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Abstract

Characterising the transmission dynamics between various population groups is critical for

implementing effective outbreak control measures whilst minimising financial costs and

societal disruption. While recent technological and methodological advances have made

individual-level transmission chain data increasingly available, it remains unclear how effec-

tively this data can inform group-level transmission patterns, particularly in small, rapidly sat-

urating outbreak settings. We introduce a novel framework that leverages transmission

chain data to estimate group transmission assortativity; this quantifies the extent to which

individuals transmit within their own group compared to others. Through extensive simula-

tions mimicking nosocomial outbreaks, we assessed the conditions under which our estima-

tor performs effectively and established guidelines for minimal data requirements in small

outbreak settings where saturation may occur rapidly. Notably, we demonstrate that detect-

ing and quantifying transmission assortativity is most reliable when at least 30 cases have

been observed in each group, before reaching their respective epidemic peaks.

Introduction

Understanding the heterogeneous contributions of population groups to disease transmission

is crucial for developing effective targeted interventions whilst minimising financial costs and

societal disruption. Individuals can be categorised by age [1–3], occupation [4], vaccination

status [5], sexual preferences [6–8] and other characteristics relevant to the disease context [9,

10]. These group dynamics are not only determined by distinct contact patterns, as revealed by

large-scale contact surveys studies, such as POLYMOD [11] and CoMix [12], but also by vary-

ing infectiousness and susceptibility levels [13, 14]. Heterogeneous transmission is particularly

salient in healthcare settings, where the confined hospital environment and frequent interac-

tions between healthcare workers (HCWs) and vulnerable patients in various wards [15] create

a complex transmission landscape, potentially increasing the risk of infection compared to the

general population [16, 17]. Nosocomial outbreaks not only pose significant risks to global
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healthcare systems but also worsen patient outcomes and mortality while straining hospital

resources and operational capacities [18]. Between March and July 2020, Evans et al. estimated

that nosocomial transmission in the UK accounted for 20% and 73% of SARS-CoV-2 infec-

tions amongst inpatients and HCWs, respectively [19]. Cooper et al. further estimated from

June 2020 to March 2021 that 1–2% of hospital admissions in England likely acquired SARS--

CoV-2 while hospitalised, primarily driven by patient-to-patient transmission [18].

To characterise these group-specific transmission dynamics, modellers have traditionally

relied on contact survey data [11, 12], combined with information about the relative infec-

tiousness and/or susceptibility of each group (e.g. obtained from epidemiological or serological

investigations) [13, 14]. However, this survey data can be biased, have limited sample size or

representativeness, and may not be generalisable across different epidemic contexts [20].

Worby et al. introduced the Relative Risk (RR) statistic as an alternative approach to evalu-

ate group contributions to epidemic transmission [1, 2]. This metric compares the proportion

of cases attributed to a particular group before and after the epidemic peak relative to the total

number of cases, offering insights into the group’s relative depletion of susceptibles during the

epidemic’s ascent. While the RR statistic may be useful to determine which group to prioritise

for vaccination in large outbreaks with synchronous peaks, it has significant limitations in

smaller settings such as nosocomial outbreaks involving rapidly spreading respiratory patho-

gens such as coronaviruses, influenza, respiratory syncytial virus, or rhinovirus. These out-

breaks often feature a small number of cases, variations in group sizes, numbers of imports,

contacts and transmission patterns, resulting in asynchronous epidemic peaks. In these set-

tings, Worby’s premise that the depletion of susceptible individuals within a group reflects its

role in driving the epidemic may not hold.

Given the constraints of conventional methods, innovative approaches are essential to

address the challenges posed by nosocomial outbreaks. Healthcare settings are particularly

suited for employing advanced outbreak reconstruction tools due to the relatively small size of

nosocomial outbreaks, regular surveillance and data collection, and access to whole genome

sequencing [21–26]. Such tools typically leverage pathogen genetic sequence data, symptom

onset or test collection dates, and contact data within a Bayesian framework to probabilistically

reconstruct transmission events, generating posterior sets of transmission chains [27–29].

Research has shown that a significant proportion of HCW SARS-CoV-2 infections are often

attributable to their colleagues [21–25], whereas Cook et al. found that patient-to-patient and

patient-to-HCW transmissions were comparatively more common [26]. However, these stud-

ies typically report the proportion of specific transmission types relative to the total number of

transmissions (e.g., 70% of transmissions were patient-to-patient). Without comparing these

observations to expected frequencies, these approaches do not elucidate the underlying trans-

mission dynamics that drive the outbreak.

To address this limitation, Abbas et al. developed a statistical test to detect non-random

group transmission patterns using the outputs of Bayesian outbreak reconstruction tools [21,

23]. From the reconstructed chains of transmission, the authors estimated the proportion of

infections caused by each case type and compared it to an expected proportion based on that

type’s prevalence amongst all cases [21, 23]. In a nosocomial SARS-COV-2 outbreak at a reha-

bilitation clinic, they identified that HCWs transmitted more frequently than expected [21].

However, the method’s reliance on case prevalence alone neglects the process from exposure

to infection and overlooks factors that shape the observed epidemic. Varying contact rates, sus-

ceptibility, and distinct mixing patterns can lead to a disproportionate number of a given case

type from the outset, making prevalence-based expectations potentially misleading.

Furthermore, existing methods often fail to account for the rapid depletion of susceptibles

typical in small outbreaks, such as those in healthcare settings. This saturation effect can
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significantly alter transmission patterns, as a saturated group cannot sustain further transmis-

sion within the group. Thus analysing proportions of transmission types across an entire out-

break, beyond the point of saturation, may not accurately reflect the underlying baseline

transmission patterns.

This paper introduces a novel framework for evaluating transmission patterns amongst dis-

tinct groups during an outbreak, addressing the limitations of previous methods. Our

approach quantifies group-specific transmission assortativity, from known or probabilistically

reconstructed transmission chains, while accounting for group sizes. We evaluate the perfor-

mance of our estimator through diverse simulations, mimicking nosocomial outbreaks where

the populations are fully susceptible at the outbreak’s onset. Our aim is to provide guidelines

on the minimum data collection requirements and the optimal estimation timeframe, thereby

informing IPC strategies in small outbreaks where rapid saturation occurs.

Methods

A new estimator of transmission assortativity

Assortativity has been amply described for social mixing patterns, with homogeneous mixing

referring to random contacts between individuals, and heterogeneous mixing denoting inter-

actions characterised by distinct (non-random) patterns depending on group memberships

[13, 30]. Heterogeneous mixing can be either assortative, where individuals tend to interact

more within their own group (e.g. social contacts by age [11, 31, 32]), or disassortative, where

individuals interact preferentially with members of other groups (e.g. sexual contacts [33]).

Here we use these definitions to characterise the patterns of transmission rather than contact.

The resulting transmission patterns thus reflect not only mixing patterns but also differences

in infectiousness and susceptibility amongst groups.

To quantify transmission assortativity, we examine the person-to-person transmission pat-

terns. We consider G groups of relative sizes f1,. . .,fG defined as:

fa ¼
Na

XG

g¼1
Ng

8a ¼ 1; . . . ;G ð1Þ

where Na is the number of individuals in group a. We denote βb a the person-to-person trans-

mission rate from an individual in group a to an individual in group b, that is the force of

infection that any one infected individual in group a exerted on any one susceptible individual

in group b. It follows that, in a fully susceptible population, the expected number of secondary

cases in group b generated by one infectious individual in group a is proportional to βb a Nb

/ βb a fb.

We make the following assumptions:

1. βb a is the same for all b 6¼ a, i.e., βb a = ψ if a 6¼ b (S3 in S1 File).

2. βa a = γaψ, where γa is the assortativity coefficient for group a.

The assortativity coefficient, γa, is defined as the excess probability of a secondary infection

taking place within group a compared to random expectation. γ values range from 0 (fully dis-

assortative, i.e. no within-group transmissions) to1 (fully assortative, i.e. transmissions occur

exclusively within the group), with 1 indicating homogeneous patterns. For instance, γa = 2

indicates that an infected individual from group a is twice as likely to infect an individual from

the same group compared to infecting an individual from another group. Conversely, a γa of

1/2 means that an infected individual from group a is twice as likely to infect an individual

from another group compared to infecting an individual from the same group.
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We derive πb a, the proportion of secondary cases in group b amongst those generated by

an infectious individual in group a, where a 6¼ b, as:

pb a ¼
bb afb

XG

g¼1
bg afg

¼
bb afb

XG
g ¼ 1

g 6¼ a

bg afg þ ba afa
¼

bb afb
cð1 � faÞ þ gacfa

¼
cfb

cð1 � faÞ þ gacfa

¼
fb

ð1 � faÞ þ gafa
ð2Þ

We derive πa a, the proportion of secondary cases in group a amongst those generated by

an infectious individual from the same group, as:

pa a ¼
ba afa

cð1 � faÞ þ gacfa
¼

gacfa
cð1 � faÞ þ gacfa

¼
gafa

ð1 � faÞ þ gafa
ð3Þ

We can obtain γa by rewriting Eq 3 as:

ga ¼
pa a � ð1 � faÞ
fa � ð1 � pa aÞ

ð4Þ

The proportion of within-group transmission, πa a (Eq 3), can be directly calculated from

known transmission chain data. It is calculated by dividing the number of observed within-

group transmission pairs, τa a, by the total number of transmissions originating from group

a, τ. a. Thus the proportion, πa a = τa a/τ. a, ranges between 0 and 1 (included).

To simplify interpretation, we introduce a rescaled parameter δ, ranging between -1 (fully

disassortative) and 1 (fully assortative), with 0 corresponding to a homogeneous transmission

pattern (Fig 1.1 in S1 File) such that:

d ¼

1 ifg ¼ 1
g � 1

gþ 1
ifg 6¼ 1

ð5Þ

8
<

:

The formula for δa can thus be written as:

da ¼

ta a
t: a
� fa

ta a
t: a
þ fa 1 � 2

ta a
t: a

� � ð6Þ

where:

• τa a: represents the number of transmissions from group a towards group a.

• τ. a: refers to the total number of transmissions emitted by group a.

• τa a/τ. a: Denotes the proportion of within-group transmissions for group a denoted as

πa a in Eq 3.

• fa: Represents the proportion of the total population that belongs to group a. It is a value between

0 and 1, exclusive of the endpoints as there must be more than 1 group in the population.

The relationship between δa, πa a (i.e. τa a/τ. a), and fa can is visually represented in sup-

plementary Fig 1.2 in S1 File. We can obtain a confidence interval (CI) on πa a for various sig-

nificance (α) levels using the Clopper-Pearson binomial interval method [34] (S1.1 in S1 File).

Feeding estimates of πa a into Eq 6 provides estimates of δa with confidence intervals (S1.1 in

S1 File).
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All our results are presented using δ rather than γ.

Simulation study

We simulated small outbreaks under various contexts to assess the estimator’s performance in

scenarios relevant to person-to-person transmission of healthcare-acquired pathogens in a

fully susceptible population. We constructed 10,000 sets of input parameters, referred to as

‘scenarios’, by randomly sampling parameters from pre-defined distributions (Section 1.2 and

Fig 2 in S1 File). To account for stochasticity, we conducted 100 simulations for each unique

scenario resulting in a total of 1,000,000 simulated outbreaks.

The simulation employed a discrete time branching process modelling individual infections

spreading in successive generations. Simulations were specified with: i) group-level parameters

including the size of each group, their assortativity coefficients (δ), initial introductions, basic

reproduction numbers (R0) and ii) epidemic level parameters such as the number of groups,

the pathogen generation time (w) and incubation period distributions (both assumed the same

across groups). The simulation outputs a transmission tree that includes, for each infected

individual, their symptom onset date, their group affiliation, and the id of their infector. Using

this data for all infected individuals with symptoms up to time t, we calculated τa a (the num-

ber of within-group transmission pairs) and τ. a (the total number of transmissions originat-

ing from each group). These values, along with the relative sizes of the groups (fa), were input

into Eq 6 to estimate the assortativity coefficients for each group.

In our branching process model, the force of infection (FOI) generated by individual j from

group a at time t, towards the whole of group b is defined as:

l
j
b aðtÞ ¼ wðt � sj

aÞR0apb a

8a; b ¼ 1; . . . ;G

8j ¼ 1; . . . ;Na

ð7Þ

where:

• sja is the time of infection of individual j in group a

• R0a is the basic reproduction number of individuals in group a

• w is the probability mass function of the generation time distribution

The total FOI that all individuals in group b collectively receive from all individuals across

all groups at time t is obtained as:

lbðtÞ ¼
XG

a¼1

XNa

j¼1

l
j
b aðtÞ 8b ¼ 1; . . . ;G ð8Þ

Hence, the FOI that one individual from group b is exposed to is
lbðtÞ
Nb

.

The probability of infection for each individual in group b at time t is then calculated as:

pbðtÞ ¼ 1 � e�
lbðtÞ
Nb ð9Þ

At time t + 1, the number of new cases in group b, Xb(t + 1), is drawn from a binomial dis-

tribution:

Xbðt þ 1Þ � BinomðSbðtÞ; pbðtÞÞ ð10Þ

where Sb(t) is the number of susceptible individuals in group b at time t.
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New cases are allocated at random amongst susceptible individuals. The simulation pro-

gresses in discrete daily time steps for 365 days. Nearly all simulations (99.99%) finished with

the last infection occurring before day 300. Note that we assume that individuals who have

been infected become fully immune.

Assuming that bi (ith individual in group b) was infected at time t+1, their infector abi is

drawn across all infected individuals in all groups from a multinomial distribution with proba-

bilities:

pðabi ¼ ajÞðt þ 1Þ ¼
l

j
b aðtÞ
lbðtÞ

ð11Þ

Where aj is the jth individual in group a.

To assess the performance of our estimator, we computed 4 different performance metrics

for each scenario:

• Bias: defined as the average difference between the true δ value and its estimate (d̂) across

100 simulations. It is a measure of the estimator’s systematic error and inaccuracy and

should be close to 0. Bias is positive when δ is underestimated, indicating underestimation of

assortativity or overestimation of disassortativity. Conversely, negative bias occurs when δ is

overestimated, indicating overestimation of assortativity or underestimation of

disassortativity.

• Coverage (at significance level α): defined as the proportion of simulations (out of 100) where

the true δ value is within the estimated CI corresponding to α. We evaluate 4 significance

levels 0.05, 0.1, 0.25 and 0.5. Assessing coverage helps determine the reliability of the confi-

dence intervals generated by the estimator. Coverage should approximate 1-α, and the cover-

age error, which measures the deviation from this target, should be close to 0. A positive

coverage error suggests underestimation of uncertainty, while a negative coverage error indi-

cates overestimation.

• Sensitivity (true positive rate): defined as the proportion of simulations (out of 100) where

the estimator correctly identifies a significant assortative or disassortative effect (i.e. the d̂ CI

doesn’t contain 0). Sensitivity should be close to 1 (100%).

• Specificity (true negative rate): defined as the proportion of simulations (out of 100) where

the estimator correctly identifies no significant assortative or disassortative effect (i.e. the d̂

CI contains 0). Specificity should be close to 1 (100%).

We evaluated the estimator’s performance at various stages of the outbreak, defined in rela-

tion to the group’s epidemic peak, i.e. the day with the highest symptom onset incidence fol-

lowing the first case. We hypothesise that in the early stages of an outbreak, up to the group’s

epidemic peak, the depletion of susceptibles is not substantial enough to significantly alter

transmission dynamics. Denoting T the date of the group’s peak incidence, we define the anal-
ysis time window as the time period from the first case of the group to day T x ε, where ε repre-

sents any non-negative real number and is referred to as the “peak coefficient”. A peak

coefficient value of ε = 1 implies analysis until the group’s peak, while values above or below 1

imply analysis using data up to before or after the peak respectively (Section 1.3 and Fig 3 in S1

File). Additionally, we introduce the term ’peak asynchronicity’, calculated as the standard

deviation of peak dates T across groups, to measure heterogeneity in the groups’ peak dates.

To assess the impact of the scenario parameters on the performance metrics, separate

regressions were conducted with each performance metric as a dependent variable and
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scenario parameters as independent variables (S1.4 in S1 File). These regressions provide coef-

ficients that quantify the impact of key parameters, while the (adjusted) R-squared statistic

informs on the proportion of variance explained by the model.

Results

Fig 1 presents the estimator’s performance across all epidemic scenarios considered.

Bias decreased as the analysis time window expanded, achieving near-zero levels once the

group had reached its epidemic peak (ε = 1), with no substantial further improvements at later

epidemic stages (ε>1, Fig 1A).

Coverage performance was contingent upon the significance (α) level and the stage of the

group’s epidemic (ε) (Fig 1B). Halfway before the epidemic peak (peak coefficient ε = 0.5),

coverage at α levels up to 25% was too low, with average errors of 0.22, 0.18 and 0.07 for α lev-

els of 5, 10, and 25%, respectively. In contrast, the 50% coverage was too high with an average

error of -0.10. Around the epidemic peak (ε 0.7–1.3), coverage for α = 5–10% was good, whilst

coverage for α = 25–50% was too high (average error -0.14). At later epidemic stages (ε 1.5–5),

Fig 1. Estimator’s performance across all epidemic scenarios. (A) Distribution of bias (the mean difference between the true assortativity δ value and its

estimate) by peak coefficient. The peak coefficient (ε) is a non-negative real number used to define the analysis time window in relation to the group’s epidemic

peak. It determines the analysis period from the first case to the day Tε, where T is the date of peak incidence for the group. A value of ε = 1 indicates analysis

up to the group’s peak date, while values above or below 1 extend the analysis to data after or before the group’s peak date, respectively. The peak coefficient

serves as a proxy to inform on group-level saturation, past the peak the significant depletion of susceptibles is likely to influence the underlying baseline

transmission patterns. (B) Mean coverage (proportion of simulations where the true δ value is within the estimated CI) by peak coefficient for each significance

level (blue shades). (C) The Receiver Operating Characteristic (ROC) (the trade-off between sensitivity and specificity) curves by peak coefficient (orange-pink

points) for each significance level (blue shaded lines). In panel (A), each point shows the mean metric value across all scenarios for a given peak coefficient. In

panels (B) and (C), each point shows the mean metric value across all scenarios for a given peak coefficient and significance level. Dashed lines refer to the

metric’s target value for (A) and (B) and represent a random classifier’s ROC performance for (C).

https://doi.org/10.1371/journal.pone.0313037.g001
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coverage was good across most significance levels, although the 50% coverage remained high

across all epidemic stages.

Sensitivity and specificity were contingent upon the CI significance level α and the stage of

the group’s epidemic (ε) (Fig 1C). Larger α values enhanced sensitivity at the expense of speci-

ficity, irrespective of the epidemic stage. And, regardless of α, analysing transmission chains

later in the epidemic (i.e. increasing ε) also enhanced sensitivity, although this improvement

was marginal past a peak coefficient of 1.5. However, the gain in sensitivity relative to the loss

in specificity induced by delaying the analysis varied with α, with more pronounced tradeoffs

for larger α values.

Fig 2 presents the relationship between various epidemic characteristics (columns) and the

estimator’s performance metrics (rows), for a peak coefficient of 1 and a significance level of

0.05. Additional configurations are shown in supplementary materials (Fig 6 in S1 File).

Our estimator maintained consistent unbiased performance across the entire assortativity

range (δ from -1 to 1) (Fig 2 column A row 1). Coverage consistently met the 95% target for δ
< 0.5, with a slight decrease in coverage performance for δ> 0.5, although coverage remained

close to the target, averaging at 0.91 (sd = 0.10) (Fig 2A2). This decrease in coverage in highly

assortative scenarios could be due to a saturation effect: high assortativity will accelerate the

Fig 2. Estimator’s performance across scenario parameters and epidemic characteristics. Each row corresponds to one performance indicator and each

column corresponds to one simulation parameter or epidemic characteristic. In each panel, the scatter plot depicts the univariate relationship between

simulation parameter or epidemic characteristic (x-axis) and the performance metric (y-axis), where each black dot represents the average observation from

100 simulations for each group in every scenario. The pink points and error bars indicate the mean and interquartile range, calculated across different bin

widths: 0.1 for δ (A.) and relative group size (B.), 12.5 for the number of cases in the group (C.) and 5 days for the standard deviation of peak date (D.). Dashed

blue lines indicate target metric values. Transmission chains were analysed up to the group’s epidemic peak (ε = 1), with a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0313037.g002
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depletion of susceptibles in the group, eventually resulting in lower observed assortativity com-

pared to the true value (Fig 4 in S1 File). Although the assortativity coefficient δ only had a

small effect on bias or coverage, it had a substantial impact on sensitivity, which was higher for

larger absolute values of δ. However, sensitivity rose more gradually as jδj increased on the dis-

assortative scale compared to the assortative scale (Fig 2A3, Table 1.1 in S1 File), reaching an

average of 82% for δ� 0.5 compared to 55% for δ� -0.5, suggesting a better ability to detect

assortative than disassortative transmission. Indeed, assortative transmission implies that

transmissions propagate within the same group across multiple generations, consequently

increasing the sample size (τ. a in Eq 6) compared to disassortative transmission, and thus

narrowing the CI, thereby enhancing sensitivity. Our linear regression suggested that the

assortativity coefficient explained nearly 60% of the variance observed in sensitivity (Table 1.1

in S1 File).

Increasing the number of cases substantially reduced bias (Fig 2C1, Table 2 in S1 File), and

increased sensitivity (Fig 2C3, Table 1.2 in S1 File) but had little effect on specificity or cover-

age (Fig 2C4 and 2C2). Bias was negligible (mean: 0.04, sd: 0.07) once the group reached 30 to

40 cases. Sensitivity was positively correlated with the number of cases: controlling for δ, the

odds of detecting an assortative or disassortative pattern increased by 4% with each additional

case (Table 1.2 in S1 File).

The relative size of the group had a substantial effect on bias (Fig 2B1, Table 2 in S1 File)

and sensitivity (Fig 2B3, Table 1.2 in S1 File) but no effect on specificity (Fig 2B4) nor coverage

(Fig 2B2). When groups comprised 10% or more of the total population size, bias was close to

0 (Fig 2B1), and the odds of detecting an assortative pattern increased fourfold, compared to

smaller groups (odds ratios (OR) = 4.15, 95% CI = 4.07–4.24) (Fig 2B3, Table 1.2 in S1 File).

Relative size and the number of cases jointly accounted for 72% of the variation in bias

(Table 2 in S1 File), and contributed to a 42% increase in the pseudo R-squared for the linear

regression on sensitivity (from 0.566 in Table 1.1 to 0.805 in Table 1.2 in S1 File).

Diverse transmission dynamics emerge from numerous groups, varying group sizes, reproduc-

tion numbers, and/or assortativity coefficients (Fig 5 in S1 File). This diversity results in varying

saturation levels between groups over time, affecting transmission patterns within and between

groups. Peak asynchronicity, a measure of heterogeneity in epidemic peak timing across groups

was negatively associated with coverage (OR = 0.78, 95% CI = 0.78–0.78) and specificity

(OR = 0.76, 95% CI = 0.76–0.76), explaining 18% and 24% of the variance, respectively (Tables 3

and 4 in S1 File, Fig 2D2 and 2D4). These results suggest a decrease in our estimator’s perfor-

mance with increasing heterogeneity between groups. However, our estimates remained unbiased

(Fig 2D1) and with consistent sensitivity (Fig 2D3) irrespective of that heterogeneity.

In summary, analysing transmission chains at least up to the group’s epidemic peak gener-

ally improved all performance metrics. Near the group’s epidemic peak, coverage with signifi-

cance levels of 5 or 10% yielded good performance, while levels of 25 and 50% were a bit too

high, improving after the peak. Specificity was higher at lower significance levels, while sensi-

tivity was higher at larger significance levels. Increased cases and relative group size contrib-

uted to improved estimator accuracy, reduced bias, and heightened sensitivity, with no

significant impact on coverage nor specificity. Complex epidemic settings, measured through

peak asynchronicity, did not significantly affect sensitivity or bias but were associated with a

reduction in coverage and specificity.

Discussion

We developed a method to detect and quantify the transmission assortativity of different

groups based on transmission chains. We performed an extensive simulation study covering a
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range of epidemic scenarios compatible with viral respiratory nosocomial outbreaks to assess

the performance of our approach.

Our results indicate that the estimator’s performance is influenced by assortativity patterns,

relative group sizes, number of cases, and peak dates asynchronicity.

Generally, under the various settings considered—characterised by small group sizes and

rapid saturation -, analysing transmission chains too early in the outbreak, before the group’s

epidemic peak, results in poor performance across all metrics considered. On the other hand,

delaying assortativity coefficient estimation poses challenges for timely policy implementation.

Choosing when exactly in the epidemic to analyse transmission chains, and what significance

level to use for estimating the assortativity coefficients, will also depend on the objective. For

instance, minimising bias and maximising sensitivity is best achieved later in the epidemic,

past the group’s peak, and using larger significance levels. Conversely, improving coverage and

maximising specificity is easiest before the group’s epidemic peak and using lower significance

levels. Nevertheless, estimating assortativity at a target time before or at the peak requires accu-

rate prediction of the group’s peak date which can be very challenging.

As a rule of thumb, we suggest analysing all available transmission chain data up to the

group’s epidemic peak with a significance level of 0.05. Under this setting, our estimator pro-

vides a generally accurate measure of assortativity with reliable coverage and specificity albeit

lower sensitivity.

Detecting non-homogeneous transmission patterns (sensitivity) in the presence of relatively

small groups (i.e. a group constituting less than 10% of the total population), with groups hav-

ing fewer than 30 cases is challenging, particularly when assortative or disassortative patterns

are mild (-0.5� δ� 0.5). Importantly, it is considerably easier to detect assortativity than dis-

assortativity, given that assortativity yields more transmission events within the group consid-

ered (where most new infections appear) compared to disassortativity (where new infections

tend to appear in other groups, by definition). Hence, all other things being equal, larger sam-

ple sizes are more easily achieved in assortative groups.

Our approach complements traditional survey-based methods when transmission chains

are available. Worby et al.’s relative risk estimation [2], measuring each group’s proportional

change in infection incidence before and after the peak, and Abbas et al.’s assessment method

[21], comparing actual and expected proportions of infections across groups, do not consider

the influence of group size. By integrating group size into our approach, we account for varia-

tions in the pool of susceptible individuals within each group, offering a more comprehensive

understanding of transmission dynamics. Consequently, our approach should provide novel

insights into the impact of group dynamics when estimating transmission patterns.

The main limitation of our approach pertains to the assumption that transmission chains

are perfectly known. Although transmission trees can be reconstructed from data, such recon-

struction effort comes with inherent uncertainty, which we have not considered here. Conven-

tional epidemiological investigations may provide reliable transmission chains but require

intensive labour for contact tracing, data collection and analysis, and may be prone to error

[35]. Statistical approaches have been developed to reconstruct who infected whom using data

on contacts, symptoms onset dates, and pathogen genome sequences [29], but in some con-

texts even these prove insufficient to precisely reconstruct transmission trees [21, 23, 36]. Our

study underscores the challenges of inferring group contributions in some scenarios, even in

the hypothetical instance where transmission trees are perfectly known. Nevertheless, our

approach is adaptable and can be extended to reconstructed transmission chains, for example,

by estimating the assortativity coefficient over all posterior transmission trees. Future research

should delve into understanding how uncertainty surrounding these transmission trees further

impacts our ability to infer transmission patterns.
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Another limitation of our approach includes that our estimator requires, and is quite sensi-

tive to (Fig 1.2 in S1 File), information on group sizes which may be difficult to obtain in real-

life settings, however various methods exist for population size estimation [37]. Our simula-

tions also assumed that individuals who have been infected become permanently immune, an

assumption which is typically valid over short time frames but may be unrealistic over longer

time horizons. Finally, characterising transmission through assortativity implies that a group’s

transmission patterns are identical towards all other groups, with only the within-group pat-

tern being distinct. While this approach is fully representative in a two-group scenario, it is

limiting when additional groups are involved. Nevertheless, this simplification aligns with

established research on social networks and disease transmission dynamics suggesting that

assortativity coefficients alone can effectively capture the essence of contact and transmission

patterns across various contexts [30, 32, 38].

Despite these limitations, this study provides valuable insights into when the role of different

groups in infectious disease transmission can be reliably identified in small outbreak settings, such

as nosocomial outbreaks. We provide a framework for estimating group-specific transmission pat-

terns that can be adapted to reconstructed transmission chains for real-world applications. By

establishing the conditions under which these patterns become discernible, our findings can guide

the timing and applicability of targeted control policies in these critical early-stage scenarios.
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