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Abstract

Objective: To investigate the impact of global and local genetic ancestry and neighborhood 

socioeconomic status (nSES), on breast cancer (BC) subtype, and gene expression.

Summary of Background Data: Higher rates of aggressive BC subtypes (TNBC) and worse 

overall BC survival are seen in black women [Hispanic (HB) and non-Hispanic (NHB)] and 

women from low nSES. However, the complex relationship between genetic ancestry, nSES, and 

BC subtype etiology remains unknown.

Methods: Genomic analysis was performed on the peripheral blood from a cohort of 308 stage 

I-IV non-Hispanic White (NHW), Hispanic White (HW), HB and NHB women with BC. Patient 

and tumor characteristics were collected. Global and local ancestral estimates were calculated. 

Multinomial logistic regression was performed to determine associations between age, stage, 
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genetic ancestry, and nSES on rates of TNBC compared to ER+/HER2−, ER+/HER2+, and ER−/

HER2+ disease.

Results: Among 308 women, we identified a significant association between increasing West 

African (WA) ancestry and odds of TNBC (OR 1.06,95%CI 1.001-1.126, p=0.046) as well 

as an inverse relationship between higher nSES and TNBC (OR 0.343,95%CI 0.151-0.781, 

p=0.011). WA ancestry remained significantly associated with TNBC when adjusting for patient 

age and tumor stage, but not when adjusting for nSES (OR 1.049, 95%CI-0.987-1.116, p=0.120). 

Local ancestry analysis revealed nSES-independent enriched WA ancestral segment centered at 

chr2:42004914 (p=3.70x10−5) in patients with TNBC.

Conclusions: In this translational epidemiologic study of genetic ancestry and nSES on BC 

subtype, we discovered associations between increasing WA ancestry, low nSES, and higher 

rates of TNBC compared to other BC subtypes. Moreover, on admixture mapping, specific 

chromosomal segments were associated with WA ancestry and TNBC, independent of nSES. 

However, on multinomial logistic regression adjusting for WA ancestry, women from low nSES 

were more likely to have TNBC, independent of genetic ancestry. These findings highlight the 

complex nature of TNBC and the importance of studying potential gene-environment interactions 

as drivers of TNBC.

Mini Abstract

In this translational epidemiologic study of genetic ancestry and neighborhood socioeconomic 

status (nSES) on breast cancer subtype, we found that increasing West African ancestry and low 

nSES is associated with higher rates of TNBC. On multinomial logistic regression adjusting for 

WA ancestry, women from a high nSES had one-third the odds of having TNBC compared to 

women from a low nSES. On admixture mapping, specific chromosomal segments were associated 

with WA ancestry and TNBC, independent of nSES. These findings highlight the importance of 

studying both genetic ancestry associated and gene-environment interactions as drivers of TNBC.
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INTRODUCTION

Racial/ethnic minority and socioeconomically disadvantaged populations continue to 

experience a disproportionate burden of breast cancer mortality1. Earlier onset, more 

advanced stage at diagnosis, and aggressive tumor subtype (triple negative breast cancer 

(TNBC)) are some of the characteristic features of breast cancer in Black and Hispanic 

women, representing one of the most significant examples of racial/ethnic differences in 

oncology2, 3. This has been extended further as we recently identified intra-ethnic racial 

differences, showing Hispanic Black (HB) women had lower rates of TNBC compared to 

non-Hispanic Black (NHB), however still had higher rates of TNBC when compared to their 

Hispanic White (NH) and non-Hispanic White (NHW) counterparts3. These inter-racial and 

intra-ethnic disparities seen throughout oncology have prompted questions regarding the role 

of genetic ancestry in prognosis and tumor biology4-6.
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Genetic ancestry reflects population history, providing background information about 

genetic variation that is essential to determine genomic associations with diseases. Recent 

work has shown that genetic ancestry is associated with breast cancer characteristics7-9. 

Specifically, in a study by Yuan et al5, African ancestry compared with European ancestry 

was associated with higher levels of chromosomal instability with more TP53 mutations and 

fewer PIK3CA mutations, which may in turn be leading to more aggressive tumor biology 

and worse survival. However, the absolute number of samples from racial/ethnic minorities 

was limited10.

Racial/ethnic minorities are also more likely to live in disadvantaged neighborhoods and are 

exposed to considerably higher levels neighborhood-level social stressors which studies have 

hypothesized may contribute to the development of aggressive breast cancer tumor subtypes 

and higher mortality11, 12. Analysis of these underlying gene-environment interactions are 

complex and difficult to study but are critical to dismantle racial/ethnic and socioeconomic 

disparities in breast cancer.

Given there are no publicly available cancer genetic ancestry databases with neighborhood-

level socioeconomic annotation5, this study fills this critical knowledge gap by integrating 

neighborhood socioeconomic status (nSES) and genetic ancestry to analyze their impact 

on breast cancer subtype, specifically rates of TNBC. In doing so, we leveraged 

the socioeconomic diversity and admixed genetic ancestry of our Miami-Dade County 

population, a melting pot of Latin America and the Caribbean.

METHODS

Patient samples and variables of interest

Patient samples were collected at the University of Miami-Sylvester Comprehensive Cancer 

Center (SCCC) and its sister safety-net hospital Jackson Memorial Hospital between January 

1, 2017-January 1, 2021 under an Institutional Review Board approved prospective study 

and performed in adherence to the tenets of the Declaration of Helsinki. Patients with 

stages I-IV invasive ductal or lobular carcinoma were included in the analysis. Patients with 

other malignancies of the breast (i.e. sarcoma, lymphoma) were excluded in the analysis. 

Patient and tumor characteristics were collected from electronic medical records and 

deidentified for further analysis. For each individual, demographic information (age, sex, 

race, ethnicity, neighborhood-level income), clinical information (body-mass index, tobacco 

use, alcohol use), and tumor characteristics [stage, grade (unknown, well differentiated, 

moderately differentiated, and poorly differentiated/anaplastic), and estrogen receptor (ER), 

progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) status). 

The AJCC 7th edition guidelines were used to determine the clinical stage at the time of 

diagnosis. Tumors were also grouped into four subtypes based on hormone receptor status: 

ER+/HER−, ER+/HER2+, ER−/HER2+, and TNBC (ER−/HER2−).

Self-identified race and ethnicity (SIRE) were grouped as NHW, HW, NHB, and HB. 

The other group accounted for only 3.8% of the population and included Asians or 

unknown. Median income was calculated based on the patient’s home zip code, ranging 

from $19,138–$154,868 for the entire population. The population was divided into three 
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groups representing those at the poverty line in Miami-Dade County (nSES 1: <$35,600), 

those above the poverty line to the median income (nSES 2: $35,600-55,600), and those with 

income greater than the median in Miami-Dade County (nSES 3: > $55,600).

Genotyping

Peripheral blood was collected at time of surgery for each patient. Buffy coat DNA was 

extracted using the QIAamp DNA mini kit. DNA was genotyped using the Illumina 

Expanded Multi-Ethnic Global Array (MEGAex) beadchip. Autoconvert 2.0 was used to 

convert raw .idat files to .gtc which were then converted to variant call file (VCF) format. 

Quality control (QC) was performed, genotypes with call rates < 97% and/or incorrect sex 

identification were excluded from the study.

Global and local ancestry estimation

Global and local ancestry estimation was performed as previously described4. Reference 

populations from the 1000 genomes project phase 3 data set were used to estimate European 

(EU), West African (WA), and East Asian (EA) global ancestry13. Global ancestral 

estimation for Native American (NAT) ancestry was performed using samples representing 

52 indigenous groups14-16. Study patient genotypes were merged with the global ancestry 

reference samples using vcftools17. Variants that were non-biallelic or that were not called in 

at least one individual were removed from the analysis. Population structure was estimated 

using ADMIXTURE18 (K=4) and PCA analysis using TRACE19, 20.

Study patient genotypes were merged with local ancestry reference samples and processed 

using vcftools, filtering out variants that were non-biallelic or that were missing in at 

least one individual. After pruning, a total of >400K variants were used for local ancestry 

estimation. Common variants were phased using Beagle 5.021, 22. Since no patients were 

known to be related, pedigree information was not used for phasing. Local ancestry was 

inferred across the autosome for each sample by discriminative modeling with random 

forests using RFMix23. With a minimum node size of 5, PopPhased option was used. 

Posterior probabilities of local ancestry were used to generate karyograms24.

Statistical Analysis

Descriptive statistics were calculated for patient, clinical, and tumor characteristics using 

mean, standard deviation, median, and interquartile rage Q1–Q3 for continuous data and 

frequencies (percentage) for categorical data. Univariate analysis using ANOVA, Kruskal–

Wallis, and Chi-squared analysis as appropriate. Multinomial logistic regressions were used 

for model building of covariates including the proportion of WA, NAT, and EA ancestries 

with respect to EU ancestry, age, stage, and income bracket. Admixture mapping of local 

ancestral calls was performed using a multinomial regression on tumor subtype correcting 

for the proportion of WA, NAT, and EA ancestries with respect to EU ancestry, age, stage, 

and income bracket. A significance threshold of 3.65x10−4 was determined based on the 

mean number of ancestral switches across the autosome for our cohort. Manhattan plots 

were generated using CMplot25.
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RESULTS

Patient and Tumor Characteristics Based on Self-Identified Race and Ethnicity (SIRE)

This study included 308 patients with breast cancer, of which 46 (14.9%) were NHW, 192 

(62.3%) were HW, 11 (3.6%) were HB, and 47 (15.3%) were NHB (Table 1). The median 

age at diagnosis was lower in both HB and NHB (52 and 51 years, respectively) when 

compared to NHW and HW (55 and 55 years, respectively) patients. There was a significant 

difference in nSES across our cohort (p=0.011). There were no significant differences across 

the cohort for tumor stage (p=0.386) or grade (p=0.116). Although there was no significant 

difference across the cohort for tumor subtype (p=0.104) based on SIRE.

Patient and Tumor Characteristics Based on Global Genetic Ancestry

To estimate the global ancestral proportions of this cohort, patients were genotyped and 

compared to WA, EA, EU, and NAT reference populations. The breast cancer cohort 

exhibited considerable diverse population structure (Figure 1A). NHW and NHB patients 

clustered toward EU and WA reference populations, respectively, however HW and HB 

patients were more spread out due to contributions of different ancestries (Figure 1B). Mean 

EU ancestry by SIRE categories was 87.9% for NHW patients, 73.2% for HW patients, 

36.8% for HB patients, and 12.7% for NHB patients (Figure 1C and Table 2). An inverse 

relationship along SIRE groups was observed where WA ancestry decreased from a mean 

of 85.4%, 53.9%, 9.5%, and 3.9% for NHB, HB, HW, and NHW patients, respectively. 

There were significant differences with respect to EU (p<0.001), WA (p<0.001), NAT 

(p<0.001), and EA (p=0.002), ancestries across the cohort. HW and HB patients had a 

higher percentage of NAT ancestry (15.5% and 8.0%, respectively) when compared to the 

non-Hispanic patients.

Increased WA ancestry was associated with various demographic variables including earlier 

age of diagnosis (p=0.018) and lower income (p<0.001) (Table 3). The inverse relationship 

was seen for EU ancestry. WA ancestry was also associated with differences in clinical 

characteristics such as stage (p=0.039), grade (p=0.0083), and subtype (p=0.012) (Table 3 

and Figure 2), which was not observed when using SIRE.

Multinomial logistic regression with respect to tumor subtype revealed a significant 

association between increasing WA ancestry and TNBC (OR 1.06,95%CI 1.001-1.126, 

p=0.046) when adjusting for age and stage (Table 4). When adjusting for nSES, WA was 

no longer significantly associated (OR 1.049, 95%CI 0.987-1.116, p=0.120), however there 

was a significant inverse association between higher nSES and TNBC (OR 0.366, 95%CI 

0.158-0.848, p=0.019).

TNBC and Local Genetic Ancestry

Ancestry was estimated locally at each single nucleotide polymorphism (SNP) with respect 

to our four ancestral reference groups. There was rich diversity of ancestral blocks 

throughout the autosome, especially in our HW and HB patients (Figure 3A). Admixture 

mapping, through a multinomial logistic regression model correcting for stage, nSES, and 

age, was performed at each variant. Our analysis revealed nSES-independent enriched WA 
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ancestral segments (chr2:40114470-47026542), where segment chr2:42004851-42329329 

(p=3.71x10−5) exhibited the most significant enrichment in patients with TNBC (Figure 

3B). Additionally, increased NAT ancestry along chr17:79328964-80456621, with a peak 

enrichment at chr17:79693136 (p=1.72x10−4), was associated with TNBC.

To further investigate these enriched regions, we analyzed expression quantitative trait loci 

(eQTL) data from the PanCanQTL26 database, which provides cis and trans eQTL data 

for 33 cancer types from The Cancer Genome Atlas (TCGA). Within the NAT enriched 

region (chr17:79328964-80456621) 15 cis and 0 trans eQTLs were identified specific 

for the breast cancer (BRCA) cohort. Additionally, the expression of 2 unique genes 

were impacted: TSPAN10 (FDR=5.79x1016) and ARL16 (1.95x10−12). Within the WA 

enriched region (chr2:42004851-42329329) 1845 cis and 40 trans eQTLs were identified 

specific for the BRCA cohort. These variants impacted the expression of 38 unique genes 

(egenes). Of those, in cis, COX7AR’s expression was the most significantly impacted 

(FDR=2.62x10−26). In trans, SLC46A3’s (FDR=6.6x10−4) and COX7AR’s (FDR=0.002) 

expression were most significantly impacted. Enrichr27-29 pathway analysis was performed 

on the 38 egenes. Interestingly, these genes were associated with an impact on IL6 signaling 

(q=0.012), ERBB2 and Her2 pathway signaling (q=0.029). Pathway analysis of the clinvar 

database investigating 11 trans-egenes revealed disease association with non-Hodgkin’s 

lymphoma (q=0.008), breast neoplasms (q=0.014) familial breast neoplasms (q=0.014).

DISCUSSION

This novel translational epidemiologic study revealed associations between genetic ancestry 

and nSES on TNBC. Both WA ancestry and nSES were independently associated with 

TNBC; however, on the multinomial logistic regression when nSES and WA ancestry 

were both added in our model, only nSES remained significant, suggesting potential gene-

environment interactions. Moreover, admixture mapping of WA ancestry was associated 

with TNBC, independent of nSES, at specific regions along the autosome. These regions 

of WA ancestral origin may predispose individuals to this highly aggressive tumor 

subtype, reflecting tumor subtype trends typically observed in self-identified racial/ethnic 

(SIRE) groups. Our findings underscore the importance of integrating precise genomic 

measures and contextual-level measures to identify molecular alterations that can be 

used to improve disparities through ancestrally and socioeconomically-calibrated patient 

stratification, prognostication, and development of novel therapies in patients with TNBC.

Moving Beyond Self-Identified Race and Ethnicity (SIRE)

Self-identified Black and Hispanic women with breast cancer, when compared to their White 

counterparts, classically exhibit earlier onset, more advanced stage at diagnosis, and TNBC. 

Numerous studies have suggested that inequality of screening, treatment, and follow up lead 

to much of this mortality disparity. However, recent papers, including our current study, 

suggest biologically and clinically relevant differences in the tumors from women with WA 

ancestry compared to EU ancestry5, 8

SIRE has been a metric classically characterized in most publications describing patient 

demographics. As the prevalence of admixture increases throughout the United States, the 
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more difficult it will be to fit individuals into racial “boxes”. The 2020 Census data revealed 

a 276% increase in the multiracial population and a 23% increase in the Hispanic or Latino 

population. As racial groups become increasingly ancestrally heterogeneous, more precise 

genomic measures are needed in order to appropriately stratify patients4.

In this study we found significant differences in tumor characteristics (e.g., later stage, 

higher grade, and TNBC) between those with increasing WA genetic ancestry compared to 

increasing EU genetic ancestry; however, these differences were not seen using SIRE. These 

results show that genetic ancestry may be a more sensitive measure of differences in tumor 

characteristics than SIRE. This may also be in part due to the large number of admixed 

individuals analyzed in the study. As a result, SIRE may be unreliable or misinterpreted, 

leading to misclassification and the generation of unreliable results in diverse racial/ethnic 

populations30.

Our findings of increasing WA ancestry among women who are NHB and HB can also 

be extended to prior studies by Goel et al3 which uncovered tumor differences exist 

between SIRE groups. Specifically, they identified intra-ethnic differences by Black race 

between Hispanic Blacks and Hispanic Whites. Hispanic Blacks had more aggressive tumor 

characteristics (e.g., later stage at diagnosis, higher grade, TNBC) compared to Hispanic 

Whites. More striking, breast cancer-specific survival outcomes were worse among Hispanic 

Black women compared to Hispanic White women, but better among Hispanic Black 

women compared to non-Hispanic Black women. Extending the results of this current 

study suggest that an increase in WA ancestry may drive more aggressive tumor biology 

(TNBC) and worse breast cancer-specific survival among NHB and HB compared to NHW 

and HW. The sooner that the direct etiologies of disease susceptibility (e.g., TNBC) and 

aggressiveness are identified, the better our understanding of intervenable factors to mitigate 

population-based disparities using more accurate biomarkers such as genetic ancestry 

instead of SIRE. Thus, these emerging data suggest that biological features associated with 

genetic ancestry may both inform our understanding of aggressive disease and provide 

pathways to precision screening and treatment approaches.

Integration of nSES and Genetic Ancestry Identifies Potential Gene-Environment 
Interactions

In addition to disparities in more aggressive breast cancer tumor characteristics (e.g., later 

stage, higher grade, and TNBC) associated with increasing WA ancestry, we would be 

remiss to assume that these disparities in exist in a vacuum. To adequately understand the 

impact of WA and EU ancestry on breast cancer disparities, we need to evaluate contextual-

level measures as well such as nSES. 5, 31

By integrating genetic ancestry and nSES in evaluation of breast cancer subtype, we 

discovered that both WA ancestry and nSES are independently associated with TNBC. 

More striking, on the fully adjusted multinomial logistic regression with age, stage, WA 

ancestry, and nSES, the associated between low nSES and higher rates of TNBC compared 

to other breast cancer subtypes remained statistically significant. This suggests potential 

gene-environment interactions associated with disadvantaged neighborhoods as drivers of 

TNBC.
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The Ecosocial theory of disease distribution posits that health disparities may arise due to 

social, ecological, political and/or historical exposures within a neighborhood33. Recent 

studies have identified disparities in rates of TNBC based on extremes of residential 

economic segregation, with higher rates of TNBC compared to ER+/HER2− in the most 

economically disadvantaged neighborhoods, even independent of race11, 32. These race-

independent disparities, due in part by living in low nSES, may reflect the downstream 

effects of negative health behaviors (poor diet, limited physical activity), lack of healthcare 

access, and chronic stress33. Poor diet and limited physical activity may lead to the 

development of obesity and diabetes which have been associated with an increased 

risk of developing TNBC through the dysregulation of cell cycle regulation and cell 

proliferation signaling pathways34-36. Synergistically, stress of living in a disadvantaged 

environment has been thought to shape tumor biology by altering gene expression and 

impacting inflammatory or immune response systems37. Newman et al38 also highlights that 

the allostatic load (“wear and tear on the body”) from social inequality and epigenetic 

alterations need to be considered in studying complexity of studying breast cancer 

disparities. Collectively, our findings that nSES, independent of increasing WA ancestry, 

is also associated with TNBC suggests, within the background of these prior genomic 

frameworks, a potential biological mechanism through which nSES may impact differences 

in breast cancer subtype. As a result, we emphasize the importance of contextual-level 

annotation of genetic ancestry studies5,6.

These findings also bring to light a “chicken or egg” situation--are women of WA ancestry 

more likely to inherit genetic components of geographically defined WA ancestry that are 

associated with hereditary susceptibility for TNBC (“nature”) verses is the Black phenotype 

associated with increasing WA ancestry sorting women into disadvantaged neighborhoods 

as a result of structural racism from historical redlining and driving TNBC etiology through 

gene-environment interactions (“nurture”). Or, more likely, a combination of both “nature” 

and “nurture” are at play and associated with TNBC.

Novel West African Ancestry SNPs associated with TNBC Independent of nSES

To study this point further, we performed admixture mapping to identify genomic loci of 

ancestral origin that are associated with TNBC. We found WA and NAT genomic loci. 

independent of nSES that are associated with TNBC. These loci may predispose women to 

TNBC, which may be one reason this subtype is seen at a higher proportion in Black and 

Hispanic women when compared to their White counterparts. Of these genomic segments 

WA enrichment was most significant with TNBC. Our results identified 38 genes whose 

expression in breast cancer were altered by variants found in the segments enriched with 

WA ancestry. These genes were associated with ERBB2 and Her2 pathway signaling. 

Additionally, expression of Cox subunit VIIa polypeptide 2-like protein (COX7AR) was 

impacted most significantly by multiple variants found in these enriched segments, which is 

known to facilitate human breast cancer malignancy39. These results suggest that there may 

be an ancestrally driven predisposition of the development of TNBC.

Our findings need to be evaluated while considering the study limitations, which include a 

case-only, two-institution study in South Florida, which may not be generalizable to other 
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health systems caring for similar populations. Nevertheless, these two-institutions consist 

of an NCI designated cancer center and safety-net hospital which reflects two diverse 

racial/ethnic and socioeconomic populations. Furthermore, the small sample size of 47 NHB 

and 11 Hispanic Blacks (12 and 4 with TNBC, respectively) limits statistical power in 

disentangling neighborhood disadvantage from WA ancestry and its association with TNBC. 

Future studies need to expand on our findings to further understand the association between 

neighborhood disadvantage and genetic ancestry on rates of TNBC. Nevertheless, the racial/

ethnic and economic mix of our population in one of the most diverse counties in the US, 

which likely reflects the future demographics of the US, particularly the Sun Belt40.

Overall, this prospective study evaluates the impact of both genetic ancestry and nSES 

on rates of breast cancer subtype among an admixed population. Given evidence in the 

literature that one’s social and environmental exposures and individual experiences may 

lead to epigenetic changes, influencing a woman’s risk for developing breast cancer, we 

extend this further to also influencing a woman’s risk for developing a specific breast 

cancer subtype. Quantifying these alterations may provide insight into the extent nSES has 

impacted an individual over time. Future studies must integrate nSES, genetic ancestry, and 

additional molecular features associated with breast cancer subtype to improve outcomes 

in historically marginalized individuals. Utilizing this translational approach will allow 

for improved methods of patient risk stratification, cancer control interventions in the 

community setting, and precision oncology treatment strategies for patients. It also presents 

an exciting opportunity to further investigate novel SNP biomarkers of nSES, WA ancestry, 

and TNBC.

CONCLUSIONS

This integrative study illustrates that global and local genetic ancestry and nSES are 

independently associated with TNBC, suggesting potential gene-environment interactions. 

This study is among the first to estimate ancestral proportions in a large cohort of 

admixed individuals with breast cancer. Our results reflect the genomic diversity of 

these patients and the changing racial/ethnic landscape of the United States in the years 

to come. Integrating genetic ancestry and contextual-level measures can result in novel 

tests for patient stratification and prognostication. Overall, this study reveals a need 

for larger genomic studies of admixed racial/ethnic minorities with breast cancer, that 

comprehensively integrate social and environmental factors in which patients live in order to 

reach health equity.
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Figure 1. Population structure of patients with invasive breast cancer.
(A) Stacked barplot of ancestral percentages after unsupervised clustering using 

ADMIXTURE analysis of our cohort assuming K=4 ancestral clusters. Each bar represents 

one individual and the height of each segment represents the respective ancestral percentage. 

(B) Principal component analysis (PCA) based global ancestral genotypes across the cohort 

(colored circles) and the global ancestry reference panel (grey circles). (C) Stacked barplot 

of ancestral percentages grouped by self-reported race/ethnicity category. Non-Hispanic 

white (NHW), Hispanic white (HW), non-Hispanic black (NHB), Hispanic black (HB), and 

not available (NA).
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Figure 2. Association between tumor characteristics and global ancestry.
Violin plots of ancestral percentages [(European (EU) and West African(WA)] of patients 

stratified by (A) stage, (B) grade, and (C) subtype
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Figure 3. Admixture and fine mapping.
(A) Representative karyograms, after local ancestry estimation, for patients identifying as 

non-Hispanic white (NHW), Hispanic white (HW), Hispanic black (HB), or non-Hispanic 

black (NHB). European (EU), West African (WA), East Asian (EA), Native American 

(NAT), and unknown (UNK). (B) Manhattan plot of ancestral segments associated with 

triple negative breast cancer (TNBC) representing results of multinomial regression 

and admixture mapping. X-axis, chromosome position; Y-axis, −log10 (p value) after 

multinomial regression for tumor subtype and local ancestry at each variant, correcting for 

age, stage, nSES, and the proportion of WA, NAT, and EA ancestries with respect to EU 

ancestry. Each dot represents an ancestral segment tested in the association test. Horizontal 

dashed lines represent significance threshold, p < 3.7x10−4.
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Table 1.

Sociodemographics and clinical features in 308 patients with breast cancer by self-identified race and ethnicity

Factor Non-
Hispanic
White

Hispanic
White

Hispanic
Black

Non-
Hispanic
Black

p-
value

N=46 N=192 N=11 N=47

Age (years) Mean (SD) 56.59 (12.9) 55.4 (11.7) 48.64 (13.5) 52.2 (10.6) 0.077

Neighborhood-Level Income 
(nSES)

<$35600 5 (10.9%) 43 (22.4%) 5 (45.5%) 16 (34.0%) 0.011

$35600-$55600 16 (34.8%) 84 (43.8%) 5 (45.5%) 18 (38.3%)

>$55600 22 (47.8%) 62 (32.3%) 1 (9.1%) 9 (19.1%)

Unknown 3 (6.5%) 3 (1.6%) 0 (0%) 4 (8.5%)

Tobacco Use Never Smoker 26 (56.5%) 129 (67.2%) 8 (72.7%) 36 (76.6%) 0.108

Current Smoker 1 (2.2%) 14 (7.3%) 1 (9.1%) 3 (6.4%)

Former Smoker 19 (41.3%) 45 (23.4%) 1 (9.1%) 8 (17.0%)

Unknown 0 (0%) 4 (2.1%) 1 (9.1%) 0 (0%)

Alcohol Use None 13 (28.3%) 141 (73.4%) 9 (81.8%) 33 (70.2%) <0.001

Current Use 33 (71.7%) 46 (24.0%) 1 (9.1%) 14 (29.8%)

Former Use 0 (0%) 1 (0.5%) 0 (0%) 0 (0%)

Unknown 0 (0%) 4 (2.1%) 1 (9.1%) 0 (0%)

Body Mass Index (BMI) Underweight (<18.5) 0 (0%) 2 (1.0%) 0 (0%) 0 (0%) <0.001

Normal weight (18.5–24.9) 15 (32.6%) 38 (19.8%) 5 (45.5%) 5 (10.6%)

Overweight (25–29.9) 12 (26.1%) 61 (31.8%) 3 (27.3%) 8 (17.0%)

Class I Obesity (30–34.9) 8 (17.4%) 38 (19.8%) 0 (0%) 9 (19.1%)

Class II Obesity (35–39.9) 5 (10.9%) 12 (6.3%) 2 (18.2%) 8 (17.0%)

Class III Obesity (40+) 0 (0%) 6 (3.1%) 0 (0%) 10 (21.3%)

Unknown 6 (13.0%) 35 (18.2%) 1 (9.1%) 7 (14.9%)

Stage 1 20 (43.5%) 59 (30.7%) 2 (18.2%) 12 (25.5%) 0.386

2 20 (43.5%) 78 (40.6%) 6 (54.5%) 18 (38.3%)

3 5 (10.9%) 50 (26%) 3 (27.3%) 16 (34.0%)

4 1 (2.2%) 5 (2.6%) 0 (0%) 1 (2.1%)

Unknown 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Grade Well-Differentiated 10 (21.7%) 29 (15.1%) 0 5 (10.6%) 0.116

Moderately Differentiated 24 (52.2%) 82 (42.7%) 4 (36.4%) 16 (34.0%)

Poorly Differentiated / 
Anaplastic

11 (23.9%) 74 (38.5%) 6 (54.5%) 23 (48.9%)

Unknown 1 (2.2%) 7 (3.6%) 1 (9.1%) 3 (6.4%)

Tumor Subtype ER+/HER2− 35 (76.1 %) 120 (62.5%) 5 (45.5%) 29 (61.7%) 0.104

ER+/HER2+ 7 (15.2%) 27 (14.1%) 1 (9.1%) 3 (6.4%)

ER−/HER2+ 3 (6.5%) 12 (6.3%) 1 (9.1%) 3 (6.4%)

ER−/HER2− 1 (2.2%) 32 (16.7%) 4 (36.4%) 12 (25.5%)

Unknown 0 (0%) 1 (0.5%) 0 (0%) 0 (0%)
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Table 2.

Summary of global genetic ancestry for self-identified race and ethnicity

Factor

Non-Hispanic
White

Hispanic
White

Hispanic
Black

Non-
Hispanic

Black
All p-value

N=46 N=192 N=11 N=47 N=308

European Ancestry (%)

Mean (SD) 87.9 (19.9) 73.2 (21.4) 36.8 (14.9) 12.7 (8.2) 64.5 (31.1) <0.001

Median 95.7 82.9 35.3 10.6 76.7

Minimum - 
Maximum 12.0 - 99.4 2.8 - 99.3 4.5 - 57.5 1.6 - 49.6 1.6 - 99.4

25th-75th Percentile 92.6 - 97.6 58.1 - 90.4 32.2 - 49.8 7.0 - 14.8 38.1 - 91.7

West African Ancestry (%)

Mean (SD) 3.9 (7.1) 9.5 (10.3) 53.9 (19.3) 85.4 (10.2) 21.8 (30.3) <0.001

Median 1.3 6.6 54.3 88.1 6.98

Minimum - 
Maximum 0 - 38.7 0 - 82.6 29.3 - 95.4 32.4 - 97.7 0 - 97.8

25th-75th Percentile 0 - 3.8 3.8 - 11.3 36.2 - 62.4 82.1 - 92.1 3.6 - 21.4

Native American Ancestry 
(%)

Mean (SD) 4.8 (11.6) 15.5 (17.5) 8.0 (9.4) 0.8 (1.0) 11.2 (15.9) <0.001

Median 1.4 7.1 4.7 0.4 3.3

Minimum - 
Maximum 0 - 53.3 0 - 77.2 0.1 - 33.2 0 - 3.4 0 - 77.2

25th-75th Percentile 0.2 - 2.5 2.4 - 26.5 2.3 - 11 0 - 1.5 0.9 - 14.5

East Asian Ancestry (%)

Mean (SD) 3.4 (8.4) 1.8 (7.0) 1.3 (2.0) 1.0 (2.3) 2.5 (9.9) 0.002

Median 1 1.1 0.7 0.5 0.9

Minimum - 
Maximum 0 - 47.6 0 - 95.9 0 - 6.8 0 - 14.8 0 - 95.9

25th-75th Percentile 0 - 2.8 0.5 - 1.8 0 - 1.4 0 - 1.1 0.3 - 1.8
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Table 3.

Associations between sociodemographic and clinical features with global genetic ancestry

European
Ancestry

West African
Ancestry

Native American
Ancestry

East Asian
Ancestry

Age (years)
Correlation Coefficient 0.124 −0.135 −0.014 0.073

p-value 0.03 0.018 0.805 0.198

nSES Bracket p-value <0.001 <0.001 0.095 0.098

Tobacco Use p-value 0.061 0.081 0.349 0.176

Alcohol Use p-value 0.009 0.054 0.109 0.732

BMI p-value <0.001 0.003 0.01 0.361

Stage p-value 0.001 0.039 0.376 0.167

Grade p-value 0.012 0.008 0.618 0.225

Tumor Subtype p-value 0.008 0.012 0.234 0.302
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Table 4.

Multinomial regression models of individual-level and contextual-level measures associated with breast cancer 

subtype

Models Subtype* Model
Outputs

Age Stage** Ancestry nSES***

II III IV African /
European

Native
American /
European

East
Asian /
European

2 3

Age + 
Stage

ER+/
HER2+

OR 0.998 2.519 3.522 2.036

P 0.873 0.041 0.013 0.539

95% CI 0.968-1.027 1.04-6.104 1.3-9.535 0.211-19.668

ER−/
HER2+

OR 0.763 3.019 9.125 17.116

P 0.238 0.185 0.007 0.010

95% CI 0.931-1.018 0.588-15.487 1.835-45.422 1.95-150.355

TNBC OR 1.014 5.669 9.855 0.000

P 0.307 0.001 <0.001 0.986

95% CI 0.987-1.042 2.067-15.534 3.35-28.991 0- >100

Age + 
Stage + 
nSES

ER+/
HER2+

OR 0.998 2.497 3.655 1.904 2.440 1.723

P 0.871 0.043 0.011 0.581 0.129 0.379

95% CI 0.969-1.027 1.027-6.068 1.347-9.954 0.194-18.728 0.771-7.721 0.589-2.974

ER−/
HER2+

OR 0.972 2.983 8.390 21.073 0.264 0.665

P 0.223 0.193 0.010 0.008 0.053 0.483

95% CI 0.93-1.017 0.576-15.456 1.667-42.224 2.223-199.737 0.069-1.016 0.213-2.079

TNBC OR 1.017 6.038 9.507 0.000 0.348 0.343

P 0.229 0.001 <0.001 0.982 0.011 0.011

95% CI 0.989-1.046 1.08-16.81 3.177-28.446 0- >100 0.154-0.789 0.151-0.781

Age + 
Stage + 
Ancestry

ER+/
HER2+

OR 0.996 2.524 3.327 2.036 0.992 1.338 1.069

P 0.080 0.041 0.020 0.540 0.873 0.382 0.228

95% CI 0.967-1.026 1.037-6.147 1.204-9.198 0.21-19.767 0.897-1.097 0.696-2.57 0.959-1.194

ER−/
HER2+

OR 0.969 3.736 10.299 26.076 1.100 1.533 1.120

P 0.193 0.150 0.011 0.006 0.006 0.301 0.052

95% CI 0.924-1.016 0.621-22.466 1.707-62.178 2.54-268.003 1.027-1.177 0.682-3.442 0.999-1.256

TNBC OR 1.015 5.795 10.054 0.000 1.062 1.057 0.997

P 0.278 0.001 <0.001 0.984 0.046 0.873 0.976

95% CI 0.988-1.043 2.071-16.216 3.33-30.326 0- >100 1.001-1.126 0.537-2.077 0.811-1.225

Age + 
Stage + 
Ancestry 
+ nSES

ER+/
HER2+

OR 0.995 2.489 3.391 1.954 0.999 1.539 1.067 2.829 2.059

P 0.752 0.046 0.019 0.566 0.994 0.208 0.239 0.090 0.251

95% CI 0.966-1.106 1.017-6.092 1.218-9.44 0.199-19.221 0.903-1.106 0.787-3.007 0.958-1.19 0.85-9.507 0.601-7.05

ER−/
HER2+

OR 0.969 3.490 9.459 29.964 1.091 1.275 1.115 0.320 0.736

P 0.191 0.173 0.015 0.005 0.015 0.581 0.067 0.118 0.627

95% CI 0.923-1.016 0.577-21.115 1.56-57.34 2.779-323.112 1.017-1.169 0.537-3.028 0.992-1.255 0.077-1.332 0.215-2.524
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Models Subtype* Model
Outputs

Age Stage** Ancestry nSES***

II III IV African /
European

Native
American /
European

East
Asian /
European

2 3

TNBC OR 1.018 6.135 9.905 0.000 1.049 0.896 1.006 0.366 0.366

P 0.213 0.001 <0.001 0.980 0.120 0.755 0.951 0.019 0.019

95% CI 0.99-1.046 2.166-17.392 3.235-30.356 0- >100 0.987-1.116 0.448-1.793 0.82-1.236 0.158-0.848 0.158-0.850

*
Reference ER+/HER2−

**
Reference Stage 1

***
Reference nSES 1: nSES 1: <$35,600, nSES 2: $35,600-55,600, nSES 3: > $55,600

Ann Surg. Author manuscript; available in PMC 2024 December 02.


	Abstract
	Mini Abstract
	INTRODUCTION
	METHODS
	Patient samples and variables of interest
	Genotyping
	Global and local ancestry estimation
	Statistical Analysis

	RESULTS
	Patient and Tumor Characteristics Based on Self-Identified Race and Ethnicity SIRE
	Patient and Tumor Characteristics Based on Global Genetic Ancestry
	TNBC and Local Genetic Ancestry

	DISCUSSION
	Moving Beyond Self-Identified Race and Ethnicity SIRE
	Integration of nSES and Genetic Ancestry Identifies Potential Gene-Environment Interactions
	Novel West African Ancestry SNPs associated with TNBC Independent of nSES

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

