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Stem cells and the cells they produce are unique because they vary from one cell to another. Traditional methods 
of studying cells often overlook these differences. However, the development of new technologies for studying individual 
cells has greatly changed biological research in recent years. Among these innovations, single-cell RNA sequencing 
(scRNA-seq) stands out. This technique allows scientists to examine the activity of genes in each cell, across thousands 
or even millions of cells. This makes it possible to understand the diversity of cells, identify new types of cells, and 
see how cells differ across different tissues, individuals, species, times, and conditions. This paper discusses the im-
portance of scRNA-seq and the computational tools and software that are essential for analyzing the vast amounts 
of data generated by scRNA-seq studies. Our goal is to provide practical advice for bioinformaticians and biologists 
who are using scRNA-seq to study stem cells. We offer an overview of the scRNA-seq field, including the tools available, 
how they can be used, and how to present the results of these studies effectively. Our findings include a detailed 
overview and classification of tools used in scRNA-seq analysis, based on a review of 2,733 scientific publications. 
This review is complemented by information from the scRNA-tools database, which lists over 1,400 tools for analyzing 
scRNA-seq data. This database is an invaluable resource for researchers, offering a wide range of options for analyzing 
their scRNA-seq data.
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Fig. 1. Schematic diagram of the over-
view of the study. (A) Study overview; 
comprising: (1) A bibliometric asse-
ssment of single-cell RNA sequenc-
ing (scRNA-seq); (2) Laboratory pro-
cedures with an emphasis on stem 
cell sourcing and sample preparation;
(3) A synopsis of prevalent scRNA- 
seq tools and software; and (4) Inte-
grated findings to aid data interpre-
tation. (B) Process diagram; illustrat-
ing the four-phases procedure of the 
study. WoS: Web of Science.

Introduction 

  With the growing use of technologies that allow us to 
study individual cells, the quality of computational and 
statistical analysis plays a crucial role in extracting mean-
ingful insights from sequencing datasets (1). As these tech-
nologies advance, researchers now have many methods to 
choose from when analyzing single-cell RNA sequencing 
(scRNA-seq) data. This variety can be overwhelming, espe-
cially for those new to scRNA-seq. To help researchers navi-
gate these options, benchmarking efforts have been under-
taken to assess the performance of common tasks such as 
cell clustering, differential expression analysis, and sample 
integration (2). These evaluations aim to find the most re-
liable methods and identify any that might not work well 
in certain situations, especially in stem cell research. As a 
result, the scientific community has developed tutorials, 
workshops, and recommended best practices (3). These re-
sources provide valuable guidance for researchers navigat-
ing the complex landscape of scRNA-seq data analysis and 
help ensure robust and reproducible results in this rapidly 
evolving field.
  In addition to computational methods and software tools, 
bibliometric analysis has been employed to evaluate the pro-
ductivity and impact of scRNA-seq research. For example, 

Patra and Mishra (4), as well as Glänzel et al. (5), utilized 
bibliometric methods to analyze the growth of scientific 
literature in bioinformatics, including scRNA-seq research. 
They identified core journals, author productivity pat-
terns, and research impact. Similarly, Song and Kim (6) 
evaluated productivity and influence based on measures 
such as the most productive authors, countries, organiza-
tions, and popular subject terms, as well as the most cited 
papers, authors, emerging stars, and leading organizations. 
This roadmap provides a comprehensive overview of scRNA- 
seq research, highlighting expanding areas and potential 
gaps in knowledge in fields such as stem cell studies, there-
by helping researchers navigate the complex landscape of 
scRNA-seq analysis.
  This paper covers several important areas: it starts with 
a bibliometric analysis to show where scRNA-seq research 
stands today and where it might go next. It then explains 
key laboratory techniques, including how to prepare samples 
and isolate single cells from stem cells. Lastly, it reviews the 
most frequently cited tools and software for scRNA-seq 
analysis, highlighting their features and what types of ana-
lysis they support. Together, this information creates a road-
map for interpreting scRNA-seq data, offering a clear path 
forward for researchers, especially those working with 
stem cells (Fig. 1A).
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Methodology of Bibliometric Analysis

  Reviewing literature is crucial for understanding the cur-
rent state of research on a specific topic. It helps identify 
what has already been explored, points out missing pieces 
in existing studies, and lays the groundwork for future in-
vestigations (7). Bibliometric analysis is a method that quan-
titatively examines scientific literature, providing an unbi-
ased look at the impact and productivity of research. This 
approach involves creating a research question, gathering 
relevant literature, applying specific metrics, and analyzing 
the findings. It highlights key areas of research, sheds light 
on recent studies, and emphasizes significant contributions 
that guide future work. Our study employs bibliometric 
analysis as illustrated in Fig. 1B.
  The first step in gathering literature is accessing the right 
databases. Scopus and Web of Science (WoS) are notable for 
allowing the export of bibliometric data (8). WoS is re-
nowned for its extensive collection of high-impact publi-
cations (9), while Scopus is the largest database of peer-re-
viewed literature across many research fields, featuring over 
20,000 journals from a variety of publishers (10). It inclu-
des papers indexed by both Clarivate’s WoS and Scopus. 
Considering these points, our search covered keywords 
within both the WoS and Scopus databases.
  The search strategy from databases involves using key-
words combined with Boolean operators. For this study, we 
focused on scRNA-seq analysis tools, using “RNA-seque-
ncing,” “single-cell,” “tool,” and “analysis” as primary key-
words. The “AND” operator links these keywords, while 
“OR” separates synonyms keywords within each category, 
such as (“RNA-sequencing,” “RNA-sequence,” “RNA-seq”) 
for RNA-sequencing, and (“tool,” “software,” “library”) for 
tools. This precise use of Boolean logic narrows the search 
to align with our study’s objectives. We collected a variety 
of scientific publications including journal papers, review 
papers, conference papers, book sections, and books pub-
lished from the last decade (2013∼2022) from WoS and 
Scopus, totaling 2,733 unique literature items.
  Various software tools like VOSviewer, SCImago, the WoS 
analysis tool, HistCite, Pajek, Gephi, BibExcel, and the 
bibliometrix package in R, facilitate bibliometric studies. 
HistCite and the WoS tool are limited to WoS data (10). 
Gephi stands out for its flexibility and efficiency but lacks 
necessary data preparation features, requiring additional 
tools like BibExcel for this task (10). Although BibExcel 
is powerful, it demands significant expertise for straight-
forward analyses. Our bibliometric analysis was performed 
using R, a statistical computing software, with the biblio-
metrix package (11). This package offers an intuitive in-

terface, combines results from WoS and Scopus into a uni-
fied dataset for analysis, and utilizes the “mergeDbSources” 
function from the bibliometrix library to merge these da-
tasets, following a method proposed by the authors of an-
other study (12).

Results of Bibliometric Analysis

  In this study, we explored the range and classification 
of tools used in scRNA-seq analysis through an inductive 
approach (13), starting from the data itself. Our findings 
provide important insights that will help researchers choose 
the most appropriate tools and features for their specific 
goals, including projects focused on stem cell research. When 
we narrowed our search to include “stem cells” as a key-
word specifically for stem cell studies, we discovered ap-
proximately 450 articles out of the 2,733 included in our 
broader analysis. This difference suggests that stem cell 
researchers may use a variety of terms, such as “orga-
noids” or “iPSCs,” rather than just “stem cells.” The col-
lection of 2,733 unique pieces of literature serves as the ba-
sis for our bibliometric analysis. We divided our findings 
into four main categories: an overview of the data, the yearly 
growth of publications, the most influential journals and 
articles, and the most frequently cited works in the field.

Descriptive analysis 
  This section offers a summary of the literature we gath-
ered to gain a broad understanding of the field of scRNA- 
seq analysis. Table 1A presents the main features of the 
2,733 literature items published over the last decade. These 
works come from 615 different sources, including books, 
conference proceedings, and journals. Despite spanning 
the past 10 years, the average “age” of these publications 
is under 3 years, highlighting the rapid growth and cur-
rent relevance of this research area. The collection in-
cludes a large number of references, indicating the exten-
sive research activity and interest in this field.
  Regarding keyword analysis, there were 13,233 “Key-
words Plus” and 4,160 authors’ keywords identified. “Key-
words Plus” are derived from commonly occurring terms 
in the titles of the references of a given literature item, 
while authors’ keywords are the terms most frequently 
used by the authors in the literature items themselves.
  In terms of authorship, the 2,733 literature items were 
authored by 13,409 individuals. The average number of ci-
tations per document is quite high at 39.15, suggesting that 
the documents have significant impact. The total number 
of cited references across all documents reached 107,022. 
Table 1B provides additional details on the types of docu-
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Table 1. List of main features and types of literature items published over the last decade

A B

Description of the dataset Value Description of the dataset Value Dataset (%)

Time span (yr) 2013∼2022 Article 2,168 79.33
Sources (journals, books, etc.) 615 Article; proceedings paper 10 0.37
Documents 2,733 Book chapter 109 3.99
Annual growth rate (%) 50.37 Conference paper 48 1.76
Document average age (yr) 2.98 Conference review 1 0.04
Average citations per document 39.16 Correction 1 0.04
References 103,931 Data paper 2 0.07
Keywords Plus (ID) 13,233 Editorial 8 0.29
Author’s keywords (DE) 4,160 Erratum 4 0.15
Authors 13,409 Letter 9 0.33
Authors of single-authored documents 53 Meeting abstract 1 0.04
Single-authored documents 67 Note 9 0.33
Co-authors per document 7.84 Review 350 12.81
International co-authorships (%) 23.02 Short survey 13 0.48
Average citation per document 39.15

(A) This legend summarizes the key characteristics of 2,733 publications from the past decade in the field, showcasing it as a recent 
and trending area with an average publication age of under three years. The dataset encompasses over 100,000 unique references. Through 
content analysis, 13,233 Keyword Plus terms and 4,160 authors’ keywords were identified, offering deep insights into the literature’s traits. 
Values are presented as number. 
ID: index term, DE: descriptive term.
(B) This part provides a breakdown of the types of documents included in the analysis. Articles make up the majority, indicating a strong 
academic interest in single-cell RNA sequencing analysis. Reviews form over 12% of the collection,highlighting their importance for synthe-
sizing knowledge in this field. Book chapters and conference papers represent 4% and 1.76%, respectively, showing diverse formats of 
scholarly communication. Other document types such as proceedings papers, conference reviews, corrections, data papers, editorials, errata, 
letters, meeting abstracts, and notes each account for less than 1% of the total, illustrating a wide array of contributions to the literature. 
Values are presented as number.

ments in the collection. Articles formed the majority of 
the literature items, indicating their significant scholarly 
contribution to scRNA-seq analysis. Review papers were 
the second most common document type, making up over 
12% of the dataset. Book chapters accounted for about 4% 
of the items, and conference papers 1.76%. Other document 
types, such as proceedings papers, conference reviews, cor-
rections, data papers, editorials, errata, letters, and meet-
ing abstracts, comprised less than 1% of the dataset, high-
lighting the diversity of publication types in the field.

The annual growth of publications
  The metric for annual growth rate is determined by cal-
culating the average number of literature items published 
each year over a specified period (2013∼2022). The growth 
in the number of publications (NP) related to scRNA-seq 
research within our dataset is notably high, with an aver-
age annual increase of 50.37%. Fig. 2A illustrates a sig-
nificant upward trend in scRNA-seq research. Initially, up 
until 2015, the growth was modest, with fewer than 50 
publications annually. However, starting in 2016, there was 
a sharp rise, reaching a peak in 2021 with over 700 pub-

lications in just one year. This surge reflects growing interest 
from both the academic and industrial sectors in the unique 
challenges and opportunities presented by scRNA-seq.
  We also analyzed the cumulative growth of publications 
in the top 8 sources identified within our dataset, as shown 
in Fig. 2B. Among these sources, those related to infor-
matics showed the most substantial increase. Notably, the 
growth rate of these top sources was relatively steady and 
low until 2017 but saw a dramatic rise after 2020. Of par-
ticular interest is the journal Nature Communications, which, 
despite only starting to publish in this area in 2017, showed 
the second-highest growth rate. However, the growth trends 
of scRNA-seq in the International Journal of Stem Cell be-
gan in 2020. Since then, 13 articles have discussed the ap-
plications of scRNA-seq across various subtypes of cells 
derived from stem cells. Out of these, 3 of the 13 articles 
have performed scRNA-seq analysis in their research ar-
ticles published in the International Journal of Stem Cell. 
The growth rates of publications in other sources were 
fairly consistent with each other.
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Fig. 2. Exploring the rapid evolution of single-cell RNA sequencing 
(scRNA-seq) analysis. (A) The annual growth of publications in the 
field of scRNA-seq analysis. (B) Shows the top 8 sources’ cumu-
lative growth in the field of scRNA-seq analysis. (C) Top 20 cited 
tools for analysing scRNA-seq data.

The top 15 impacting sources
  Several metrics are available to assess the impact and 
productivity of scientific sources in the field of scRNA-seq 
analysis. This section uses a variety of these metrics to give 
a comprehensive overview of the influence these sources 
have on the field. Out of 615 sources in our dataset, more 
than half (340) have published only one item. However, 
the top 15 sources account for over 40% of the publica-
tions in our dataset. This indicates a concentration of out-
put in a small number of sources, despite the overall di-
versity of publication origins. These top 15 sources (Sup-
plementary Table S1) stand out significantly among the 
total of 615.
  Supplementary Table S1 lists these top 15 scientific 
sources along with their metrics: NP, local citations (LC) 
from the dataset, h-index, g-index, total citations (TC), 
and the average year of publication. Initially sorted by NP, 
we see that the journal Bioinformatics leads with 187 
documents in scRNA-seq analysis, also ranking in the top 
10 across all other metrics. Nature Communications follows, 
with the second-highest NP as well as the highest h-index 

and g-index scores, receiving a total of 5,439 citations and 
5,244 LC from our dataset. This highlights the significant 
impact of Nature Communications in this field, especially no-
table since it only began publishing on this topic in 2016.
  Nature Biotechnology has the highest number of TC 
(10,931), with Cell journal following (8,746 citations). Inte-
restingly, Cell does not rank in the top 15 by NP (with 
only 19 papers) but has the highest local citation count from 
our dataset, underscoring its substantial influence in scRNA- 
seq analysis. It is important to note that more than half 
of the sources in our dataset received fewer than 10 TC, 
reflecting a wide disparity in impact among the publica-
tion venues.

Top cited literature items
  This section examines the citations received by various 
documents in our dataset, focusing on both LC and global 
citations (GC). LC refer to the number of times an article 
is cited within the dataset we analyzed, while GC account 
for citations from all sources. Table 2 (14-28) lists the top 
15 publications with the highest LC, including their global 
citation counts, the ratio of local to global citations 
(LC/GC), and their publication year. The ranking is based 
on local citation counts, which may not align with their 
global citation standings. Remarkably, only 15% of the 
documents in our dataset have not received any GC up 
to the time of this analysis, a relatively small fraction. 
About 18% of the documents have received at least the 
average citation count per document in our dataset, which 
is 39. However, around 60% of the literature items did not 
receive any local citation.
  The publication with the highest number of LC is titled 
“Integrating single-cell transcriptomic data across differ-
ent conditions, technologies, and species” (14), which also 
ranks second in GC with 443 LC and 4,123 GC. The docu-
ment with the second-highest number of LC, “Compre-
hensive integration of single-cell data” (15), leads in GC 
with 352 LC and 4,308 GC. These findings highlight the 
significant impact of these two articles in the field of 
scRNA-seq analysis, both locally within our dataset and 
globally. Notably, “Splatter: simulation of single-cell RNA 
sequencing data” (25) achieved the highest citation ratio 
among the top 15 cited documents, and “SC3: consensus 
clustering of single-cell RNA-seq data” (17) had the sec-
ond-highest ratio. Among these leading publications, 7 
were published by Nature journals, and 3 by Cell journals, 
underscoring the dominant role of these publishers in ad-
vancing scRNA-seq analysis research.
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Table 2. List of top 15 cited articles in scRNA-seq

Study Value
Citations LC/GC 

ratio
Year

Local Global

Integrating single-cell 
transcriptomic data across 
different conditions, 
technologies, and species (14)

Presents a methodology for the comprehensive 
analysis and integration of scRNA-seq data, 
enabling the identification of shared populations 
across data sets and downstream analysis

443 4,123 10.74 2018

Comprehensive integration 
of single-cell data (15)

Develops a strategy to “anchor” various datasets 
simultaneously, allowing scientists to integrate 
single-cell across different modalities

352 4,308 8.17 2019

The dynamics and regulators of 
cell fate decisions are revealed 
by pseudotemporal ordering 
of single cells (16)

Introduces Monocle, an unsupervised algorithm 
that enhances the resolution of transcriptome 
dynamics in cellular processes such as differentiation

297 2,415 12.3 2014

SC3: consensus clustering of 
single-cell RNA-seq data (17)

Proposes a consensus clustering algorithm specifically 
designed for scRNA-seq data, improving the accuracy 
of cell type identification

188 683 27.53 2017

Full-length RNA-seq from single 
cells using Smart-seq2 (18)

Describes an improved protocol for full-length RNA 
sequencing from single cells, enabling more detailed 
transcriptome analyses, especially for stem cell research

182 1,942 9.37 2014

Smart-seq2 for sensitive 
full-length transcriptome 
profiling in single cells (19)

Enhances the sensitivity and accuracy of 
single-cell transcriptome profiling with the 
Smart-seq2 technology

172 1,216 14.14 2013

Comparative analysis of single-cell 
RNA sequencing methods (20)

Offers a comparative study of various scRNA-seq 
methodologies, evaluating six prominent methods

152 728 20.88 2017

Computational and analytical 
challenges in single-cell 
transcriptomics (21)

Discusses the key computational and analytical 
challenges in single-cell transcriptomics, proposing 
solutions to address these issues

144 691 20.84 2015

Quantitative single-cell 
RNA-seq with unique 
molecular identifiers (22)

Introduces a quantitative approach to scRNA-seq 
that uses unique molecular identifiers, 
improving data accuracy

138 729 18.93 2014

Single-cell transcriptomics of 
20 mouse organs creates 
a Tabula Muris (23)

Presents a comprehensive single-cell transcriptomic 
atlas of mouse, providing insights into 
organ-specific cell types and states

129 925 13.95 2018

Current best practices in single-cell 
RNA-seq analysis: a tutorial (24)

Offers a guide on best practices for analysing scRNA-seq 
data, from preprocessing to downstream analysis

119 610 19.51 2019

Splatter: simulation of single-cell 
RNA sequencing data (25)

Provides a tool for simulating scRNA-seq data, aiding 
in the development and testing of analytical methods

118 324 36.42 2017

Single-cell RNA sequencing 
technologies and 
bioinformatics pipelines (26)

Reviews the latest technologies and 
bioinformatics pipelines for scRNA-seq, 
highlighting their advantages and limitations

110 665 16.54 2018

Recovering gene interactions 
from single-cell data 
using data diffusion (27)

Proposes a data diffusion approach called MAGIC 
a method that shares information across similar 
cells to denoise the cell count matrix and fill 
in missing transcripts

109 590 18.47 2018

Scater: pre-processing, quality 
control, normalization and 
visualization of single-cell 
RNA-seq data in R (28)

Introduces an R package for comprehensive 
preprocessing, quality control, normalization, 
and visualization of scRNA-seq data

106 620 17.1 2017

Analyses thetop 15 locally cited articles and their contribution in the field of single-cell RNA sequencing (scRNA-Seq) analysis, considering 
both their global citations and the local/global citation (LC/GC) ratio. The “LC/GC ratio” field signifies the ratio between local and global 
citations, providing a measure of the extent to which these articles are cited within their immediate research community relative to their 
global reach. Additionally, the “Year” field indicates the year of publication foreach article. The analysis of these parameters provides 
valuable information on the local and global recognition of the top 15 articles in scRNA-Seq analysis, allowing for a comprehensive under-
standing of their significance within the field.
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Stem Cell Sources for scRNA-Seq Analysis

  The collection of human samples for research can be 
challenging, especially when it involves foetal tissues, due 
to ethical concerns. Organoids serve as an excellent plat-
form for studying human embryonic tissues. Utilizing or-
ganoids, such as brain organoids, allows for the compara-
tive study of distinct developmental stages and the poten-
tial uncovering of pathological processes in neurodevelop-
mental disorders, including autism spectrum disorder and 
Down syndrome (29). The application of scRNA-seq to study 
various domains of the brain, such as the neocortex or 
forebrain, can provide detailed insights into the evolution 
of the human brain (30). Unlike bulk RNA-seq, which is 
more effective for analyzing single cell types, scRNA-seq 
is particularly suited for and often employed in the analy-
sis of complex tissues like organoids (31), which typically 
display a heterogeneity of cell type composition (32). 
Therefore, scRNA transcriptomics offers a superior meth-
od over bulk RNA sequencing by delivering a detailed an-
alytical approach that aids in characterizing and identify-
ing previously unknown subpopulations of cell types. Cur-
rently, repositories such as the Single Cell Expression Atlas 
(https://www.ebi.ac.uk/gxa/sc/home) and the Single Cell 
Portal (https://singlecell.broadinstitute.org/single_cell) offer 
enriched datasets that biologists and bioinformaticians can 
use to compare transcriptomics data from organoids.
  Molecular cues are provided to pluripotent stem cells 
(PSCs) to direct them towards the desired cell fate and 
organoid type, in an effort to replicate the embryonic de-
velopment of a specific organ (33) or to capture an aging- 
like phenotype in vitro (34). As a result, organoids will re-
semble the target organ (35); however, general character-
ization methods such as immunohistochemistry, western 
blot, and bulk RNA sequencing will not be sufficiently in-
formative to identify the heterogeneity of cell types gen-
erated in organoids (34). Furthermore, experiments involv-
ing organoids cannot be interpreted accurately without a 
clear understanding of their cellular composition. In this 
context, comparing scRNA-seq data of primary tissues/or-
gans with that of organoids will demonstrate the degree 
of similarity and resemblance of the organoids to the tar-
get organ. For example, in cases where human ventral mid-
brain organoids were generated, a comparison of scRNA- 
seq data of the organoids with fetal dopaminergic neurons 
of the ventral midbrain revealed transcriptional simila-
rities (36). Similarly, scRNA-seq data showed similarities 
between cerebral organoids and fetal cortex tissues (37), 
as well as at the single-cell level (38). While bulk RNA-seq 
can also be used to demonstrate the maturation similarity 

of organoids compared to in vivo tissue (29), scRNA-seq 
is particularly important for organoid research. It helps to 
interpret the data more precisely, which will improve the 
quality of organoid production for disease modelling (39).
  In addition to defining the cellular composition of orga-
noids, scRNA-seq can enhance our understanding of the 
genetic identity of existing stem cell types. For example, 
a study compared human embryonic stem cells with human 
epiblast cells using scRNA-seq analysis and identified ap-
proximately 1,500 genes that were differentially expressed 
between these cell types (40). Another study analyzing ag-
ing versus young mouse hematopoietic stem cells (HSCs) 
with scRNA-seq revealed that the expression of cell cy-
cle-associated genes corresponded overall to the aged status 
of the HSCs (41). Transcriptomics of stem cells found in 
different tissues can also be compared using scRNA- seq. 
One study discovered that mesenchymal stem cells (MSCs) 
from various origins diverged due to differences in ex-
tracellular matrix protein and immunity-related genes 
(42). Additionally, another study identified two subpopu-
lations within umbilical cord MSCs that had distinct dif-
ferentiation capabilities based on their gene expression pat-
terns (43). Even though these MSCs originated from the 
same source, it is possible that by the time of isolation, 
they had already activated distinct gene expression pro-
grams consistent with their distinct cellular fates.
  Furthermore, scRNA-seq can also shed light onto the re-
programming of novel stem cell types. A recent study dis-
covered a methodology for reprogramming mouse pluri-
potent embryonic stem cells into totipotent stem cells us-
ing a spliceosome inhibitor (44). These reprogrammed to-
tipotent stem cells were implanted into mouse blastocysts, 
and lineage tracing revealed that the implanted cells could 
differentiate into six different cell types of extraembryonic 
origin, such as trophoblast cells. Transcriptomics analysis 
confirmed the expression of totipotency genes in this gen-
erated totipotent stem cell population. In a similar study, 
totipotent blastocyst-like structures were generated using 
human induced PSCs (hiPSCs) (45). scRNA-seq of these 
human blastoids showed that their composition—a mix of 
hypoblast-, trophoblast-, and epiblast-like cells—resembled 
human blastocysts. In such cases, the transcriptomic reso-
lution provided by scRNA-seq is highly significant, as toti-
potent stem cells have the capacity to differentiate into ex-
traembryonic tissues. 
  While single-cell transcriptome analysis methods are 
broadly applicable across various fields of biology, interest-
ingly, however, Smart-seq2 is a highly sensitive method for 
scRNA-seq that has been further refined for stem cells to 
capture a wide range of gene expression levels (Table 2), 
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particularly useful for identifying rare stem cell pop-
ulations or capturing the full complexity of gene expre-
ssion dynamics during differentiation (18), allowing under-
standing pluripotency, differentiation pathways, and cel-
lular heterogeneity within stem cell populations. Therefore, 
the application of scRNA-seq in stem cell and develop-
mental studies can significantly accelerate our understan-
ding of developmental processes.

Single cell dissociation methods
  ScRNA-seq requires samples to be prepared in a solution 
with individual cells, minimizing doublet formation and en-
suring maximum viability (usually ＞90%). For scRNA-seq 
samples like blood or immune cells, which circulate in the 
blood without extracellular matrix connections to other cell 
types, creating single-cell suspensions is straightforward. 
However, tissues and organs, containing various cell types, 
need enzymatic dissociation. Different tissues require specif-
ic enzymes for dissociation, each with its own set of advan-
tages and disadvantages. Typically, fresh tissue preparation 
involves proteases such as papain, collagenases, or trypsin, 
which can be performed at 37℃ or at colder temperatures 
(46). Cells within a tissue may respond differently to enzy-
matic digestion, potentially introducing bias in the prepara-
tion of single-cell solutions. For example, a study comparing 
various single-cell dissociation methods for mouse kidney 
found that podocytes were disproportionately affected by 
warm dissociation compared to the cold dissociation method 
(47). Similarly, satellite cells, a population of muscle stem 
cells, were shown to be impacted by dissociation methods 
in a manner that their transcriptome resembled an injury- 
induced subtype of satellite cells (48). To capture rare cell 
types and reduce dissociation stress-associated gene expre-
ssion changes, single-nucleus RNA sequencing may be more 
appropriate. In another study, a combination of dispase and 
collagenase was used for initial tissue digestion, followed 
by trypsin for remaining undissociated tissue parts, im-
proving cell dissociation and the capture of rare cell types 
in skin samples (49). The choice of cell dissociation method 
for single-cell preparation should be tailored to the target 
cell type and study goals to avoid biased data and the loss 
of rare cell types.

Quality control of sample preparation in scRNA-seq 
analysis
  The quality of scRNA-seq data is significantly influenced 
by the biological material used and the method of sample 
preparation. To mitigate any artifacts that occur during sam-
ple dissociation and library preparation, effective quality con-
trol (QC) measures are essential during data analysis. First, 

the expected gene profile of the biological material intended 
for sequencing should be roughly estimated. For example, 
a high-count number for mitochondrial genes may indicate 
apoptotic cells. However, if the biological material is known 
to express mitochondrial genes at a relatively high level, this 
factor must be considered before discarding cells that exceed 
the threshold for high mitochondrial gene counts. Second, 
it is necessary to remove ambient RNA, which results from 
freely floating mRNA transcripts from dead cells during cell 
dissociation. Finally, genes that are less abundant or cells 
with a lower count of genes should be excluded before fur-
ther analysis. Furthermore, noise reduction in bulk RNA se-
quencing is comparatively simpler than in scRNA-seq, as 
the amplified and sequenced transcripts are not attributed 
to individual cells. With the increased use of scRNA-seq 
technologies in this decade, several QC measures and soft-
ware packages have been developed. Firstly, a threshold for 
identifying good quality cells is established by examining 
parameters such as the total number of reads per cell, the 
total number of gene counts, and library complexity (50). 
For example, sinQC (Morgridge Institute for Research), an 
scRNA-seq QC software tool, eliminates low-quality cells by 
considering the main cell population as of good quality and 
generates a false positive rate by calculating a minimal quan-
tile score and a weighted combined quality score (51). Ano-
ther software, named Dropkick (United Plugins), employs 
a more sophisticated approach to filter out ambient RNA 
(52). This method initially profiles a matrix based on the 
total gene count per cell versus barcode count to distinguish 
high-quality cells from empty droplets and low-quality cells. 
Subsequently, it identifies the most common genes found in 
low-quality cells to label them as ambient RNA and filters 
them out. However, researchers often make several common 
mistakes and encounter issues when analyzing scRNA-seq 
data. These include not adequately filtering out low-quality 
cells or genes, which can skew results; overlooking batch ef-
fects that arise when combining datasets from different ex-
periments; failing to select an appropriate normalization 
method, potentially leading to incorrect conclusions; ignor-
ing the complexity of cell cycle effects on gene expression; 
and choosing unsuitable algorithms for clustering or trajec-
tory analysis that do not match the characteristics of the 
data. These oversights can significantly impact the accuracy 
and interpretability of scRNA-seq analyses.
  To ensure the quality of scRNA-seq analysis, the anno-
tation step becomes crucial after generating a gene count 
matrix. Annotation leverages known biological information 
to assign specific identities to cells, grouping those with 
similar identities into clusters. This process can be con-
ducted either by comparing with previously obtained ref-
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erence scRNA-seq datasets or by utilizing publicly avail-
able biological information repositories. Recent studies 
have extensively reviewed these annotation methods (53). 
It is important to acknowledge that annotating data from 
primary tissues is generally more straightforward than from 
organoid clusters. This challenge is particularly pronou-
nced in data from organoids, as the reference genes for 
the in vivo counterparts of organoids may exhibit slightly 
different transcriptomes (38). For example, a recent study 
investigating the relationship between brain organoid mor-
phology and architecture discovered that unsuccessful dif-
ferentiation resulted in scRNA-seq data clusters with 
mixed identities (54). This issue, common in hiPSC-derived 
organoid differentiation due to inter-organoid variability, 
must be considered when annotating cell clusters in scRNA- 
seq data using reference datasets from previously obtained 
organoid scRNA-seq analyses.

scRNA Sequencing Tools and Software

  scRNA-seq is an advanced technology that enables sci-
entists to explore the variety of gene expression within in-
dividual cells. This capability provides a deeper insight in-
to cellular processes, such as those occurring in stem cells 
and their derived tissues. As a result, a wide range of soft-
ware tools and analysis pipelines has been developed to 
analyze scRNA-seq data efficiently (55). The main pur-
pose of these tools is to convert raw sequencing data into 
detailed gene expression profiles for each cell (56). This 
process typically includes steps like QC, normalization, re-
ducing data complexity, grouping similar cells (clustering), 
quantifying gene expression, and identifying genes that 
are expressed differently between cell populations (57).
  Moreover, some tools offer specialized functions such as 
classifying cell types, analyzing gene pathways, and com-
bining data from multiple scRNA-seq studies. These func-
tionalities are particularly valuable in stem cell research 
and other specialized areas (58). While scRNA-seq excels 
at comparing gene expression across individual cells and 
uncovering cell diversity, its ultimate goal is to find tran-
scriptional similarities and differences within groups of 
cells. This approach is crucial for identifying rare cell 
types that were often overlooked by previous methods (59). 
Additionally, scRNA-seq can reveal intricate gene expre-
ssion details, including patterns of gene splicing, expression 
from single alleles, and groups of genes that are regulated 
together, by analyzing gene co-expression patterns at the 
single-cell level.
  However, the accuracy of the insights gained from scRNA-seq 
largely depends on the experimental approaches used (60). 

The selection of a scRNA-seq analysis tool often hinges on the 
specific research questions, the nature of the data, and the 
complexity of the analysis required. Some tools are designed 
for particular data types or analytical methods, while others 
are more versatile, catering to a broader range of uses. For 
instance, ZINB-WaVE addresses the zero-inflation common 
in scRNA-seq data with a zero-inflated negative binomial 
model, improving the accuracy of further analyses by effec-
tively managing datasets rich in zeros. Conversely, for pseu-
do-temporal analysis, which orders cells based on their gene 
expression changes to infer cellular development or pro-
gression, Monocle is a leading tool. It enables the reconstru-
ction of cell development pathways or progression stages from 
a single snapshot in time. In conclusion, scRNA-seq analysis 
tools and software are indispensable in advancing our com-
prehension of gene expression and cellular dynamics at the 
individual cell level. They enable researchers to sift through 
large scRNA-seq datasets, extract meaningful information, 
and contribute to scientific discoveries that have the potential 
to impact society positively.

Top 20 cited tools for analysing scRNA-seq data
  The introduction of scRNA-seq has made it feasible to 
collect detailed data from a wide variety of cells at different 
stages of their development and maturation. This break-
through has opened new avenues for uncovering insights 
into cell development, transformation, and fate, both in 
vivo and in vitro (61). Such extensive datasets are incred-
ibly useful for researchers who need to choose the most 
appropriate tool for analyzing their scRNA-seq data. By 
comparing the types of data that can be processed and the 
functionalities offered by each tool, researchers can select 
one that best meets their specific needs (62).
  In this section, we explore the top 20 most cited tools 
for analyzing scRNA-seq data, as illustrated in Fig. 2C. The 
primary source for this analysis is the scRNA-tools data-
base, updated as of May 9, 2023. Table 3 (58, 63-80) inclu-
des a row for each of the top 20 scRNA-seq tools, with 
columns providing details about the type of input data each 
tool accepts and the features it offers. For instance, the first 
column might name the tool (like STAR), the second col-
umn describes the type of input data it works with (such 
as FASTQ files), and the following columns detail the fea-
tures the tool provides (like QC, normalization, integra-
tion, clustering, classification, etc.).
  The features outlined in Supplementary Table S2 and 
S3 cover various steps in the scRNA-seq analysis workflow. 
QC is the preliminary step, ensuring the raw sequencing 
data is of high quality. Normalization adjusts gene ex-
pression levels to minimize technical differences. Integra-
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Fig. 3. Features of current single-cell 
RNA sequencing (scRNA-seq) analy-
sis tools and availability of analysis 
options. (A) Number of features in-
cluded in the current developed tools. 
(B) Essential and advanced analysis 
features in scRNA-Seq availability. 
UMIs: unique molecular identifiers.

tion combines datasets from various scRNA-seq experi-
ments into a cohesive dataset. Clustering groups cells with 
similar gene expression patterns together. Classification 
assigns cell types to cells based on their gene expression 
profiles, facilitating deeper insights into their functions 
and identities.

Findings

  This study provides a comparative analysis of the re-
search published in the area of scRNA-seq, focusing on 
the software and tools developed for this purpose. It dis-
tinguishes between the most commonly provided features 

of these tools and those that are essential for effective re-
search, especially in the context of stem cell studies. The 
insights offered here are intended to assist researchers in 
choosing the most appropriate tools and features for their 
specific research goals. The paper highlights the crucial 
factors that should be taken into account when selecting 
software for scRNA-seq data analysis and suggests direc-
tions for future research.
  The roadmap provided in this paper serves as an in-
valuable resource for professionals working in bioinfor-
matics, data science, biology, and especially those involved 
in stem cell research. It aims to simplify the process of 
navigating the complex field of scRNA-seq analysis, en-
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abling researchers to make well-informed choices about the 
studies, methodologies, and tools that are best suited for 
their work. By comparing the features of various tools and 
software with the needs highlighted in published studies, 
this paper facilitates a more straightforward selection pro-
cess for researchers working with scRNA-seq data, ensur-
ing that their chosen tools align well with both common 
and critical research requirements.

Essential and advanced analysis features in scRNA-seq
  Fig. 3A illustrates the prevalence of certain features 
within current analysis tools as derived from the litera-
ture. This review scRNA-seq analysis and the popularity 
of tool features has led to the classification of scRNA-seq 
analysis features into two primary phases: pre-processing 
and downstream analysis, as illustrated in Fig. 3B. Pre- 
processing includes tasks like alignment, normalization, 
and QC, whereas downstream analysis encompasses clus-
tering, gene filtering, and visualization. Additionally, we 
have identified tasks as either essential or advanced based 
on their significance and applicability to most scRNA-seq 
studies (Fig. 3B). Essential tasks, such as QC, alignment, 
and normalization, are fundamental across both process-
ing stages and are crucial for the majority of scRNA-seq 
experiments. In contrast, advanced tasks, like allele-specif-
ic expression analysis or immune receptor analysis, may 
be pertinent to specific research inquiries.
  We have provided a comprehensive overview of the tools 
and methods available for scRNA-seq data analysis, catego-
rizing features to assist researchers in selecting the most suit-
able tools for their analysis requirements. Fig. 3B synthesizes 
our in-depth review of scRNA-seq analysis, employing a sys-
tematic examination of the diverse features and tasks invol-
ved. It presents these components as parts of a broader 
framework that researchers can tailor to their specific needs. 
Additionally, Fig. 3B employs a color-coding system to de-
note the availability of each feature across the current scRNA- 
seq analysis tools and software, thereby enabling researchers 
to swiftly identify tools that support their required features, 
facilitating the selection process. Consequently, Fig. 3B not 
only provides a detailed overview of scRNA-seq analysis but 
also serves as a practical aid for researchers to match their 
desired features with available tools and software, thereby 
enhancing informed decision-making and advancing cellular 
biology and disease research through precise and efficient 
scRNA-seq data analysis.
  Supplementary Table S2 and S3 list the most commonly 
used analysis features in scRNA-seq, selected for their popu-
larity and utility within the research community. The table 
also details the programming languages used to develop 

these tools, offering insights into the technical execution of 
the analysis. This table is intended as a resource for scien-
tists and researchers involved in scRNA-seq analysis, listing 
tools alongside their programming languages to help re-
searchers find the most appropriate tool that matches their 
analysis needs and programming proficiency. It allows re-
searchers to navigate through various options and make 
knowledgeable choices in tool selection for their projects. 
Additionally, it helps in assessing tool compatibility with 
preferred programming languages, ensuring smooth integra-
tion and effective use of the chosen tool within existing com-
putational workflows, thus enabling researchers to utilize 
their programming skills effectively with compatible tools.

Future recommendations
  This study presents several important recommendations 
for future work in the field of scRNA-seq analysis. First, 
there is a clear need for the research community to focus 
on improving and expanding the range of tools that in-
clude essential features for thorough scRNA-seq analysis. 
Our review identified a limited number of tools, such as 
STAR and CellRanger, that provide critical functionalities 
like unique molecular identifiers (UMIs) and alignment 
analysis. Developing a wider array of tools that offer these 
and other key capabilities is essential. Additionally, there’s 
a priority to integrate these essential features into compre-
hensive analysis frameworks, which would provide holistic 
solutions that meet current needs and anticipate future 
advancements in scRNA-seq technologies. Tools should ide-
ally incorporate features like UMIs, QC, alignments, and 
normalization to offer all-encompassing solutions for 
scRNA-seq data analysis.
  Moreover, there is a significant emphasis on the need 
for user-friendly interfaces and intuitive workflows to make 
scRNA-seq analysis tools more accessible. Making these 
tools easy to use will allow researchers with varying levels 
of computational expertise to fully utilize scRNA-seq tech-
nology. As scRNA-seq methodologies and research fields 
continue to evolve rapidly, it is crucial for resources like the 
scRNA-tools database to be regularly updated and expanded, 
adding new categories and tools designed for specific re-
search tasks to maintain its value as a comprehensive 
resource.
  Encouraging collaboration between software engineers, 
bioinformaticians, data scientists, and biologists is critical 
for fostering interdisciplinary innovation in scRNA-seq 
analysis. Such collaborative efforts can address existing 
challenges more effectively, leading to the development of 
higher quality and more versatile tools for scRNA-seq data 
analysis. It’s also vital to continually refine existing tools 
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and develop new ones with a focus on user-centric fea-
tures, particularly in areas such as alignment analysis. 
Keeping the scRNA-tools database responsive to the di-
verse needs of the research community is another key rec-
ommendation, ensuring it remains a vital tool for advanc-
ing our understanding of stem cell biology, disease mecha-
nisms, and opening up new avenues for therapeutic deve-
lopments. By focusing on these strategic areas and pro-
moting strong interdisciplinary partnerships, we can ex-
pect to achieve deeper insights and innovations in the 
field of scRNA-seq.

Spatial Single-Cell mRNA Sequencing in Stem 
Cell Research

  While this study primarily focuses on the analysis and 
application of scRNA-seq in stem cell research, it is im-
portant to acknowledge the emerging relevance of spatial 
single-cell mRNA sequencing technology within this field. 
Its potential to provide spatial context to gene expression 
in stem cells represents a significant advancement in un-
ravelling the complex spatial heterogeneity of stem cell 
populations (81). Spatial single-cell mRNA sequencing en-
ables researchers to map the transcriptomic profiles of in-
dividual cells within their native tissue environments, of-
fering insights into the spatial dynamics of stem cell dif-
ferentiation, tissue development, and disease progression. 
This method complements scRNA-seq by adding a layer 
of spatial information, thus enhancing our understanding 
of the complex cellular landscapes in stem cell biology. 
However, the current main limitation of spatial transcrip-
tomics is achieving sequencing and visualizing the transcrip-
tomic maps at the single-cell level. As this technology con-
tinues to evolve, it promises to shed light into the spatial 
aspects of gene expression at the single-cell level, which 
is crucial for comprehending the full spectrum of stem cell 
function and regulation before and after differentiation in-
to specific cell types during development in vivo as well 
as in vitro using human cellular models.

Conclusions

  Since its discovery a decade ago, scRNA-seq technology 
has made extraordinary strides. It has made significant 
contributions across several areas, including the develop-
ment of comprehensive cellular maps for tissues, organs, 
and whole organisms, the redefinition of cell types, the 
discovery of new marker genes, and the identification of 
unique cell subpopulations. Furthermore, scRNA-seq has 
enabled the tracing of cell differentiation and developme-

ntal pathways, the identification of tumor-specific molec-
ular markers, and the exploration of tumor heterogeneity 
and the tumor microenvironment. Additionally, this tech-
nology has been instrumental in advancing our under-
standing of disease mechanisms and the impact of ther-
apeutic interventions.
  The roadmap outlined in this paper offers valuable in-
sights for researchers looking to select and utilize the most 
effective features and tools for scRNA-seq data analysis. 
Emphasizing the importance of essential features, regu-
larly updating the scRNA-tools database, and promoting 
collaboration across disciplines are key steps for further 
progress in scRNA-seq analysis. These efforts will not only 
facilitate a deeper understanding of stem cells and disease 
mechanisms but also open up new avenues for discovery and 
therapeutic development. Researchers are encouraged to 
consider these recommendations into account to continue 
advancing the field of stem cells and contribute to the 
broader progress in scRNA-seq analysis.
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