
ARTICLE OPEN

A systematic review and meta-analysis of HHV-6 and mortality
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Christopher J. Stathis1,2,11, Harrison Zhu2,3,11, Kristen Carlin4, Tuan L. Phan2,5, Danny Toomey2,6, Joshua A. Hill 7,8,9,12 and
Danielle M. Zerr 10,12✉

© The Author(s) 2024

Human herpesvirus-6B (HHV-6B) reactivation has been associated with non-relapse mortality (NRM) and overall mortality (OM)
following allogeneic hematopoietic stem cell transplant (HCT). We performed a systematic review and meta-analysis to better quantify
the association. Studies were included if they systematically tested a cohort of HCT recipients for HHV-6 infection or reactivation and
described mortality for patients with and without HHV-6B. Random effects models were used to assess the pooled effect of HHV-6B
positivity on each outcome of interest. Bayesian aggregation was additionally performed if models included 10 or fewer studies. Eight
studies were included in the NRM analysis, which demonstrated a significant association between HHV-6 detection and NRM (pooled
effect: 1.84; 95% CI: 1.29–2.62) without significant heterogeneity (I2= 0.0%, p= 0.55). A Bayesian aggregation of the raw data used to
construct the NRM random effects model supported these findings (95% credible interval: 0.15–1.13). Twenty-five studies were
included in OM analysis, which showed a significant positive association (pooled effect: 1.37; 95% CI: 1.07–1.76), though considerable
heterogeneity was observed (I2= 36.7%, p < 0.05). HHV-6 detection is associated with NRM and OM following HCT. Randomized trials
are warranted to evaluate if preventing or treating HHV-6B reactivation improves outcomes.

Bone Marrow Transplantation (2024) 59:1683–1693; https://doi.org/10.1038/s41409-024-02398-w

INTRODUCTION
HHV-6 is a member of the Roseolovirus genus of the beta-
herpesvirus subfamily of human herpesviruses [1]. Human
herpesvirus 6 (HHV-6) is the collective name of two HHV-6 species,
HHV-6A and HHV-6B. The epidemiology of HHV-6A has not been
defined. In contrast, HHV-6B infects most individuals in early
childhood and the virus reactivates in 30-70% of HCT recipients
[2–6]. Because HHV-6B is the pathogenic species known to
reactivate in HCT, the current work focuses on evaluating HHV-6B
and mortality [7]. Risk factors associated with HHV-6B reactivation
include receiving allogeneic (versus autologous) HCT, myeloabla-
tive conditioning regimen, transplants from unrelated or human
leukocyte antigen (HLA)-mismatched donors, and umbilical cord
blood transplants [3, 4, 8–13]. HHV-6B reactivation has been
associated with subsequent encephalitis, central nervous system
(CNS) dysfunction, bone marrow suppression, acute graft-versus-
host-disease (aGVHD), cytomegalovirus (CMV) reactivation, lower
respiratory tract disease, and mortality [2, 4, 5, 8–10, 13–29].
While some studies have reported an association between HHV-6B

andmortality [20, 22, 30–36], results have been conflicting [37]. To date,
no prior work has systematically aggregated data from studies of HHV-
6B and mortality. The goal of the current study is to fill this gap and
characterizemortality outcomes in HCT recipients documented to have
HHV-6B reactivation compared to those without HHV-6B reactivation.

METHODS
A search of the PubMed database was performed using the terms:
(hematopoietic OR stem cell OR cord blood OR bone marrow OR

transplant*)
AND
(HHV-6 OR MeSH term: herpesvirus 6 OR HHV6 OR human herpesvirus-6

OR HHV-6B OR HHV6B OR human herpesvirus-6B OR HHV-6A OR HHV6A
OR human herpesvirus-6A)
This search was performed according to PRISMA guidelines [38] on 2/1/

24 and returned 1,319 results. Manuscripts (or studies) were screened for
the following entry criteria (1) inclusion of a cohort of HCT recipients
systematically tested for HHV-6 (2) report of the number of patients with
HHV-6 infection or reactivation, and (3) report of the number of patients
with at least one outcome of interest. Outcomes of interest included non-
relapse mortality (NRM), relapse-related mortality (RM), overall survival
(OS), treatment-related mortality (TRM), and overall mortality/all-cause
mortality (OM/ACM). In instances where raw data describing an outcome
of interest by HHV-6B positivity were unclear or not described, the study’s
authors were contacted to request these data.

Definitions
NRM was defined as any mortality not attributable to relapse. ACM and OM
were defined as mortality due to any reason. OS was defined as survival
during the follow up period. RM was defined as mortality due to relapse of
disease. TRM was defined as mortality attributed to any treatment-related
cause. Studies that assessed OS or ACM were converted to OM by
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subtracting the number of patients who survived from the total number of
patients whose outcomes were described.

Statistical analysis
Study effect sizes were calculated as odds ratios using the raw data for the
number of HHV-6B positive and negative patients who did and did not
experience each outcome of interest. Studies that did not include at least 10
patients with and 10 patients without HHV-6B detection were excluded from
statistical models. Studies were divided into OM, RM, NRM, and TRM.
Random effects models were used to pool the effect sizes using the Mantel-
Haenszel method [39], with a Paule-Mandel estimator for τ2 [40] and
Hartung-Knapp adjustments [41]. Models were assessed for heterogeneity
using an I2 test and Cochrane’s Q [42]. Subgroup analyses by stem cell source
(CBT, non-CBT, CBT and non-CBT, or source unclear), age of cohort (adult,
pediatric, or both), and follow up period (less than the median follow-up
period of all studies, or greater than or equal to the median follow up period
of all studies) were performed. These analyses were included in the main
results if all subgroups contained at least 3 studies and were otherwise
detailed in the supplementary materials (pages 4-6, and 8-10) due to the
limited utility of subgroup analyses with a small number of studies.
In models that contained 10 or more studies, publication bias was

assessed with a linear regression of funnel plot asymmetry using the
algorithm described by Peters et al. [43] for binary outcome data.

In models with 10 or fewer studies, raw data were evaluated with Bayesian
aggregation of the treatment effect on the logarithm of the odds ratio
(logOR). The rationale for this additional analysis is that Bayesian modeling
provides additional context to the results of random effects models that
include a small number of studies due to the minimal impact of small
datasets on Bayesian inferences. Rubin models with partial pooling and
weakly informative priors were used. These models were constructed using
the Markov Chain Monte Carlo method using 10 chains set to 20,000
iterations each and were not interpreted if r-hat exceeded 1.05.

RESULTS
Of the 1319 results, 1063 were excluded during screening, leaving
256 articles for full-text review. During full-text review, 185 articles
were excluded and 71 articles met inclusion criteria. Among studies
that met inclusion criteria, 28 were included in statistical analyses
(based on the minimum number of patients required) with a total of
4241 patients included across all studies [2, 20–22, 30, 32–35, 44–62].
A PRISMA flowchart detailing reasons for exclusion is provided in
Fig. 1. Characteristics of patients included in analyses are given in
Table 1. A full dataset with all included and excluded studies, along
with all collected data and all reasons for exclusion, is provided in

Identification of studies via databases and registers

Records identified from database
searches:1,319

Records removed before screening:

Records excluded based on title or abstract: 1,063
(1) Study did not include at least one HSC recipient tested for HHV-
6 (n = 1,031)
(2) Study did not include the number of patients with at least one
outcome of interest (n = 32)

(1) Duplicate records removed (n = 0) 
(2) Records marked as ineligible by automation tools (n = 0) 
(3) Records removed for other reasons (n = 0) Databases (n = 1)

Registers (n = 0)

Records screened
(n = 1,319)

Reports not retrived: 0

Reports excluded after full-text review: 185

Reports that met inclusion criteria but were excluded form statistical
analysis: 43

(1) Study reports unclear data on HHV-6 mortality, with no
clarification received from authors when contacted (n = 15)
(2) Study included 10 or fewer patients either with or without HHV-6
(n = 10)
(3) Study did not assess HHV-6 status systematically (n = 8)
(4) Monitoring for HHV-6 was not discussed precluding
confirmaton that HHV-6 was assessed systemically (n = 4)
(5) Study reports no deaths for both HHV-6 positive and negative
patients, precluding calculation of odds ration fo analysis (n = 4)
(6) Study reports data on the same cohort as a previously included
study (n = 1)
(7) Study used BALF samples at evaluate for HHV-6 (n = 1)

(1) Study does not include the number of HHV-6 positive and
negative patients with at least one outcome of interest (n = 146)

(2) Encephalitis, CNS dysfunction, or HHV-6 positivity was criteria
for inclusion in study (n = 20)

(3) Study does not include the number of HSC recipients tested for
HHV-6 (n = 19)

Reports sought for retrieval
(n = 256)

Reports assessed for eligibility
(n = 256)

Studies that met inclusion criteria
(n = 71)

Studies included in statistical
analysis (n = 28)
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Fig. 1 PRISMA Flowchart.
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Table 1. Characteristics of Included Studies.

Characteristics Included in
Statistcal Analysis

Included in OM
Meta-Analysis
(Fig. 3)

Included in NRM
Meta-Analysis
(Fig. 2)

Included in RM
Meta-Analysis

Total Studies N 28 25 8 7

Average number of patients
per study

N (range) 151 (25–738) 162 (26–738) 191 (25–738) 229 (26–738)

Adult vs. pediatric studies %
(age range)

Adult 9 (32.1%) 7 (28.0%) 3 (37.5%) 3 (42.9%)

Pediatric 8 (28.6%) 7 (28.0%) 2 (25.0%) 1 (14.3%)

Both 11 (39.3%) 11 (44.0%) 3 (37.5%) 3 (42.9%)

Study Design Prospective 16 (57.1%) 15 (60.0%) 5 (62.5%) 4 (57.1%)

Retrospective 12 (42.9%) 10 (40.0%) 3 (37.5%) 3 (42.9%)

Underlying diseases (N
patients across all studies)

ALL 306 (6.2%) 221 (4.4%) 160 (12.5%) 207 (15.5%)

AML 355 (7.3%) 342 (6.8%) 206 (16.1%) 193 (14.5%)

CML 85 (1.7%) 78 (1.5%) 9 (0.7%) 12 (0.9%)

NHL 15 (0.3%) 12 (0.2%) 7 (0.5%) 4 (0.3%)

AML or MDS 146 (2.9%) 137 (2.7%) 12 (1%) 17 (1%)

Myeloma 157 (3.1%) 141 (2.8%) 0 (0.0%) 16 (1.2%)

Unspecified lymphoma 286 (5.8%) 275 (5.4%) 0 (0.0%) 11 (0.8%)

Unspecified leukemia 1490 (40.0%) 1490 (29.5%) 0 (0.0%) 0 (0.0%)

Neuroblastoma 7 (0.1%) 7 (0.1%) 0 (0.0%) 0 (0.0%)

Unspecified malignancy 1274 (32.3%) 1263 (25.0%) 668 (52.2%) 657 (49.3%)

Non-malignancy 509 (10.8%) 508 (10.0%) 146 (11.4%) 145 (10.9%)

Unspecified 583 (12.6%) 583 (11.5%) 72 (5.6%) 72 (5.4%)

GVHD prophylaxis CsA 219 (14.1%) 219 (13.4%) 58 (27.6%) 58 (19.5%)

TAC 89 (5.3%) 89 (5.4%) 0 (0.0%) 0 (0.0%)

MTX 22 (1.3%) 3 (0.2%) 19 (9.0%) 0 (0.0%)

TAC+MTX 9 (0.5%) 9 (0.5%) 0 (0.0%) 0 (0.0%)

Sirolimus 161 (10.0%) 161 (9.8%) 0 (0.0%) 0 (0.0%)

Cyclophosphamide 101 (6.0%) 101 (6.2%) 0 (0.0%) 0 (0.0%)

ATG 136 (8.3%) 136 (8.3%) 0 (0.0%) 0 (0.0%)

alemtuzumab 34 (2.0%) 34 (2.1%) 0 (0.0%) 0 (0.0%)

CsA + prednisolone 172 (10.7%) 172 (10.5%) 0 (0.0%) 0 (0.0%)

CsA + unspecified steroids 26 (1.5%) 26 (1.6%) 26 (12.4%) 26 (8.7%)

CsA + MTX 436 (32.5%) 431 (26.3%) 5 (2.4%) 0 (0.0%)

CsA + MMF 82 (4.8%) 82 (5.0%) 0 (0.0%) 0 (0.0%)

CsA + MMF+ TAC 53 (3.1%) 0 (0.0%) 0 (0.0%) 53 (17.8%)

MMF+MTX 3 (0.2%) 3 (0.2%) 0 (0.0%) 0 (0.0%)

CsA MMF+MTX 174 (10.9%) 174 (10.6%) 102 (48.6%) 102 (34.2%)

TAC/MTX/MMF 59 (3.4%) 0 (0.0%) 0 (0.0%) 59 (19.8%)

Conditioning regimen RIC 1179 (34.7%) 1170 (34.6%) 400 (27.1%) 391 (27.0%)

MAC 2223 (65.3%) 2207 (65.4%) 1074 (72.9%) 1058 (73.0%)

Studies that administered
antiviral prophylaxis (N)

ACY 12 (42.9%) 10 (40.0%) 2 (25.0%) 2 (28.6%)

GAN 2 (7.1%) 2 (8.0%) 0 (0.0%) 0 (0.0%)

ACY and GAN 4 (14.3%) 4 (16.0%) 1 (12.5%) 1 (14.3%)

IVIg 1 (3.6%) 0 (0.0%) 1 (12.5%) 0 (0.0%)

Unclear or ND 9 (32.1%) 9 (36.0%) 4 (50.0%) 4 (57.1%)

Outcomes reported (Range of mortality %) 4–65% 7–65% 4–42% 6–30%

Mean follow-up period (Days and range) 99.9 (28–365) 99.9 (28–365) 87.6 (28–120) 87.6 (28–120)

HHV-6 Monitoring frequency 2x per week 1 (3.6%) 1 (4.0%) 0 (0.0%) 0 (0.0%)

1x per week 15 (53.6%) 12 (48.0%) 4 (50.0%) 3 (42.9%)

1x per 2 weeks 1 (3.6%) 1 (4.0%) 0 (0.0%) 0 (0.0%)

Other 5 (17.9%) 5 (20.0%) 2 (25.0%) 2 (28.6%)

Unclear or ND 6 (21.4%) 6 (24.0%) 2 (25.0%) 2 (28.6%)

Samples used for testing (N) Whole blood 5 (17.9%) 5 (20.0%) 0 (0.0%) 0 (0.0%)

Plasma 17 (60.7%) 16 (64.0%) 7 (87.5%) 6 (85.7%)

PBMC 3 (10.7%) 2 (8.0%) 1 (12.5%) 0 (0.0%)

Unclear or ND 3 (10.7%) 2 (8.0%) 0 (0.0%) 1 (14.3%)

Threshold for HHV-6
detection, copies/mL (N)

1000 4 (14.3%) 4 (16.0%) 1 (12.5%) 1 (14.3%)

500 3 (10.7%) 3 (12.0%) 1 (12.5%) 1 (14.3%)

200 1 (3.6%) 1 (4.0%) 0 (0.0%) 0 (0.0%)

125 1 (3.6%) 1 (4.0%) 1 (12.5%) 1 (14.3%)
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Table 1. continued

Characteristics Included in
Statistcal Analysis

Included in OM
Meta-Analysis
(Fig. 3)

Included in NRM
Meta-Analysis
(Fig. 2)

Included in RM
Meta-Analysis

120 1 (3.6%) 1 (4.0%) 0 (0.0%) 0 (0.0%)

100 2 (7.1%) 2 (8.0%) 1 (12.5%) 1 (14.3%)

50 3 (10.7%) 3 (12.0%) 0 (0.0%) 0 (0.0%)

25 3 (10.7%) 3 (12.0%) 1 (12.5%) 1 (14.3%)

20 1 (3.6%) 1 (4.0%) 0 (0.0%) 0 (0.0%)

10 1 (3.6%) 1 (4.0%) 0 (0.0%) 0 (0.0%)

Unclear or ND 8 (28.6%) 5 (20.0%) 3 (37.5%) 2 (28.6%)

Type of HCT BMT 921 (16.5%) 850 (15.7%) 154 (11.8%) 914 (76.0%)

CBT 753 (13.5%) 750 (13.8%) 864 (66.1%) 289 (24.0%)

PBSC 1382 (24.7%) 1292 (23.8%) 289 (22.1%) 0 (0.0%)

Unspecified 2538 (45.4%) 2538 (46.7%) 0 (0.0%) 0 (0.0%)

ALL Acute lymphoblastic leukemia, AML acute myeloid leukemia, CML chronic myeloid leukemia, NHL Non-Hodgkin lymphoma, MDS Myelodysplastic
syndrome, RIC Reduced-intensity conditioning, MAC myeloablative conditioning, ACY Acyclovir, GAN Ganciclovir, ND Not discussed, OM Overall mortality, RM
Relapse mortality, NRM Non-relapse mortality.

Odds of non-relapse moratality with HHV–6 positivity

HHV–6+

0
16
22
27
6

12
40
6

12
111
77
61
12
39
138
10

Zerr 2012

Yoshikawa 1991

460 1066

1
24
5

221
5
3
11
4

13
204
25

677
14
19
98
16

[0.01; 8.99]

[0.53; 4.80]
[0.96; 2.78]
[0.37; 8.68]
[0.58; 9.69]
[1.56; 6.68]

[0.82; 24.57]

[1.29; 2.62]

Bayesian aggregations: Non-Relapse moratality and HHV–6 positivity

Posterior distributions with 95% intervals

[0.64; 2.49]

Study Deaths Total Deaths Total Odds ratio OR 95%-CI Weight

0.33 0.9%
22.1%
8.5%

36.3%

19.3%
3.5%

100.0%

5.2%
4.1%

1.26
1.60
1.64
1.80
2.37
3.23
4.50

1.84

0.1 0.5 1 2 10

HHV–6–

Yoshikawa 1991
Zerr DM 2012
Han 2020

Han 2020

Zhou 2019
Kadakia 1996
de Pagter 2008

Zhou 2019

Kadakia 1996

de Pagter 2008

Aoki 2015

Aoki 2015

Hypermean

0
Effect on logOR

1 2

Dzieciatkowski 2008

Dzieciatkowski 2008

Random effcts model

Heterogeneity: I2 = 0%, �2 = 0, p = 0.55

a

b

Fig. 2 a Non relapse mortality associated with HHV-6 positivity: Random effects model. b Non relapse mortality associated with HHV-6
positivity: Bayesian Aggregation.
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Supplementary Table 1. Mortality data stratified by HHV-6 status is
provided in Supplementary Table 2.
Of the 28 studies included in statistical analyses, 25 provided

OM data, 8 provided NRM data, 7 provided RM data, and 1
provided TRM data. Models were not built to assess TRM because
only 1 study was identified. Some studies described multiple
outcomes of interest and were thus included in multiple analyses.
Subgroup analyses for studies assessing OM were included in
main results. An insufficient number of studies included the data
required for subgroup analyses of RM and NRM; these results are
available in the supplementary materials on pages 4-6, and 8-10
for completeness but are not described in the main results.

HHV-6B detection and non-relapse mortality
Eight studies were included in analysis of non-relapse mortality. A
random effects model demonstrated a pooled effect size of 1.84 (95%
CI: 1.29–2.62, p< 0.01), indicating that patients with HHV-6B detection
had significantly increased odds of NRM (Fig. 2a). The model did not
exhibit significant heterogeneity, with 0% of the observed effects
attributed to variation between studies (I2= 0.0%, Q= 5.94, p= 0.55).

Due to the small number of studies assessed, a Bayesian
aggregation was performed to understand if the observed
association may be influenced by the limited number of studies.
The hypermean of the aggregate treatment effect on logOR was
0.63, with a 95% credible interval of 0.15 to 1.13 (Fig. 2b). This
model can be interpreted as indicating that there is a 95%
probability that patients diagnosed with HHV-6B infection or
reactivation were between 15% and 113% more likely to have an
outcome of NRM. These results provide reasonable confidence
that HHV-6B positivity predicts non-relapse mortality, in support of
the random effects model.

HHV-6B detection and overall mortality
Twenty-five studies were included in analysis of overall mortality.
A random effects model demonstrated a pooled effect size of 1.37
(95% CI: 1.07–1.76, p < 0.05), indicating that patients with HHV-6B
detection had significantly increased odds of death due to
any cause. Significant heterogeneity was observed in the model,
with 37% of the pooled effect attributable to between-study
heterogeneity (I2= 36.7%, Q= 37.9, p < 0.05). The heterogeneity

Random effects model
Heterogeneity: I2 = 37%, �2 = 0.1564, p = 0.04
Test for subgroup differences: �2

2 = 0.90, df = 2 (p = 0.64) 

Age of cohort = Pediatric

Age of cohort = Adult    

Age of cohort = Both     

Random effects model

Random effects model

Random effects model

Heterogeneity: I2 = 1%, �2 = 0.0046, p = 0.41

Heterogeneity: I2 = 52%, �2 = 0.4431, p = 0.05

Heterogeneity: I2 = 39%, �2 = 0.1400, p = 0.09

Alexandersson 2019
Toriumi 2014
de Pagter 2012
Verhoeven 2015
Admiraal 2017
de Pagter 2008
Allen 2001

Kadakia 1996
Cirrone 2016
Noviello 2023
Hill 2018
Lee 2022
Aoki 2015
Gotoh 2014

Wang 2006
Jeulin 2013
Iesato 2018
Zerr 2005
Zhou 2019
Betts 2011
Zerr 2012
Han 2020
Dulery 2012
Wang 2008
Miura 2018

0
8
8
21
31
15
2

7
11
71
71
27
75
13

11
20
23
14
40
23
25
32
26
6
5

1511

246

627

638

11
28
29
51
74
39
14

12
60

129
188
83

138
17

34
40
48
52
61
46

111
77

123
34
12

HHV−6 +

4
18
6

18
55
4
0

10
9

36
61
49
39
8

18
108
13
15
427
17
35
7

12
3

10

2549

387

700

1462

19
52
27
55

199
19
16

14
32
79

216
229
98
32

38
173
24
58

677
36

204
25

112
38
77

HHV−6 −

0.01 0.1 1 10 100

1.37

1.51

1.56

1.22

0.15
0.76
1.33
1.44
1.89
2.34
6.60

0.56
0.57
1.46
1.54
1.77
1.80
9.75

0.53
0.60
0.78
1.06
1.12
1.12
1.40
1.83
2.23
2.50
4.79

[1.07; 1.76]

[0.95; 2.42]

[0.75; 3.25]

[0.83; 1.80]

[0.01; 3.07]
[0.28; 2.05]
[0.39; 4.51]
[0.65; 3.18]
[1.08; 3.29]
[0.65; 8.41]

[0.29; 150.07]

[0.11; 2.86]
[0.21; 1.58]
[0.83; 2.57]
[1.02; 2.34]
[1.01; 3.09]
[1.07; 3.04]

[2.46; 38.64]

[0.20; 1.39]
[0.30; 1.20]
[0.29; 2.08]
[0.45; 2.47]
[0.64; 1.93]
[0.47; 2.68]
[0.79; 2.49]
[0.68; 4.89]
[1.07; 4.68]

[0.57; 10.90]
[1.27; 18.02]

Study Deaths Total Deaths Total Odds Ratio OR 95%−CI Weight

100.0%

20.6%

33.4%

46.0%

0.6%
3.5%
2.7%
4.6%
6.2%
2.5%
0.5%

1.7%
3.5%
6.1%
7.2%
6.2%
6.4%
2.3%

3.7%
5.2%
3.6%
4.3%
6.2%
4.1%
6.0%
3.6%
4.9%
2.0%
2.4%

Odds of Overall Mortality with HHV−6 positivity by Age

Fig. 3 a Risk of Overall Mortality with HHV-6 Positivity, Subgroup analysis by Stem Cell Source. b Risk of Overall Mortality with HHV-6 Positivity,
Subgroup analysis by Age. c Risk of Overall Mortality with HHV-6 Positivity, Subgroup analysis by Follow-up Period.
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observed in the model suggests that the observed effect may be
due to variation between studies, rather than a true pooled effect.
Subgroup analyses did not reveal a significant difference between
groups based on stem cell source (Q= 0.55, p= 0.91; Fig. 3a), age
(Q= 0.90, p= 0.64; Fig. 3b), or follow-up period based on a
median follow-up period of 100 days (Q= 0.02, p= 0.88; Fig. 3c). A
test of funnel plot asymmetry did not indicate a significant
influence of publication bias on the current results (t=−0.18,
p= 0.85; Fig. 4).

HHV-6B detection and relapse mortality
Seven studies were included in analysis of relapse mortality and
HHV-6B positivity. A random effects model demonstrated a pooled
effect size of 0.74 (95% CI: 0.28–1.96) without significant
heterogeneity observed (I2= 40.1%, Q= 10.0, p= 0.12), indicating
that HHV-6B detection did not increase the odds of relapse
mortality. A Bayesian aggregation was performed due to the low
number of studies included, which supported a lack of association
(Credible interval: −1.18 to 0.54).

DISCUSSION
The main objective of the present work was to determine if there
was a significant association between HHV-6B reactivation and
mortality following HCT. We found that HHV-6B detection is

associated with NRM as supported by a significant pooled effect, a
lack of heterogeneity, and Bayesian aggregation, while OM is
associated with HHV-6B as supported by a pooled effect limited by
heterogeneity.
HHV-6B can cause encephalitis [63] and has been associated

with pneumonitis [29]. However, these complications do not occur
frequently enough to explain the degree of increased NRM we
observed. A conjecture that more fully explains our findings is that
HHV-6B may be involved in immune dysregulation after HCT,
which may explain more frequent adverse events such as acute
graft-vs-host disease (aGVHD). HHV-6B reactivation has been
associated with delayed reconstitution in NK cells [64], as well as
impaired neutrophil [65] and platelet [35] engraftment. Most
importantly, HHV-6B can efficiently infect CD4+ T cells [66] and
has been shown to decrease T cell reconstitution after HCT [67].
CD4+ T-cell reconstitution after HCT has been associated with
improved outcomes [68–71] whereas delayed CD4+ T-cell recon-
stitution has been associated with increased risk of aGVHD [30] as
well as increased mortality [68–71]. Furthermore, some have
postulated that HHV-6 may also deplete regulatory CD4+ T cells
and increase the likelihood of dysregulated immune responses,
like aGVHD [66]. Studies using mouse models potentially support
the theory that HHV-6-mediated immune dysregulation causes
aGVHD by demonstrating that pretreatment of allografts with
inhibition against OX40, the entry receptor for HHV-6B, results in
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decreased severity of GVHD [72]. aGVHD is a significant source of
morbidity and mortality after alloHCT [73] and a 2018 meta-
analysis reported that HHV-6 reactivation is independently
associated with nearly a 3-fold increased risk of developing grade
II to IV acute GVHD [23]. Further investigation of the role of HHV-6
may play in aGVHD is needed.
Approximately 0.3–2.9% of individuals are known to have HHV-

6B or HHV-6A integrated into the chromosome of every nucleated
cell, which can be passed down to offspring in a mendelian
fashion (iciHHV-6). Consequently, these patients have strikingly
and continuously high HHV-6 DNA viral levels in whole blood
( > 5.5 log10 copies/mL) without necessarily having demonstrated
HHV-6 reactivation. It should be noted that antiviral therapy for
iciHHV-6 patients in the absence of reactivation is ineffective and
would only expose patients to the risk of drug side effects. Thus, it
is important to distinguish between active replication and iciHHV-

6, which is inconsistently reported in the context of the papers
reviewed.
Treatments for HHV-6B disease are limited and there are

currently no FDA-approved therapies for HHV-6B disease. Both
ganciclovir and foscarnet are used off-label as first line agents for
HHV-6 encephalitis [74]. Unfortunately, use of these antivirals is
limited by side effects of myelosuppression (ganciclovir) and
nephrotoxicity (foscarnet); for this reason, prophylactic use is not
recommended [74]. Other agents, such as cidofovir have only
anecdotal evidence for use [7, 74]. Clinical trials exploring the
efficacy of viral specific T-cell therapies have been previously
attempted but were discontinued due to a low probability of
meeting the primary endpoints [73, 75]. Artesunate has also
recently been studied for its in vitro effect on HHV-6 [76], but it
has not been studied in the context of HSCT. Considering our
findings of higher mortality associated with HHV-6B reactivation,
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there is an urgent need for improved antiviral agents specifically
against HHV-6.
Our findings are limited by the following considerations: (1) Despite

an available HHV-6 PCR international standard [7, 77], this is not widely
used to date, and this limits standardization of viral load assessments
across studies. (2) Only one database was accessed to perform this
systematic review so there may have been literature that was missed
including papers with no English translation, poster presentations,
abstracts that did not undergo peer review, or other forms of grey
literature. (3) Differing treatment methodologies between different
hospitals further complicates the analysis due to potential confound-
ing variables not considered such as protocols for the use of foscarnet
or ganciclovir for preemptive treatment of HHV-6 or prophylaxis for
CMV. (4) The median follow-up period was 100 days, which indicates
that many studies have a relatively short follow-up period and
highlights the need for studies assessing the effect of HHV-6B on
mortality to include longer follow-up periods. Studies with relatively
short follow-up periods were included in the interest of gathering
comprehensive results. (5) This analysis did not account for viral load,
and higher viral loads may be more strongly associated with our
outcomes of interest. (6) The analysis did not adjust for confounders
that could contribute to HHV-6 detection and/or mortality due to a
lack of consistency in covariables across studies. For the purposes of
standardization and future meta-analyses, we recommend several
covariables be considered when studying outcomes associated with
HHV-6B reactivation in this setting, including transplant source,
preconditioning regimen, occurrence of GVHD, steroid usage, and
CMV reactivation characteristics. Like HHV-6B, CMV is immunomodu-
latory and independently associated with increased mortality; this
could be affecting our analyses, but we are unable to account for the
independent contribution of CMV with the available data in the
included studies. However, prior work that adjusted for CMV has
shown an independent association between HHV-6 andmortality [52].

7) Specific contributions to NRM were not consistently available for
analysis, so we were unable to provide this data. However, beyond
GVHD [23], theremay be other factors contributing to NRM associated
with HHV-6B reactivation worth investigating such as encephalitis,
hepatitis, pneumonitis, myelosuppression, neutropenic fever, nephro-
toxicity, and rash. 8) Publication bias was evaluated using a regression
of funnel plot asymmetry, and it is possible that this method does not
account for all sources of publication bias.
In conclusion, we demonstrate that HHV-6B reactivation was

associated with increased NRM and weakly associated with OM in a
meta-analysis of 28 studies. Due to the biological consequences of
HHV-6B, HHV-6B activity might contribute to a higher NRM. These
results provide quantitative context for prior work establishing a link
between HHV-6B and NRM and suggest the possible need for
improved therapeutic strategies to manage HHV-6B reactivation after
HCT. It is critical to note that the current results suggest a correlative,
but not causative, relationship between HHV-6B and mortality. Future
studies must carefully account for variables that could contribute to
mortality, such as the reactivation of other herpesviruses.
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