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Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting 
induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate 
into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating 
in vitro disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development 
of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-de-
rived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and 
clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the 
efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application 
of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation 
and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.
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The Birth of Embryonic Stem Cells

  After fertilization, the zygote divides multiple times to 
form a blastocyst (1, 2). Two types of cells can be found 

in the blastocyst: an inner layer of cells called the epiblast 
and an outer layer of cells called the trophoblast (1, 2). 
While the trophoblast forms the extra-embryonic tissue which 
eventually gives rise to the placenta, the epiblast which is 
known as the inner cell mass (ICM) eventually develops 
into embryonic tissue. This ICM is considered to be a cellular 
source of embryonic stem cells (ESCs). 
  In 1981, the first ESC lines were derived from ICM of 
mouse blastocysts by two groups (Fig. 1) (3, 4). Specifi-
cally, Evans and Kaufman (3) derived mouse ESCs (mESCs) 
by plating an explanted whole blastocyst onto feeder cells 
and culturing in serum-containing media. Martin (4) also 
derived mESCs. In his case, ICM mechanically isolated 
from the late stage of blastocysts was plated onto feeder 
cells and cultured in the embryonal carcinoma cells (ECCs)- 
conditioned medium. The mESCs derived by these two stu-
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Fig. 1. Chronological timeline of important discoveries in the field of pluripotency. Mouse embryonal carcinoma cells are historically the 
first pluripotent stem cells which were derived from testicular tumors; mouse embryonic stem cells were first isolated and propagated in 
culture in 1981; mouse embryonal germ cells were derived from primordial germ cells in 1992: primate embryonic stem cells were first 
derived from inner cell mass of blastocysts in 1995; the first human embryonic stem cell lines were established in 1998; primate embryonal 
germ cells were first isolated and cultured in 1998; mouse induced pluripotent stem cells were generated in 2006; human induced pluri-
potent stem cells were derived by ectopic expression of OCT4, SOX2, KLF4, and c-MYC in 2007; the first human embryonic stem cells 
were generated by somatic cell nuclear transfer in 2013. 

dies resemble ECCs in an ability to proliferate in vitro and 
to differentiate into derivatives of all three embryonic germ 
layers (3, 4). In contrast to ECCs, mESCs exhibit a normal 
diploid karyotype. Importantly, they can efficiently con-
tribute to all adult tissues including germ cells after injec-
tion into the blastocyst, thus providing a practical way to 
introduce genetic modifications to the mouse. Overall, these 
two studies indicate that pluripotent stem cells with a nor-
mal diploid karyotype can be derived from ICM of the 
blastocyst and their pluripotent state can stably be main-
tained upon the supply of an optimal culture condition. 
  Soon after their discovery, many different groups have 
attempted to derive human ESCs (hESCs) from human 
embryos, but despite of their extensive efforts it took over 
17 years to derive hESCs. In 1998, Thomson et al. (5) de-
rived the first hESC lines from fresh and frozen human 
donated embryos (Fig. 1). Specifically, they initially ob-
tained a total of 14 ICM which were isolated from 20 fresh 
and frozen human embryos. Of these 14 ICM were used, 
five distinct hESC lines (H1, H7, H9, H13, and H14) were 
successfully derived. Each hESC line display a normal 
karyotype, express a number of pluripotency makers inclu-
ding stage-specific embryonic antigen (SSEA)-3, SSEA-4, T 
cell receptor alpha locus (TRA)-l-60, TRA-1-81, and alka-
line phosphatase, and was capable of forming teratoma in 
immunodeficient mice (5). Such a long-term delay of the 
derivation of hESCs is most likely because a culture con-
dition which has been used for derivation and mainte-
nance of mESCs do not really support the growth of hESCs, 
and thus it takes so much time to identify a right culture 
condition that supports the derivation and maintenance of 
hESCs. In 1995 and 1996, ESCs have been derived from 
two nonhuman primates (rhesus monkey and the common 
marmoset) (Fig. 1) (6, 7). Experience with derivation and 
culture of those primate ESCs and concomitant improve-

ments in culture medium eventually led to the successful 
derivation of hESC lines. Later, it has been proved that 
LIF/STAT3 which is a key regulator for self-renewal of 
mESCs does not have same effect on hESCs (8-12). Instead, 
basic fibroblast growth factor and Activin A have found 
to be the most important factors for maintaining pluripo-
tency of hESCs, demonstrating species-dependent signal-
ing pathways for maintaining the pluripotent state (13-16). 
Furthermore, fetal bovine serum (FBS) containing growth 
factors, cytokines, hormones and transport proteins which 
is essential for the maintenance and growth of mESCs, but 
its inclusion to hESC culture medium results in sponta-
neous differentiation towards mesodermal lineage (17). Thus, 
FBS has been replaced by knockout serum replacement 
for stable maintenance of hESCs. Overall, these findings 
suggest that technological challenges arising from funda-
mental differences between mouse and hESC lines are the 
principal impediment. 
  Although the ESCs are commonly derived from ICM of 
blastocysts, single blastomere biopsied from 2- to 8-cell stages 
of pre-implantation embryos has also shown to be able to 
form ESC colonies (18-20). Furthermore, embryonal germ 
cells isolated from genital ridges of post-implantation em-
bryos are also capable of forming ESC colonies (21, 22). 
Since the derivation of ESCs is possible from different cel-
lular sources of embryos at different time points, the exact 
origin of ESCs and their in vivo counterpart remains con-
troversial (23, 24). 

Limitations of Human Embryonic Stem Cells 

  Derivation of hESCs has opened up exciting new oppor-
tunities to study human development and diseases (25, 26). 
Also, they hold tremendous promise for development of 
cell replacement therapies for a broad range of human 
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diseases. However, the use of hESCs for the cell replace-
ment therapies is limited by ethical and political concerns, 
because derivation of hESCs requires the destruction of hu-
man embryos (27, 28). Furthermore, immune compatibility 
would be another barrier when considering transplanta-
tion of hESC-derived cells into patients (29). In fact, the 
genetic identity of the donor embryos from which the 
ESCs are derived most likely will differ from that of po-
tential recipients. Thus, patients who will receive ESC-de-
rived cells might have the problem of immune rejection. 
  Somatic cell nuclear transfer (SCNT) which involves tran-
sferring a donor cell into an enucleated oocyte could be an 
alternative method to generate donor-matched hESCs (Fig. 
1) (18, 30). The genetic identity of SCNT-derived embryos 
form which the ESCs are derived will be exactly identical 
with that of potential recipients. Thus, patients who will re-
ceive SCNT ESC-derived cells might not encounter the prob-
lem of immune rejection. However, recipient oocytes contain 
over 100 times more mitochondrial DNA (mtDNA) than do-
nor cells such that foreign mtDNA can be transmitted to the 
SCNT-hESCs (31). It has been reported that allogeneic mi-
tochondria in the SCNT-ESCs may trigger an adaptive al-
loimmune response that impairs the survival of SCNT-ESC 
grafts in the host tissue (32). Moreover, the ethical concern 
is still remaining, since SCNT requires the perturbation of 
human embryos (33). Additionally, it is really challenging to 
obtain donor oocytes and to perform the technically intensive 
SCNT procedures, preventing a widespread use of this tech-
nology. Altogether, despite the enormous potential of hESCs 
and SCNT-hESCs for regenerative medicine, therapeutic ap-
plications of these cells are limited by ethical, technical and 
immunological concerns.

The Birth of Induced Pluripotent Stem Cells 

  It has been shown that somatic cells can be reprogrammed 
into pluripotent stem cells by fusion with ESCs, ECCs, or 
embryonic germ cells (EGCs) (34-36) or by SCNT (37). These 
findings provide a new idea that oocytes, ESCs, ECCs, and 
EGCs contain specific trans-acting factors that can confer 
the pluripotent state to somatic cells and evoke a new con-
cept that ectopic expression of these trans-acting factors in-
to somatic cells might in fact be able to induce pluripotency 
(38, 39). This idea has been tested by different groups with 
several different methods (for instance, treatment of RNA 
or protein extracted from ESCs, ECCs, or oocytes to soma-
tic cells), but these efforts were unsuccessful (38, 39).
  In 2006, however Takahashi and Yamanaka (40) made 
a breakthrough discovery that retroviral transduction of 
octamer-binding transcription factor 4 (OCT4), sex deter-

mining region Y-box 2 (SOX2), Krüpple-like factor 4 
(KLF4), and cellular myelocytomatosis (c-MYC) can re-
program mouse embryonic and adult fibroblasts into cells 
closely resembling ESCs, so-called induced pluripotent 
stem cells (iPSCs) (Fig. 1). The resulting iPSCs are shown 
to be morphologically, transcriptionally, and epigenetically 
similar to mESCs. Subcutaneous transplantation of iPSCs 
into nude mice results in the formation of teratomas con-
sisting all three germ layers, proving their in vitro differ-
entiation potential (40). Furthermore, iPSCs were capable 
of producing chimeric embryos after injection into mouse 
blastocysts, proving their in vivo differentiation potential 
(40). However, these early iPSCs were failed to fully re-
capitulate authentic ESC properties, because they fail to 
express some key pluripotency genes, have incomplete pro-
moter demethylation of Oct4, and do not yield live chimeric 
mice when injected into mouse blastocysts (40). Thus, this 
first iPSCs appeared to be rather partially reprogrammed 
iPSCs. Soon after this study, several groups including 
Yamanaka’s group generated fully reprogrammed iPSCs by 
selecting the iPSC colonies based on the positivity of Oct4 
and Nanog (41-43). Overall, these studies demonstrate that 
terminally differentiated somatic cells can be reprogrammed 
to pluripotent stem cells by ectopic expression of four re-
programming factors.
  A year later after the derivation of mouse iPSCs, three 
groups independently reported that iPSC generation is also 
possible from human fibroblasts (44-46). Specifically, 
Takahashi et al. (45) generated iPSCs from human dermal 
fibroblasts by using an exact same viral system with a same 
set of transcription factors that have been used for mouse 
iPSC generation (Fig. 1). Another group headed by Yu et 
al. (46) generated iPSCs from human fetal fibroblasts and 
newborn foreskin fibroblasts by a lentiviral system with 
a slightly different set of transcription factors (OCT4, SOX2, 
NANOG, and LIN28). It seems that OCT4 and SOX2 appear 
to be essential for inducing pluripotency, but KLF4 and 
c-MYC can be functionally replaced by NANOG and 
LIN28. The third group headed by Park et al. (44) also 
generated iPSCs from human embryonic fibroblasts de-
rived from H1 ESCs, primary dermal fibroblasts and fetal 
lung fibroblasts by retroviral transduction of OCT4, SOX2, 
KLF4, and c-MYC. The resulting human iPSCs generated 
by all these three groups share hESC characteristics (44-46). 
Specifically, they express representative pluripotent mark-
ers including OCT4, NANOG, SOX2, and TRA-I-60. They 
are epigenetically similar to hESCs as determined by DNA 
methylation status at promoter regions of OCT4 and 
NANOG. They are able to form embryoid bodies and tera-
tomas where all three germ layers derivatives can be found, 
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fulfilling a hallmark of pluripotency. Soon after these three 
studies, disease-specific iPSCs have been generated from pa-
tients (47-49). Importantly, these patient-derived iPSCs pro-
vide a valuable experimental platform for creating in vitro 
disease models (38, 39, 50). Altogether, these studies dem-
onstrate that inducing pluripotency in somatic cells is also 
possible in humans and fundamental features of the tran-
scriptional network governing pluripotency remain conserved 
between humans and mice. 
  iPSCs have been generated from somatic cells of a wide 
variety of species, including, but not limited to, monkey, 
pig, rabbit, rat, and goat (51-55). iPSCs were even genera-
ted from endangered species and reanimate extinct species 
for aiming at helping wildlife and environmental con-
servation efforts (13, 56, 57). However, some species such 
as naked mole rat and spiny mice were found to be re-
fractory to reprogramming (58, 59). They require either the 
inhibition of GSK3 and MEK1/2 signaling pathways or 
overexpression of additional factors to induce pluripotency 
(58, 59). Specific reasons why some species are refractory 
to reprogramming but the others are prone to reprogram-
ming remain to be answered. Altogether, these findings de-
monstrate that inducing pluripotency is possible in many 
different species by ectopic expression of OCT4, SOX2, 
KLF4, and c-MYC and indicate that fundamental features 
of the transcriptional network governing pluripotency are 
conserved across species. 

A Synergism of OCT4, SOX2, KLF4, and c-MYC 
Induces Pluripotency 

  The loss or gain of function studies have revealed that 
OCT4, SOX2, KLF4, and c-MYC are important for the es-
tablishment and maintenance of the pluripotent state in de-
veloping embryos and ESCs (60-62). Specifically, OCT4 de-
pletion in embryos causes the loss of pluripotent character-
istics in ICM (63). Furthermore, the loss of OCT4 expre-
ssion in mESCs results in trophoblast differentiation (64). 
Therefore, OCT4 plays a pivotal role in specification and 
maintenance of pluripotency in embryos and ESCs. SOX2 
also plays a critical role in the self-renewal and pluripote-
ncy of ESCs (65). It forms a heterodimer with OCT4 to 
bind to target sites and this heterodimerization has shown 
to be crucial for establishing and maintaining the pluri-
potent state in embryos and ESCs (66). Moreover, OCT4 
and SOX2 act as master regulators of maintaining pluri-
potency in ESCs (67). KLF4 is required for both self-re-
newal and maintenance of pluripotency in ESCs (67-69). 
Furthermore, KLF4 directly interacts with OCT4 and SOX2 
and regulates the expression of key transcription factors 

such as NANOG in ESCs (69). c-MYC is required for ear-
ly embryogenesis and plays an important role in prolifera-
tion of ESCs (70, 71). Thus, these findings indicate that 
OCT4, SOX2, KLF4, and c-MYC are critical for establish-
ment and maintenance of pluripotency in developing em-
bryos and ESCs, implicating that reprogramming is ach-
ieved by a synergism of all these four factors. 
  Ectopic expression of OCT4, SOX2, KLF4, and c-MYC 
mediates a dramatic change in gene expression (72-76). They 
directly or indirectly bind to active somatic loci to promote 
inactivation of genes associated with fibroblasts at early 
stage of reprogramming (72, 73, 77-79). Simultaneously, they 
bind to regulatory regions of pluripotency genes to pro-
mote their activation. Along with global gene expression 
change, chromatin architectures are also reorganized by 
OCT4, SOX2, KLF4, and c-MYC (79, 80). The extensive 
loss of chromatin accessibility occurs at loci where somatic 
genes are located (79, 80). This loss of chromatin accessi-
bility is closely associated with inactivation of somatic genes. 
The gain of chromatin accessibility also occurs around loci 
where pluripotency genes are located (79, 80). This gain 
of chromatin accessibility is largely associated with the ac-
tivation of pluripotency genes. Moreover, epigenetic marks 
such as DNA methylation and histone modifications are 
also redistributed through the genome during reprogram-
ming that is also mediated by OCT4, SOX2, KLF4, and 
c-MYC (74, 76, 79, 81-83). Specifically, active histone marks 
such as H3K27ac and H3K4me1 that are initially located 
on the regulatory regions of somatic genes are relocated on-
to regulatory regions of pluripotency genes during repro-
gramming (74, 76, 79). Repressive histone marks (H3K9me3, 
H3K27me3, etc.) that are initially located on the regu-
latory regions of pluripotency genes are relocated into reg-
ulatory regions of somatic genes during reprogramming 
(81). Furthermore, H3K79 methylation marks are normally 
localized on the gene body of actively transcribed genes 
(84). It is initially located on the gene body of somatic 
genes in fibroblasts, but it is redistributed to gene body 
of pluripotency genes during reprograming (85). Overall, 
these findings indicate that OCT4, SOX2, KLF4, and c-MYC 
induce pluripotency by mediating dramatic changes in 
transcriptome and epigenome. 
  While global changes in transcriptome and epigenome 
occur during reprogramming, fibroblasts undergo a mor-
phological change; migratory mesenchymal cells are trans-
formed to polarized epithelial cells (86). This morphologi-
cal change is also mediated by OCT4, SOX2, KLF4, and 
c-MYC. This process called as a mesenchymal-to-epithelial 
transition (MET) process which is often occurred during 
development of organs or formation of tumors in our body, 
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but it also appears during reprogramming (87). In fact, 
this process is critical for successful iPSC generation when 
fibroblasts are used as a donor cell type (86). The MET 
is characterized by upregulation of epithelial genes (E-cad-
herin, Cdh1, Epcam, etc.) and down-regulation of mesen-
chymal genes (Snail1/2, Zeb1/2, N-cadherin, etc.) (86, 87). 
It has been reported that OCT4, SOX2, KLF4, and c-MYC 
can directly regulate expression of these epithelial and mes-
enchymal genes (88, 89). For instance, OCT4 and SOX2 
suppress Snail1/2 and c-Myc enhances the MET process 
through the downregulation of transforming growth factor 
(TGF)-β signals by suppression of TGF-β1 and TGF-β 

receptor 2 expression (88, 89). Furthermore, KLF4 upre-
gulates epithelial genes such as E-cadherin and Cdh1 during 
reprogramming (88, 89). Overall, these findings suggests that 
transformation of mesenchymal cells to epithelial cells is es-
sential for successful iPSC generation and this process is 
mediated by OCT4, SOX2, KLF4, and c-MYC. 

Various Donor Cell Types Used for 
Reprogramming 

  In order to use iPSCs as an efficient research tool and 
translate this technology into therapeutic applications, vari-
ous donor cell types have been used for iPSC generation. 
To date, fibroblasts are the most popularly used a primary 
somatic cell type for iPSC generation. Various character-
istics of the fibroblasts facilitate their utilization as a donor 
cell type (90). A fibroblast which is a cell type contributing 
to the formation of connective tissues can be readily ob-
tained from different sites of our body by punch biopsy (91). 
Furthermore, primary fibroblasts are relatively easier to 
culture than other cell types (hepatocytes, oligodendro-
cytes, etc.). However, the punch biopsy is an invasive ap-
proach and requires local anesthesia, representing a major 
drawback for obtaining fibroblasts from healthy donors or 
patients (90, 91). Furthermore, because of the nature of 
its cellular properties (mesenchymal cells, early senesce-
nce, etc.), they have shown to exhibit lower reprogra-
mming efficiency than other cell types. 
  Epidermal keratinocytes and renal tubular epithelial cells 
have been also used for iPSC generation (92, 93). The 
greatest advantage of using these cells as donor cell types 
is that they can be obtained by non-invasive methods (94, 
95). Furthermore, they have shown to be much easier to 
reprogram than primary fibroblasts, as they are epithelial 
cells and thus do not require the MET process. More spe-
cifically, epidermal keratinocytes which are highly speci-
alized epithelial cells can be obtained from plucked hair 
(94). This cell type seems to be a very promising donor 

cell type for iPSC generation, as they can reprogram into 
iPSCs with higher efficiency (100-fold higher than fibro-
blasts) (92). However, a long-term culture of primary kera-
tinocytes has been proven to be difficult, due to their rap-
id differentiation and cellular senescence (92, 94). Exfolia-
ted renal tubular epithelial cells which can be obtained 
from urine could be another promising donor cell type for 
iPSC generation, as their reprogramming efficiency is also 
higher than that of fibroblasts (93, 95). However, only very 
few cells can be obtained from urine so that it is extremely 
time-consuming to get a sufficient number of cells for 
reprogramming. Moreover, a long-term culture of primary 
exfoliated renal tubular epithelial cells is challenging, be-
cause they have a short lifespan in culture. The acquis-
ition of cellular immortality therefore appears to be yet 
a barrier for a widespread use of these two cell types, and 
immortalization techniques play an instrumental role in 
culture to extend their cell survival that facilitates their 
utilization for reprogramming. 
  Blood cells are readily available and easily accessible do-
nor cells in contrast to dermal fibroblasts, epidermal kera-
tinocyte, and renal tubular epithelial cells which are re-
quired several weeks to establish a primary cell culture. 
Drawing blood is routinely performed in clinics for medi-
cal diagnostics and can be done without the need of anes-
thetics. So far, several types of cells isolated from blood 
were used as donor cells for reprogramming (96-102). Those 
include granulocyte colony stimulating factor (G-CSF) 
mobilized CD34＋ peripheral blood stem cells, T lympho-
cytes, peripheral blood mononuclear cells (PBMCs), and 
Epstein-Barr virus (EBV) immortalized B lymphocytes 
(lymphoblastoid cell lines, LCLs). Each cell type has pros 
and cons of using it as a donor cell for reprogramming. 
  (i) Among these four cell types, G-CSF mobilized CD34＋ 
peripheral blood stem cells have found to be the most effi-
cient cell type for inducing pluripotency, most likely be-
cause they are immature cells that have stem cell charac-
teristics and high plasticity compared to other cell types 
(99). However, isolating G-CSF mobilized CD34＋ periph-
eral blood stem cells is time-consuming, requires an anti-
body-based purification and involves the subcutaneous in-
jection of G-CSF to patients that may cause some side effects.
  (ii) T lymphocytes are the most abundant cells in PBMCs 
and can be easily isolated from them. They have shown to 
be readily expandable using an established protocol. Fur-
thermore, T lymphocytes can be efficiently transduced by 
viral OCT4, SOX2, KLF4, c-MYC (100, 101). As such, they 
have shown to efficiently reprogram into iPSCs (100, 101). 
However, major problem of T cells as a donor cell type is 
that resulting iPSCs have preexisting V(D)J rearrangements 
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at the T-cell receptor loci which may lead to the develop-
ment of T-cell lymphomas (100, 101, 103, 104). 
  (iii) PBMCs can be readily isolated from blood by 
Ficoll-Hypaque density gradient centrifugation and used 
for reprogramming immediately after blood drawing. Des-
pite these beneficial effects, for some reasons the PBMCs 
have shown to be difficult to reprogram into iPSCs (105). 
It exhibits very lower reprogramming efficacies even with 
polycistronic expression of OCT4, SOX2, KLF4, and 
c-MYC (102). Recently, iPSCs have been generated from 
PBMCs by episomal vectors and Sendai virus (106, 107). 
In both cases, reprogramming efficiencies were extremely 
low which is 50-fold lower than fibroblasts (102, 106, 107).
  (iv) LCLs which are immortalized cells can be generated 
by EBV infection of B lymphocytes (108). Cell repositories 
such as Coriell Institute for Medical Research (https:// 
www.coriell.org/) and UK Biobank (https://www.ukbiobank. 
ac.uk/) store a large number of LCLs derived from a variety 
of patients who carry various disease states. Genotyping re-
sults and clinical histories of each patient are well docu-
mented in the cell repositories. Thus, LCLs have been popu-
larly used for generating disease-specific iPSCs (96-98). 
However, the EBV is known to be associated with malig-
nancies, Burkitt’s lymphoma, B-cell lymphoproliferative 
syndromes, and nasopharyngeal carcinoma, Hodgkin’s dis-
ease, T-cell lymphomas, and gastric carcinoma (109). Thus, 
LCL-derived iPSCs require an extensive safety check in or-
der to use them for therapeutic applications. 

Reprogramming Efficiency Depends on Donor Cell 
Types 

  Studies on reprogramming with a wide variety of cell 
types have found that different efficiencies and kinetics of 
reprogramming depends on donor cell types. These varia-
tions are attributed to differences in epigenetic states, dif-
ferentiation status, and phenotypic characteristics of do-
nor cell types. 
  It has been shown that less differentiated cells are more 
efficient in inducing pluripotency than terminally differ-
entiated cells. For instance, umbilical cord blood cells and 
hematopoietic stem cells (CD34＋ peripheral blood stem 
cells) both of which represent immature cell types, are read-
ily amenable for reprogramming compared to terminally dif-
ferentiated cell types, such as B and T lymphocytes, with 
up to 28% reprogramming efficiencies (100, 101, 110). 
Furthermore, adipose-derived stem cells which are prolife-
rating and multipotent stem cells formed iPSC colonies with 
a range of 0.4% to 7% reprogramming efficiency (111, 112). 
Neural stem cells (NSCs) which are resident stem cells in 

the central nervous system and have a differentiation ca-
pacity towards neurons, astrocytes, and oligodendrocytes can 
be efficiently reprogrammed into iPSCs with 3.6% efficiency 
which is 180-fold higher than fibroblasts (113, 114). Human 
dental pulp cells which are abundant dental pulp stem/pro-
genitor cells can be efficiently reprogrammed into iPSCs 
with a range of 0.01% to 0.1% (115). Overall, adult stem 
cells or progenitor cells which have high plasticity and dif-
ferentiation potential are more amenable to reprogramming 
than terminally differentiated cells. 
  As discussed above, the epithelial cells are more effi-
cient and fast in reprogramming than mesenchymal cells 
(93, 94, 116-118). The high efficiency and fast kinetics are 
largely due to the fact that epithelial cells do not require 
the MET process which is necessary for successful forma-
tion of iPSC colonies (87). For instance, reprogramming 
of epidermal keratinocytes has shown 100-fold higher effi-
cient and 2-fold faster compare with that of fibroblasts (92). 
In addition, reprogramming of renal tubular epithelial 
cells has shown 4-fold higher efficient compared with that 
of fibroblasts (93). Human nasal epithelial cells formed 
iPSC colonies with a range of 0.01% to 0.1% efficiency 
which is 50-fold higher than fibroblasts (118). Human am-
niotic epithelial cells reprogram faster and more efficie-
ntly than fibroblasts (94, 117). Hepatocytes which are ma-
jor epithelial cells in liver and gastric epithelial cells also 
appear to be easier to reprogram into iPSCs than fibro-
blasts (116). These findings indicate that cells with epithe-
lial properties are more amenable to reprogramming than 
cells with mesenchymal properties.
  Epigenetic states of donor cells have shown to signifi-
cantly affect iPSC generation (85, 119-123). Thus, modula-
ting epigenetic pathways against DNA methylation, chro-
matic structures and histone modifications in donor cells 
dramatically enhances reprogramming efficiencies (85, 119- 
123). A diverse set of small molecules that target different 
epigenetic enzymes has been known to enhance reprogra-
mming efficiency. These include valproic acid (VPA, a his-
tone deacetylase inhibitor), sodium butyrate (NaB, a his-
tone deacetylase inhibitor), RN-1 (a lysine-specific histone 
demethylase 1 [LSD1] inhibitor), RG108 (a DNA methyl-
transferase inhibitor), and EPZ5676 (a DOT1 like histone 
lysine methyltransferase inhibitor) (85, 119-123). For in-
stance, the inhibition of the disruptor of telomeric silenc-
ing 1-like (DOT1L) by shRNA or EPZ5676 accelerated re-
programming process and significantly increased the yield 
of iPSC colonies (85, 121). Furthermore, the inhibition of 
DOT1L enables iPSC generation even without KLF4 and 
c-MYC and also allows iPSC generation with other OCT 
family members that are incompetent in reprogramming 
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(61, 85, 121). Moreover, NaB greatly enhances the efficiency 
of generating iPSCs and its treatment allows iPSC genera-
tion in the absence of KLF4 or c-MYC (122, 124). Another 
example would be that the inhibition of LSD1 by RN-1 
or shRNA facilitated iPSC generation (119). VPA enables 
efficient iPSC generation even without KLF4 and c-MYC 
(120). Interestingly, combinations of these inhibitors exhibit 
additive or synergistic effects on reprogramming. For ex-
ample, a combinational treatment of EPZ5676, RN-1, and 
NaB further increase reprogramming efficiency in com-
parison of their respective treatment, suggesting that there 
are different roadblocks in reprogramming and removing 
these blocks simultaneously can dramatically improve re-
programming efficiency (121). Overall, these findings de-
lineate that specific epigenetic modifiers within donor cells 
act as a reprogramming barrier and the inhibition of these 
modifiers can elicit reprogramming in an efficient way. 
  Apart from the different reprogramming efficiencies and 
kinetics that are mediated by different types of donor cells, 
the number of the reprogramming factors that are requi-
red for reprogramming also depends on the donor cell types. 
Initially, OCT4, SOX2, KLF4, and c-MYC are discovered 
as a combination of transcription factors that enables iPSC 
generation from fibroblasts (40, 44, 45). However, with the 
exploitation of other cell types and the discovery of other 
reprogramming methods, all of four factors are not neces-
sary for inducing pluripotency and some of them can be 
omitted in specific cell types or specific culture conditions. 
For instance, NSCs endogenously express SOX2, KLF4 
and c-MYC, and thus only exogenous expression of OCT4 
alone was sufficient to generate iPSCs (113, 114). In addi-
tion, inducing pluripotency in melanocytes and melanoma 
cells does not require exogenous expression of SOX2, since 
these cells express SOX2 endogenously at high levels (125). 
Dermal papilla cells endogenously express high levels of 
SOX2 and c-MYC so that these cells can be reprogrammed 
into iPSCs with only OCT4 and KLF4 (126). Overall, 
these findings indicate that the number of the reprogram-
ming factors that are required for inducing pluripotency 
depends on the donor cell types.

Conclusion

  Ectopic expression of OCT4, SOX2, KLF4, and c-MYC 
can reprogram somatic cells into iPSCs. The iPSCs closely 
resemble ESCs in an ability to proliferate in vitro and to 
differentiate into derivatives of all three embryonic germ 
layers. As such, iPSCs hold great promise for regenerative 
medicine. Importantly, iPSCs derived directly from pa-
tients are extremely valuable, because they can give rise 

to disease-relevant cells carrying disease-associated phono-
types which are normally inaccessible from body of patients. 
Furthermore, these disease-relevant cells greatly can be 
used for the development of new therapeutic agents that 
could alleviate disease-associated phenotypes. Genetically 
and phenotypically corrected patient-derived cells by Crispr- 
Cas9 or pharmaceutical agents can be used for preclinical 
and clinical trials to investigate their therapeutic poten-
tial. Our recent findings together with those of other studies 
clearly suggest that different efficiencies and kinetics of 
reprogramming depends on epigenetic states, differentiation 
status, and phenotypic characteristics of donor cell types. 
Therefore, modulating epigenomes and phenotypic char-
acteristics of donor cells by chemical intervention and in-
troducing additional factors might enhance reprogramming 
competence of donor cell types that otherwise do not ex-
hibit reprogramming capacity. 
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