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Abstract
Background Brain vascular pathology is an important comorbidity in Alzheimer’s disease (AD), with white matter damage 
independently predicting cognitive impairment. However, it is still unknown how vascular pathology differentially impacts 
primary age-related tauopathy (PART) compared to AD. Therefore, our objectives were to compare the brain microangio-
pathic burden in patients with PART and AD, evaluated by MRI, while assessing its relation with neuropathological findings, 
patterns of brain atrophy and degree of clinical impairment.
Methods Clinical information, brain MRI (T1 and T2-FLAIR) and neuropathological data were obtained from the National 
Alzheimer’s Coordinating Centre ongoing study, with a total sample of 167 patients identified, that were divided according 
to the presence of neuritic plaques in Consortium to Establish a Registry for Alzheimer’s disease (CERAD) 0 to 3. Micro-
angiopathic burden and brain atrophy were evaluated by two certified neuroradiologists, using, respectively, the Fazekas 
score and previously validated visual rating scales to assess brain regional atrophy.
Results Significant correlations were found between the Fazekas score and atrophy in the fronto-insular and medial temporal 
regions on both groups, with PART showing overall stronger positive correlations than in AD, especially in the fronto-insular 
region. For this specific cohort, no significant correlations were found between the Fazekas score and the degree of clinical 
impairment.
Conclusion Our results show that PART presents different pathological consequences at the brain microvascular level com-
pared with AD and further supports PART as an independent pathological entity from AD.

Keywords PART = Primary age-related tauopathy · AD = Alzheimer’s disease · CERAD = Consortium to Establish a 
Registry for Alzheimer’s disease

Introduction

Primary age-related tauopathy (PART) is a neuropathologi-
cal condition, characterized by the postmortem finding of 
tau-positive neurofibrillary tangles in the brain, without 

neuritic plaque deposition (“definite” PART). Neurofibril-
lary tangle neuropathological classification is based on 
Braak staging, while amyloid-beta neuritic plaque pathol-
ogy is classified by the Consortium to Establish a Regis-
try for Alzheimer’s disease (AD) (CERAD) staging, which 
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in “definite” PART is 0, corresponding to the absence of 
neuritic plaques [1]. On the other hand, AD is diagnosed 
by the identification of both neurofibrillary tangles and 
amyloid-beta brain deposition, whether in vivo [using the 
so-called AT(N) biomarkers proposed by the National Insti-
tute on Aging and Alzheimer’s Association (NIA-AA) 2018 
Research Framework [2]] or postmortem [using the “ABC 
score”, by grading amyloid plaques with Thal phases (A), 
neurofibrillary tangles with Braak staging (B) and neuritic 
plaques with CERAD assessment (C)] [3].

Several risk factors have been described for AD, such as 
genetic, age, traumatic brain injury or vascular disease [4]. 
Interestingly, cerebrovascular disease burden in the form 
of white matter T2 hyperintensities in brain MRI has been 
found to be a predictor of AD progression and can be clini-
cally assessed by the Fazekas grading score [5]. This is a 
three-point based scale [6] that independently rates deep and 
periventricular white matter lesions related to leukoaraio-
sis, with the former being frequently associated with small 
vessel disease. Moreover, it is known that the amount of 
amyloid-beta deposition and white matter lesions indepen-
dently predict cognitive impairment, which supports the 
diagnostic usefulness of assessing white matter damage [7]. 
Recently, a neuropathological study found a significant cor-
relation between cognitive impairment and cerebrovascular 
disease in PART patients [8]. Despite the known importance 
of brain vascular pathology as a comorbidity in AD, it is 
still underexplored how brain vascular lesion burden differ-
entially affects PART compared to AD, in terms of cogni-
tion and brain atrophy, namely by using clinically applicable 
visual rating scales [9–11]. Therefore, our study aimed to 
assess how PART and AD are differentially impacted by 
brain microangiopathy burden, evaluated by in vivo MRI.

This article follows the STROBE reporting guidelines.

Materials and methods

Study design, participants and selection criteria

This is a retrospective study based on data obtained from the 
National Alzheimer’s Coordinating Center, a repository for 
data collected at the Alzheimer’s Disease Centers located 
across the United States of America. Each Alzheimer’s Dis-
ease Centers collected standardized clinical data via the Uni-
form Data Set and neuropathological evaluations obtained at 
autopsy to the Neuropathology Data Set. Both datasets have 
been described in detail elsewhere [12–16]. Our sample was 
obtained from the September 2019 data freeze (n = 38,836 
patients), that included 4192 patients clinical Uniform Data 
Set data within 2 years from death and neuritic plaque bur-
den assessed at autopsy. All Uniform Data Set visits from 
patients with MRI scans performed no more than 4 years 

before the date of death and who had neuropathology data 
available were collected (n = 334 patients); only the last 
Uniform Data Set visit and respective brain MRI scan were 
considered for the analysis. Participants with the following 
comorbidities were excluded: (a) neuropathological evi-
dence of frontotemporal lobar degeneration, amyotrophic 
lateral sclerosis, prion disease, or argyrophilic grains; (b) 
with clinical evidence of dementia with Lewy bodies, Par-
kinson disease, Down syndrome, Huntington disease, prion 
disease, corticobasal degeneration, or progressive supranu-
clear palsy; (c) with other brain lesions that biased atrophy 
assessment (e.g., brain tumor, brain herniation, vascular 
malformation, lymphocytic meningoencephalitis, traumatic 
brain injury, demyelinating disease, large territorial ischemic 
lesion). After applying these exclusion criteria, participants 
with no T2-FLAIR sequence available on brain MRI were 
also excluded, after which a final sample of 167 participants 
was obtained. PART cases were defined as having no neu-
ritic plaques (CERAD 0), that is, “definite” PART.

Neuropathology data

This information was collected by the Alzheimer’s Disease 
Centers by the use of a standardized Neuropathology Form 
on those patients who died and consented to autopsy and 
neuropathologic examination. Afterwards, participants were 
categorized according to the Braak stage for neurofibrillary 
degeneration (i.e. neurofibrillary tangles distribution) and 
CERAD stage (i.e. neuritic plaques density). Details on 
brain tissue preparation and staining within the National 
Alzheimer’s Coordinating Center Neuropathology dataset 
have been previously described [13].

Brain MRI data

MRI examinations were performed on 1.5 T or 3 T scanners, 
both from Philips, Siemens or GE manufacturers. Despite 
different protocols between centers, for our imaging analysis 
we only used 3D T1-weighted acquisitions (in order to grade 
the degree of regional brain atrophy) and 2D T2-FLAIR 
sequences (in order to grade leukoaraiosis).

Imaging analysis

In order to assess brain atrophy, we used a previously vali-
dated visual rating scale [9] that takes into account the fol-
lowing 6 regions: anterior cingulate, orbito-frontal, anterior 
temporal, fronto-insular, medial temporal, and posterior. We 
defined atrophy as a cross-sectional concept, corresponding 
to the score attributed on the basis of the aforementioned 
rating scales. As already described by the simplified version: 
orbito-frontal and anterior cingulate regions were both rated 
on the first anterior coronal slice where the corpus callosum 



2187Neuroradiology (2024) 66:2185–2193 

becomes visible; the fronto-insular was rated over three 
slices, starting on the first anterior coronal slice where the 
anterior cingulate becomes visible and moving posteriorly; 
the anterior temporal was rated at the level of the temporal 
pole, immediately anterior to where the “temporal stem” 
connects the frontal and temporal lobes; the medial tem-
poral was rated according to the medial temporal lobe atro-
phy score [17], performed on the hippocampus at the same 
coronal section of the anterior pons; the posterior region 
was rated according to a four-point posterior atrophy scale 
described by Koedam [18], being the overall score based on 
the presence of atrophy in sagittal (widening of the posterior 
cingulate and parieto-occipital sulcus, and atrophy of the 
precuneus on both sides by considering paramedian sagit-
tal sections), as well as axial and coronal (widening of the 
posterior cingulate sulcus and sulcal dilatation in parietal 
lobes) sections, assessed for left and right separately [9]. 
For each brain region scale, an average of both hemispheres 
was calculated. In order to aid and increase acuity of the 
rating process, reference imagens for each rating scale were 
provided to the classifiers based on Harper et al. [9].

In order to assess leukoaraiosis, the Fazekas scale was 
used [6], considering separately the periventricular and the 
deep white matter, according to a rating system ranging from 
0 (none) to 3 (severe), as originally described. In order to 
aid and increase the acuity of the rating process, reference 
images for the deep and periventricular Fazekas scales were 
provided to the classifiers [19].

Two independent classifiers (unaware of the clinical 
diagnosis) with 11 and 7 years, respectively, of experience 

in clinical neuroradiology were responsible for rating the 
images. In all cases, an average of both classifiers was used. 
Figure 1 depicts an example of a patient in which this rating 
method was performed.

Neuropsychological assessment

Local Alzheimer’s Disease Centers assessed participants 
using the CDR and the Uniform Data Set version 2 neu-
ropsychological test battery [15]. We used the CDR Sum 
of Boxes (CDR-SB) performed at the last Uniform Data Set 
visit prior to death. The Washington University CDR was 
reviewed by Morris and collaborators in 1993 [20] with the 
purpose of staging the severity of AD, and takes into consid-
eration six cognitive categories: orientation, memory, judg-
ment and problem solving, community affairs, home and 
hobbies, and personal care; it is based on a five-point scale in 
which none = 0, questionable = 0.5, mild = 1, moderate = 2, 
and severe = 3. The CDR-SB is calculated by summing the 
ratings of the previously mentioned six cognitive domains 
and, therefore, reflects a quantitative global measure, that 
ranges from 0 (normal) to 18 (severe dementia) [21].

Statistical analysis and bias control

Part of our analysis was based on the division into four 
groups according to the CERAD score (ie, density of neo-
cortical neuritic plaques): CERAD 0 (none – “definite” 
PART); CERAD 1 (sparse – mild AD); CERAD 2 (moderate 
– moderate AD); CERAD 3 (severe – severe AD). One-way 

Fig. 1  Representative case of a 91 year-old male patient with AD. (a) 
Coronal reformat of a 3D T1-weighted sequence shows severe wid-
ening of the choroid fissures and severe enlargement of the tempo-
ral horns, with marked atrophy of both hippocampi (medial tempo-
ral lobe atrophy – MTA – score of 4). (b) Axial T2-FLAIR sequence 

reveals hyperintensities involving the periventricular and the deep 
white matter, with irregular periventricular signal extending to the 
deep white matter in the former and severe confluence in the latter 
(periventricular and deep Fazekas score of 3)
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ANOVA was performed in order to assess potential differ-
ences between groups in terms of baseline characteristics, 
followed by Tukey post hoc analysis or χ2 test whenever 
these characteristics were significantly different (p < 0.05). 
Intraclass correlation coefficients were calculated for check-
ing the acuity of the rating process between both classifiers 
per each region evaluated for atrophy and for the Fazekas 
grading (periventricular and deep), with significant correla-
tions obtained between classifiers for each variable (Online 
Resource 1), and overall good reliability (> 0.75). One-way 
ANOVA was also performed in order to check for statisti-
cally significant differences between Fazekas grading in the 
4 groups of CERAD, followed by Tukey post hoc analy-
sis whenever significant results were obtained (p < 0.05), 
without correcting for other factors and after correcting for 
Braak and age; the same method was applied to check dif-
ferences between groups with absence (i.e. “definite” PART) 
and presence (i.e. AD neuropathological change) of neuritic 
plaques.

Linear regression models and Pearson correlation coef-
ficients were used in order to assess the relation between 
the Fazekas score (periventricular and deep) and the CDR-
SB, uncorrected and after correction for age and Braak, in 
“definite” PART versus AD; values were expressed as (R) 
and considered statistically significant when p < 0.05. Lin-
ear regression models and Pearson correlation coefficients 
were also used to assess the relation between the Fazekas 
score (periventricular and deep) and the percentage of rela-
tive atrophy in the several evaluated brain regions, after 
correction for age. ANCOVA was then performed in order 
to compare the slopes of the regression lines obtained. All 
statistical analyses and graphical representation were per-
formed on SPSS Statistics version 29 and GraphPad soft-
ware version 10.0.0.

Results

167 participants were included: 29 with no (“definite” PART 
– CERAD 0), 17 with sparse (CERAD 1), 54 with moderate 
(CERAD 2), and 67 with severe (CERAD 3) neuritic plaques 
density. CERAD 0, 2 and 3 showed a male predominance 
(more than 50%), while CERAD 1 had a female predomi-
nance (approximately 65%); there was, however, no signifi-
cant differences in gender between groups (Table 1). Mean 
age at death and mean age at last MRI were significantly 
different between groups, with lower values on CERAD 0 
(78.1 ± 12.4 and 76.0 ± 12.9 years old, respectively) and 3 
(80.4 ± 8.5 and 77.8 ± 8.7 years old, respectively) and higher 
values on CERAD 1 (88.8 ± 6.1 and 86.8 ± 5.4 years old, 
respectively) (Table 1). The global CDR and CDR-SB were 
significantly lower for CERAD 1 (0.8 ± 0.9 and 4.5 ± 5.2, 
respectively) and 2 (1.0 ± 0.7 and 5.2 ± 4.2, respectively), 

and higher for CERAD 3 (1.4 ± 0.7 and 8.4 ± 4.5, respec-
tively); moreover, CERAD 0 presented values of CDR 
between those of CERAD 2 and 3, with no statistically 
significant differences between them. Braak staging was 
also significantly different between groups, with a predomi-
nance of lower grades (Braak I and II) in PART and higher 
grades (Braak V and VI) in the more advanced AD spectrum 
CERAD 3 cases (Table 1).

No statistically significant differences were found in the 
periventricular or deep Fazekas scores considering groups 
from CERAD 0 to 3, without correction for potential con-
founding factors (p = 0.116 and 0.132, respectively) and 
after correction for age and Braak (p = 0.059 and 0.311, 
respectively) (Online Resource 2). Although statistically 
significant differences were found in periventricular and 
deep Fazekas scores between “definite” PART (CERAD 0) 
and the AD spectrum (CERAD 1–3) (p < 0.05 – Fig. 2), no 
significant differences remained after correcting for age and 
Braak (p = 0.182 and 0.634, respectively).

No significant correlations were found between the Faze-
kas scores (periventricular or deep) and the CDR-SB on both 
“definite” PART and AD participants, without correction for 
other factors and after correcting for age and Braak (Online 
Resource 2).

In AD patients, significant positive correlations (p < 0.05) 
were found between the Fazekas score (periventricular and 
deep) and atrophy in the medial temporal (R = 0.30 for 
both), anterior temporal (R = 0.19 and 0.20, respectively) 
and fronto-insular regions (R = 0.27 and 0.18, respectively), 
and between the periventricular Fazekas and the orbito-fron-
tal (R = 0.19) and the anterior cingulate (R = 0.21) regions, 
while in PART patients, significant positive correlations 
(p < 0.05) were found between the Fazekas score (perive-
ntricular and deep) and atrophy in the medial temporal 
(R = 0.39 and 0.47, respectively) and fronto-insular regions 
(R = 0.53 and 0.62, respectively) (Fig. 3). Moreover, a sig-
nificant difference was found (p < 0.05) between the regres-
sion lines assessing atrophy in the fronto-insular region and 
the deep Fazekas score in AD versus PART patients (Online 
Resource 1).

Discussion

Previous evidence suggested that AD and PART could have 
differential cerebrovascular disease associated co-patholo-
gies [8]. Using the Fazekas score as an MRI-based surrogate 
for leukoaraiosis, with the deep white matter hyperintensities 
predominantly reflecting small vessel disease, we observed 
no major statistically significant differences between 
groups of CERAD 0 to 3 or between “definite” PART and 
AD patients. However, significant correlations were found 
between the Fazekas score and regional atrophy patterns on 
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both groups, with PART showing overall stronger positive 
correlations than in AD, particularly in the fronto-insular 
region. Even though cerebrovascular co-pathology, in this 
case represented by small vessel disease, does not substan-
tially differ between PART and AD at the MRI level, it 
might be differentially contributing to regional brain atrophy. 
These results provide additional evidence that PART and 
AD might be two different entities, with potentially different 
pathological consequences at the brain microvascular level.

It was shown that significant cerebrovascular disease 
(co-defined as a Fazekas score ≥ 2) was a potential neuro-
degeneration driver in patients with no significant altered 
amyloid-beta pathology in PET (i.e. in suspected non-
Alzheimer pathology – “SNAP”) [22]. Moreover, levels 
of amyloid deposition, as well as ratings of periventricular 
and deep Fazekas scores, have been found to discriminate 
between cognitively normal and demented individuals [7]. 
One of the described possibilities to potentially explain the 
link between cognitive impairment and periventricular white 
matter hyperintensities is the disruption of fibers in cognitive 
circuits across the brain, such as cholinergic projections from 

the basal forebrain to the cortex [23]. Moreover, elevated 
levels of activated microglia in periventricular white mat-
ter hyperintensities suggest an intrinsic neuroinflammatory 
response following the disruption of the blood–brain barrier 
[23]. This is not the case, however, for the subcortical/deep 
location [24], where white matter hyperintensities volume 
has been associated with lipid peroxidation in the blood, in 
the setting of hypertension, supporting the hypothesis of a 
vascular etiology in this location [25]. Adding to this, two 
recent studies [26, 27] found evidence that, in AD patients, 
white matter hyperintensities can develop in the setting of 
vascular disease and also secondary to AD pathology (i.e. 
AD-related white matter hyperintensities), with the latter 
potentially being explained by the following pathophysi-
ological mechanisms: (a) axonal/Wallerian degeneration 
secondary to neurofibrillary tangles; (b) toxicity of amyloid-
beta oligomers that can also lead to axonal degeneration; 
(c) neuroinflammation and microglial activation that could 
be involved in the pathogenesis and progression of AD. As 
such, AD-related processes, such as parenchymal/vessel 
amyloidosis and neurodegeneration, might be responsible 

Table 1  Characterization of patients according to the density of neocortical neuritic plaques (CERAD score)

a Male sex refers to the absolute mean and relative percentage of male patients in a given group, represented as n (%)
b Age at death is the subject age at the time of death
c Age at last MRI is the subject age at the time the last MRI was performed
d Age MRI-Death is the difference between the subject age at the last performed MRI and time of death. These three variables are reported in 
years as a continuous variable with mean and standard deviation (SD)
e CDR-SB refers to the sum of boxes score from the CDR® Dementia Staging Instrument and global CDR refers to the global Clinical Dementia 
Rating score; they are both attributed to the subject in the last clinical visit and are also reported as continuous variables with mean and standard 
deviation
f For each Braak stage (from none to VI) values are represented as number of cases and percentage of total. Data presented as n (%) and mean 
(± SD)
p value for One-way ANOVA or chi-square test, as appropriate. p < 0.05 considered as significant

PART AD

CERAD 0 (None)
(n = 29)

CERAD 1 (Sparse)
(n = 17)

CERAD 2 (Moderate)
(n = 54)

CERAD 3 (Severe)
(n = 67)

p

Male sex, n (%)a 19 (65.5) 6 (35.3) 30 (55.6) 45 (67.2) 0.087
Age at death, mean (SD)b 78.1 (± 12.4) 88.8 (± 6.1) 83.1 (± 8.4) 80.4 (± 8.5)  < 0.001
Age at last MRI, mean (SD)c 76.0 (± 12.9) 86.8 (± 5.4) 81.0 (± 8.5) 77.8 (± 8.7)  < 0.001
Age MRI-Death, mean (SD)d 2.1 (± 1.1) 2.0 (± 1.4) 2.1 (± 1.2) 2.5 (± 1.1) 0.118
CDR-SBe 6.1 (± 6.3) 4.5 (± 5.2) 5.2 (± 4.2) 8.4 (± 4.5)  < 0.001
Global  CDRe 1.2 (± 1.1) 0.8 (± 0.9) 1.0 (± 0.7) 1.4 (± 0.7) 0.003
Braak stage, n (%)f 0.000
None 6 (20.7) 0 (0.0) 1 (1.9) 0 (0.0)
I 10 (34.5) 1 (5.9) 1 (1.9) 0 (0.0)
II 8 (27.6) 6 (35.3) 9 (16.7) 0 (0.0)
III 3 (10.3) 7 (41.2) 12 (22.2) 2 (3.0)
IV 2 (6.9) 1 (5.9) 11 (20.4) 7 (10.4)
V 0 (0.0) 2 (11.8) 12 (22.2) 21 (31.3)
VI 0 (0.0) 0 (0.0) 8 (14.8) 37 (55.2)
Braak stage, mean (SD) 1.5 (± 1.2) 2.8 (± 1.1) 3.8 (± 1.5) 5.4 (± 0.8)  < 0.001
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Fig. 2  No significant differ-
ences were found in the Fazekas 
grading between patients with 
PART and AD. Uncorrected (a, 
b) and standardized residuals 
for age and Braak (c, d) for 
deep and periventricular Faze-
kas scores among patients with 
absence (i.e. PART) or presence 
(i.e. AD) of neocortical neuritic 
plaques after neuropathologi-
cal evaluation. * p < 0.05. ‘ns’ 
represents non-significant dif-
ferences between groups

Fig. 3  Correlation analysis between relative regional brain atrophy 
and Fazekas scores, corrected for age, shows differential patterns in 
AD and PART. Pearson correlation analysis of relative brain atrophy 
residuals after linear regression with age per region versus Fazekas 
scores (periventricular and deep) among 2 groups of participants, dis-
tributed according to the absence (i.e. PART) or presence (i.e. AD) of 

neocortical neuritic plaques after neuropathological evaluation. The 
regions evaluated are anterior cingulate (AC), orbito-frontal (OF), 
fronto-insular (FI), medial temporal (MTA) and posterior (Post). Only 
showing pairs with p < 0.05 in the correlational analysis. Color indi-
cates R Pearson coefficient
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for a large proportion of the increased white matter lesion 
volume found in AD and, therefore, the presence of ele-
vated white matter hyperintensities in these patients may 
not necessarily reflect the presence of mixed vascular and 
AD pathologies [27], something future studies should bet-
ter assess, possibly by correlating imaging findings (i.e. the 
Fazekas scores) with neuropathological findings at autopsy 
on those regions. It is also noteworthy that some literature 
favors a posterior predominance of white matter hyperin-
tensities in AD (i.e. parieto-occipital and posterior perive-
ntricular areas) [28, 29], with the splenium of the corpus 
callosum being described as a potentially core feature of AD 
associated with worse cognition [26]. Future studies should 
evaluate this anteroposterior gradient and compare it to the 
commonly used Fazekas score (deep and periventricular), 
while also correlating with the number and type of basal 
ganglia lesions, as defined by the European Task Force on 
Age-Related White Matter Changes [30].

Even though we found no significant correlations between 
the Fazekas scores and the CDR-SB, which is arguably 
explained by the sample size, we observed significant corre-
lations between the Fazekas scores and the degree of atrophy 
in several brain regions, further supporting the concept that 
cerebrovascular co-pathology, represented by leukoaraiosis 
and, most specifically, small vessel disease, might play an 
important role in the pathophysiology of PART and AD. 
Interestingly, the magnitude of correlation between micro-
angiopathy and atrophy in the fronto-insular region was 
more pronounced in PART than in AD, which suggests 
that, in PART, atrophy patterns might be less relying on 
neuropathological changes than in AD. This is in line with 
previous evidence that showed a strong association between 
cerebrovascular disease and cognitive impairment in PART 
patients [8]. As PART cases with mild cognitive impair-
ment or dementia are diagnosed as AD more than 50% of 
the time [31], these findings might contribute to a potential 
future distinction between these two entities at the clinical 
presentation level. We believe that by using validated visual 
rating scales that can be easily applied in a routine clini-
cal setting might contribute to the progressive translation 
from the neuropathological diagnosis of PART to its clinical 
characterization.

This study has important limitations. It was based on 
a convenience, autopsy-based, sample, which limits its 
extrapolation. The National Alzheimer’s Coordinating 
Center database has inherent limitations of generalizability, 
given the participants tended to be more often caucasian and 
more affluent than the general population [32]. Moreover, 
in our sample, there was a tendency towards higher neu-
ropathological burden in younger ages. Secondly, the use 
of visual rating scales, despite performed by trained neu-
roradiologists, is invariably associated with interobserver 
variability; however, in our case, significant correlations 

between both raters, with overall good interobserver agree-
ment, was found. Also, the variability in MRI scanners and 
field strengths were potential sources of bias and the patients 
included in our sample had incomplete clinical information 
on other comorbidities that could be associated with brain 
atrophy and microangiopathy, such as hypertension or dys-
lipidemia, or on other neuropathologic features, such as TAR 
DNA-binding protein 43 pathology. Also, we did not assess 
other manifestations of small vessel disease, such as cer-
ebral microbleeds, intracerebral hemorrhage, cortical super-
ficial siderosis or lacunar infarcts, something future studies 
should tackle. Another limitation is that Braak staging is an 
incomplete measure of tau burden and, therefore, it would 
be beneficial to have other quantitative measures, such as 
tau PET. Finally, the retrospective nature of the study is a 
potential source of bias. Despite these limitations, the study 
has also major strengths, such as the use of multicentric data 
on a large group of individuals across the US, the persis-
tently performed standardized process of collecting several 
clinical variables in every Uniform Data Set visit, the use of 
standardized neuropathological criteria to assess pathology 
at autopsy [33], and the unique nature of a database with 
antemortem clinically validated MRI sequences (T1 and 
T2-FLAIR) with gold-standard neuropathology postmortem 
diagnosis of PART and AD.

Conclusions

Our study further supports the concept that PART might be 
a different neuropathological entity from AD, by showing 
different correlations between brain microangiopathy and 
atrophy in several brain regions, particularly in PART.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00234- 024- 03464-2.
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