from the naive method
using b �ð Þ plotted against those from the method of
Inference, using ~b �ð Þ with four additional points. Each
point in the plot represents a single simulated dataset.
The estimates have very high correlation (0.959), showing
that this smoothing produces estimates of β1 that are very
similar to the unsmoothed method except that they are
shifted so as to reduce the bias; the smoothing addresses
the bias but does not reduce the variability in the esti-
mates. A similar comparison (not shown) between the
two smoothed versions above, with four and eight addi-
tional points, shows that the individual estimates are
always very similar, with extremely high correlation
(0.986) and no systematic differences, confirming that the
additional smoothing of ~b �ð Þ leaves estimates essentially
unchanged.

The choice of G �ð Þ is further considered in the
Discussion.

Case study

To illustrate our approach, we have added a simulated
case study, looking in more detail at a particular situa-
tion. We use a single (simulated) resource map, as shown
in Figure 6.

The region shown is the square − 1=2,1=2½ �×
− 1=2,1=2½ �; the actual simulated region is
− 1,1½ �× − 1,1½ �, as above, to accommodate rare individ-
ual excursions. A spatial range of 0.1 is used in generat-
ing the resource surface; for simplicity, all other
parameters, including those for localization, are kept the
same as in the main simulation study. We consider
the quality of estimation of a single selection parameter
β1, with the effort available equivalent to 50 telemetry
tracks of a given duration, or a single spatial survey
(“larger”; dashed lines in the figure), or a combination of
25 tracks and a survey covering half the area of the larger
one (“smaller”; solid lines in the figure). To assist visuali-
zation, the results of the smaller survey are also shown in
the figure, as are a subsample of the telemetry data. The
results of Main results suggest that the mixed design will
on average perform best, and that is in fact the case for

F I GURE 4 Illustration of the different methods for smoothing

the gradient of the target density when analyzing telemetry within

the Langevin model. The dashed lines link successive observations

(open circles), shown for scale. The solid disks show the locations

at which the gradient is evaluated when calculating the Langevin

drift term for a step starting at the central (or only) such point; the

areas of the disks are proportional to the weights used in

calculating the average gradient.
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this realization. Figure 7 shows the estimates of β1 for
each design, along with approximate 2-SD intervals.
These intervals are based on the numerically obtained
Hessian in each case, rather than on the results from the
simulation study. The results of the two “sub-designs”
(smaller survey only, or 25 tracks only) are also shown
for comparison, and the true value of β1 is indicated by
the dashed line. The benefit of the mixed design over the
other two designs of nominally equal effort is modest, as
expected from the main simulation results; in this case,
underestimation of β1 by the spatial surveys is balanced
by overestimation by the telemetry, but this is
case-specific, rather than indicative of true bias.

DISCUSSION

Our first aim in this paper was to derive a joint likelihood
for the integrated and efficient analysis of telemetry and
spatial survey data. We used recent statistical results
(Michelot, Blackwell, Chamaillé-Jammes, et al., 2019;

Michelot, Blackwell, & Matthiopoulos, 2019; Michelot,
Gloaguen, et al., 2019) that make the connection between
HSFs (the broad class of approaches used for animal dis-
tribution modeling) and SSFs (the class of models used
for the statistical analysis of habitat preference from
telemetry data). These methods employ individual move-
ment models that ensure the correct scaling of stepwise
habitat selection by many individuals to their long-term
utilization distributions or to the emergent utilization dis-
tribution of the population to which they belong.

The movement model used here, the Langevin diffu-
sion, is perhaps the simplest continuous-time model for
which short-term and long-term behavior can be related
parametrically. Our general framework, however, can be
applied using any movement model for which that para-
metric link can be made, and expanding the range of
such models is an active area of research.

The likelihood function derived on this basis can be
implemented in any inferential framework, whether
frequentist or Bayesian, and the resulting computation is
exactly as fast as traditional computation using each data
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type alone. Indeed, by allowing the computation of covar-
iate gradients prior to the main analysis, our approach to
telemetry data may prove to be faster than some
implementations of SSFs via conditional logistic regres-
sion, that require the use of “available” control points
(Thurfjell et al., 2014), and hence may inflate the analysis
data frames by one or more orders of magnitude. Future
investigations on computational gains are particularly
pertinent to telemetry datasets which are currently swell-
ing to terabyte levels (Nathan et al., 2022).

Our implementation of the method here was based
on simple maximization of the likelihood. However, the
fast evaluation of the likelihood and its derivatives means
that it would be straightforward to combine this model-
ing framework with off-the-shelf Markov chain Monte
Carlo inference for more detailed analysis.

Our strategy for minimizing bias in the use of the
Langevin model depends on the choice of a local distribu-
tion G zjx,ζ ffiffiffiffi

δt
p� �

, centered at x and with scale parameter
ζ

ffiffiffiffi
δt

p
, used to better approximate the gradient terms for a

step originating at x over an interval of duration δt by

averaging gradients from locations z. Our simulation
results show that often good performance comes from a
simple, discrete choice for G �ð Þ, with ζ derived directly
from the telemetry data rather than estimated jointly
with the model parameters. In principle, the optimal ζ is
likely to be related to the movement parameter γ; how-
ever, γ is sufficiently well estimated, and the
bias-reduction sufficiently robust, that this seems unnec-
essary. Similarly, in principle the calculated gradient
term ~b xð Þ should reflect the whole neighborhood of x
and so G �ð Þ ought to be a continuous distribution, such
as a bivariate normal distribution integrating over all
locations near x, or even a distribution that itself incorpo-
rates values of the covariates. Empirically, however, this
seems unlikely to give any practical improvement. Using
a discrete G �ð Þ and fixing ζ before the optimization of the
parameters—α and β in particular—allows much faster
computation, since the gradients of the covariates in the
calculation of ~b xð Þ can be calculated just once. Of course,
if the speed of movement or the time intervals between
observations are large enough, the approximation to the
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Langevin process will break down, and there may be
intermediate cases where more sophisticated choices of
G �ð Þ will matter. Conversely, shorter time intervals (i.e.,
smaller δt) will lead to better approximation to the
Langevin process. Note, however, that for simulation
experiments, the time step in the simulation needs to be
much smaller than δt to avoid the approximation in sim-
ulating the continuous-time Langevin process becoming
a concern in its own right.

Allowing the calculation of ~b xj
� �

to depend on the
following observation xj+1 seems appealing, but since
the need is to calculate a distribution for xj+1 given xj,
for example as in Equation (3), to do so would involve a
corresponding calculation for the range of potential
values of xj+1. An approach of this kind is possible in
principle, but it would be closer in spirit, and in computa-
tional cost, to the methods that partially reconstruct the
trajectory between observations, mentioned in Movement
likelihood.

By allowing the estimation of mobility parameters
simultaneously with selection parameters, our approach
retains features of best practice, as stipulated in the inte-
grated SSF literature (Avgar et al., 2016; Forester et al.,
2014). This statistical link between individual movement
and species distribution models will ultimately allow

analysts to ground-truth findings at any organizational
level of interest using knowledge acquired at another
level. For instance, we envisage Bayesian inference
approaches at population level being bolstered by fun-
damental information shaping the priors of individual
mobility and behavior.

Having shown that joint inference between spatial
survey and telemetry data is possible and efficient, our
second objective was to generate some intuition about its
statistical performance (precision of estimation of under-
lying parameters). Our simulation results suggest that, as
might have been expected, pooling data leads to higher
precision, but more importantly, even if the amount of
effort is kept fixed, the collection of both types of data is
advisable in many cases, often over a range of values for
their relative costs.

Spatial surveys provide information based on where
animals are not observed, as well as where they are; con-
sequently, they have the potential to span areas that are
contrastingly different in terms of their habitat suitability
for the species. This enables the model to detect broad
trends in habitat preference. On the other hand, teleme-
try data follow the finer scale decisions of the animals
and can therefore provide species-relevant stratification
to the dataset. These differences between the way space is
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sampled have previously meant that the predictions of
HSFs and SSFs had not been compatible, but by develop-
ing a likelihood that ensures their compatibility, we have
been able to address this problem and combine the
strengths of each approach.

The results shown here are unavoidably dependent
on specific assumptions about the environment, behav-
ior, and data collection incorporated in the simulation
experiments. There will of course be situations where one
approach to data collection dominates the other, for rea-
sons of feasibility or cost, however measured. Our analyt-
ical results show how to perform a joint analysis of the
two key data types in animal spatial ecology. Our simula-
tion results indicate that a mixed analysis can be optimal
in a wide range of cases and that the optimal design can
depend on variables not always considered in current
practice, such as the level of autocorrelation in relevant
environmental variables.

In our simulation study, we have focused on estima-
tion of the selection parameter for a measured spatial
covariate, as is standard in habitat selection and step
selection. We have included some types of localization
within the same framework, for example, by defining
attraction to an unknown central place through latent
covariates with unknown but estimable coefficients, but
it is important to realize that if such terms were of pri-
mary interest, then the optimal balance of sampling
effort would change. For example, such covariates
defining central place attraction may well change
slowly in space compared with other covariates, in
which case a desire to estimate their coefficients well
would typically increase the value of spatial surveys
covering larger or more widespread areas. This can be
seen as a further example of our result that the spatial
autocorrelation of covariates is crucial in designing
data collection schemes. Detailed investigation is
beyond the scope of this paper, but would certainly
benefit from the methodology introduced here.

The bias in the estimation of β from telemetry using
the Langevin method of Michelot, Gloaguen, et al.
(2019), without our improvement of Movement likelihood,
depends on (among other things) the time interval δt
between observations. In the cases we have analyzed in
detail, our improvement appears to completely eliminate
bias. However, as already mentioned when considering
the choice of G �ð Þ, in less favorable cases, a more elabo-
rate G �ð Þ may be needed. It is likely that in such cases, a
smaller δt will also help to reduce or eliminate bias. This
is an argument in favor of higher frequency collection of
telemetry data in cases where the estimation of β is diffi-
cult, for example, because of rapid movement or high
spatial autocorrelation of resources. As well as applying
to the current Langevin model, we conjecture that the

same would apply to any approach that models selection
coherently in continuous time.

Our method relies on the key assumption that the
individual movement models embedded in our joint like-
lihood are consistent with the steady-state distribution
implied by our population utilization models. The mathe-
matical theory underpinning Michelot, Gloaguen, et al.
(2019) shows that this will hold provided that the teleme-
try and survey data are sampling statistically identical
populations, environmental spaces, and temporal frames
(both diurnal and seasonal). In some applications, these
assumptions may not hold (Carroll et al., 2019; Phillips
et al., 2019; Sansom et al., 2018). For example, it is possi-
ble that particular classes of animals (e.g., different ages
or sexes) are easier to capture for tagging or that tagged
animals go to different habitats than those visited by sur-
veys. Temporal imbalances may also be influential
(Carroll et al., 2019). It is also possible that surveys hap-
pen at different times of the year than tagging effort
when animals are performing different life history func-
tions or that, unlike satellite fixes, visual observations
cannot be delivered at nighttime. Of course, all these con-
siderations limit the interpretation of data of these kinds
even when considered separately. If, for example, spatial
surveys happen only at one time of year, they will give
information about distribution at that time in a relatively
straightforward way, but will not be generalizable to
other times of year without additional assumptions or
information. Furthermore, in most existing comparisons,
any consideration of the relationship between short-term
and long-term distributions is ignored. So these limita-
tions are not specific to our approach; rather, the desire
to combine datasets may highlight the possibilities for,
and constraints on, generalizability. To address such con-
straints, extending the methodology to accommodate
such differences is current work in progress.

The parameter α, which simply scales the overall rate
of observations in the spatial survey, depends on popula-
tion size, observability of individuals, and the intensity or
effort in the survey. We treat it here as a nuisance param-
eter, but it should be stressed that its value will affect the
information obtained from any spatial survey, and hence
the optimal distribution of effort between types of data
collection. For example, all other things being equal,
lower survey counts due to low population or low observ-
ability will make spatial surveys less informative for a
given expenditure of effort. We have not investigated the
effect of α quantitatively, but it is likely that it will have a
qualitatively similar effect to changing the relative cost of
survey and telemetry, that is, moving vertically within
Figure 3.

For a spatial survey covering a very small area, the
variation in the number of individuals observed means
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that the actual precision of estimation varies enormously,
particularly if there is an appreciable probability of
observing no individuals at all. The summaries in Main
results are based on means over maps and replicates. In
cases where the total effort available is rather smaller
than any of those in Figure 3, this unpredictability may
be an additional factor in favor of telemetry. It would
make sense to consider a criterion for optimization that
was more nuanced than simply minimizing expected
variance. We have not explored such scenarios in
detail, but our framework certainly facilitates such
experiments.

The initial observation in telemetry may also be
an observation from (or at least related to) the target
distribution. In such cases, rather than conditioning
on the initial location, we can incorporate it into
the analysis. If it comes directly from the target dis-
tribution, as is sometimes the case where telemetry
arises in bursts, it can be very informative
(Blackwell, 2003; Dunn & Gipson, 1977) flexible
way. Similarly, detection by spatial survey may rely
on the individuals having been tagged first
(Melnychuk & Christensen, 2009), leading naturally
to a need to combine the different data types. The
inconsistencies between HSFs and SSFs lead to diffi-
culties in interpretation if existing methods are
used, but our development of a parameterization
and likelihood that ensures their compatibility
means that this potential problem becomes an infer-
ential opportunity.

The models and results presented here give a coher-
ent way to combine telemetry and spatial survey data
and give insight into the trade-offs between them and
how they are affected by spatial pattern of resources
and other covariates. Current work involves extending
this conceptual framework to a wider range of movement
models and survey types so that considering these two
fundamental data types jointly can become the norm,
both in the planning of experiments and in their analysis.
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