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Proteogenomic analysis dissects early-onset breast cancer
patients with prognostic relevance
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Early-onset breast cancer is known for its aggressive clinical characteristics and high prevalence in East Asian countries, but a
comprehensive understanding of its molecular features is still lacking. In this study, we conducted a proteogenomic analysis of 126
treatment-naïve primary tumor tissues obtained from Korean patients with young breast cancer (YBC) aged ≤40 years. By
integrating genomic, transcriptomic, and proteomic data, we identified five distinct functional subgroups that accurately
represented the clinical characteristics and biological behaviors of patients with YBC. Our integrated approach could be used to
determine the proteogenomic status of HER2, enhancing its clinical significance and prognostic value. Furthermore, we present a
proteome-based homologous recombination deficiency (HRD) analysis that has the potential to overcome the limitations of
conventional genomic HRD tests, facilitating the identification of new patient groups requiring targeted HR deficiency treatments.
Additionally, we demonstrated that protein–RNA correlations can be used to predict the late recurrence of hormone receptor-
positive breast cancer. Within each molecular subtype of breast cancer, we identified functionally significant protein groups whose
differential abundance was closely correlated with the clinical progression of breast cancer. Furthermore, we derived a recurrence
predictive index capable of predicting late recurrence, specifically in luminal subtypes, which plays a crucial role in guiding
decisions on treatment durations for YBC patients. These findings improve the stratification and clinical implications for patients
with YBC by contributing to the optimal adjuvant treatment and duration for favorable clinical outcomes.
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INTRODUCTION
Breast cancer is the most common malignancy among women
globally1 and is the leading cancer among women in Korea2. The
occurrence of young breast cancer (YBC), i.e., breast cancer in
patients aged 40 years or younger at diagnosis, is rare; however,
its proportional incidence in Korea is approximately 10%3, which is
twice the incidence rate in the US4. Patients with YBC have a
genetic susceptibility caused by BRCA1/2 pathogenic variants,
showing aggressive clinical phenotypes with advanced stages,
high-grade and triple-negative breast cancer (TNBC), and an
unfavorable prognosis, including late recurrence5–8. However, the
molecular features of YBC underlying these more aggressive
tumor characteristics and worse clinical outcomes are unclear.
Several studies have revealed the characteristics of YBC. With
respect to somatic mutations, the Cancer Genome Atlas (TCGA)
and Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC) databases revealed that premenopausal
(PreM) patients with breast cancer have greater numbers of
mutations in 5 genes—CDH1, GATA3, MLL3, GPS2, and PI3KCA.

Moreover, compared to post-menopausal (PostM) tumors, gene
expression in PreM tumors is enriched in the integrin and laminin
signaling pathways, EGFR signaling activation, and TGF-β,
especially in estrogen receptor-positive (ER+ ) breast cancer9.
Another study revealed that, compared with Western patients,
Asian PreM patients presented a characteristic increase in tumor-
infiltrating lymphocytes (TILs) and a decrease in TGF-β signaling,
which suggested that Asian YBCs harbor a more immune-active
microenvironment10. An age-specific gene expression study of
breast cancer in Middle Eastern women identified 63 genes that
were specific to YBC ( ≤ 45 years) and 2 genes (TIAM1 and VANGL2)
whose expression was significantly lower in breast tumors of very
young ( ≤ 35 years) women than in breast tumors from other age
groups11.
In recent studies, the application of proteogenomic (PG)

analysis has improved our understanding of breast cancer by
providing comprehensive molecular signatures relevant to clinical
features12–14. Stromal-enriched clusters, G protein-coupled recep-
tor clusters, and several targetable biological pathways were also
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identified. Although this approach revealed new clusters and
refined subgroups with potential clinical benefits in breast cancer,
there is a need to investigate the molecular landscape in young
Asian patients.
Therefore, this study aimed to evaluate and analyze the

molecular characteristics of YBC in Korean patients (≤40 years)
via integrated multiomics studies, including genomic, transcrip-
tomic, and proteomic features, and to identify pathways for
predicting the clinical outcomes of patients with YBC.

MATERIALS AND METHODS
Study objectives and specimens
A total of 178 participants with histologically defined breast cancer, aged
40 years or younger, treated at the National Cancer Center (NCC) in Korea
were included in this study. Tumor and adjacent normal tissue samples
were obtained from surgically resected specimens, and blood samples
were collected from the patients. This study was approved by the
Institutional Review Board of the NCC (IRB nos. NCCNCS 13717, NCC2017-
0127, and NCC2020-0135). Since some patients had limited samples, only
126 patients for whom all proteogenomic data were fully generated were
used for analysis. We retrospectively reviewed the medical and patholo-
gical records of the patients, including histological diagnoses of surgical
specimens, tumor staging, histological grade, treatment history (type of
surgery, use of chemotherapy, hormone therapy, anti-HER2 therapy, and
radiotherapy), and follow-up data (recurrence, metastasis, and death).
Tissue specimens and blood samples were provided by the NCC Bio

Bank of the National Cancer Center, Korea. The frozen tissue samples were
weighed and washed with cold phosphate-buffered saline (PBS) to remove
blood contamination, placed in a tube (Covaris, Woburn, MA, USA), snap-
frozen in liquid nitrogen, and pulverized using a cryoPREP tissue disruption
system (CP02; Covaris). The pulverized tissue powder was divided into
10–20mg aliquots for DNA, RNA, and protein extraction. Genomic DNA
and RNA were extracted from cryopreserved tissue samples and blood
samples using the AllPrep DNA/RNA Mini Kit, the QIAamp DNA Blood Mini
Kit, the DNeasy Blood & Tissue Kit, and the RNeasy Micro Kit (Qiagen,
Valencia, CA, USA) according to the manufacturers’ instructions. The
concentration and integrity of the extracted RNA were assessed via a
NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA).

Whole exome sequencing (WES) analysis
To generate standard exome capture libraries, the SureSelect Human All
Exon V6+UTR probe set (Agilent Technologies) was used according to the
manufacturer’s instructions. Briefly, genomic DNA extracted from the
samples was fragmented and processed for adaptor ligation and PCR
amplification. The exome capture libraries were constructed and amplified.
The final purified products were quantified according to the qPCR
Quantification Protocol Guide (KAPA Library Quantification kits for Illumina
Sequencing platforms) and qualified using a TapeStation DNA Screentape
D1000 (Agilent). The products were sequenced using the NovaSeq
platform (Illumina Inc., San Diego, CA, USA). Quality-calibrated fastq files
were aligned to the reference genome hg19 using BWA-MEM15. Each read
group was aligned to the reference genome separately, and all read group
alignments that belonged to a single aliquot were merged using Picard
Tools, SortSam and MergeSamFiles. Duplicate reads were flagged to
prevent downstream variant call errors. Local realignment of insertions and
deletions was performed using GATK:IndelRealigner16. A base quality score
recalibration (BQSR) step was then performed using GATK:BaseRecalibra-
tor17. Somatic mutation detection was performed via MuTect and
GATK:Mutect218, and the mutations were annotated with an oncotator19.
The GATK Haplotyper caller was used to detect germline variants20,21.

Whole-transcriptome sequencing (WTS)
Only high-quality RNA (RNA integrity ≥ 7.0) generated using the Illumina
TruSeq Stranded mRNA Sample Prep Kit (Illumina) was used for RNA library
construction. Qualified libraries were indexed, and paired-end 100-bp
reads were sequenced using the Illumina NovaSeq platform. The quality of
the sequencing reads was evaluated and examined for primer/adaptor
sequence contamination via FastQC (v0.11.7)22. Trim Galore23 was
employed for trimming the reads, applying a threshold of an average
sequence quality > 30. The trimmed reads were subsequently aligned to

the human reference genome using STAR (STAR-2.7.0). Gene expression
profiling was conducted with the HTseq-count algorithm, which uses the
raw read counts as input data. Finally, edgeR was used to convert the
count data to reads per kilobase million (RPKM), or the transcript per
million (TPM) algorithm from the bioinfokit Python package (v1.0.4)24 was
used to adjust different sequencing throughputs between the samples.

Proteomic analysis
Proteomic analysis was performed according to the standard protocol
reported by the Clinical Proteomic Tumor Analysis Consortium (CPTAC)25.
Briefly, cryopreserved tissue powder samples were solubilized in sodium
dodecyl sulfate (SDS) solubilization buffer (5% SDS, 50mM TEAB; pH 8.5)
using an S220 focused ultrasonicator (Covaris). Proteins were digested
using S-Trap™ spin columns (ProtiFi, Huntington, NY, USA), cleaned with
C18 spin columns (Thermo Fisher Scientific, Rockford, IL, USA), and the
desalted peptide samples were labeled using TMT11plex reagents (Thermo
Fisher Scientific). Pooled 11-plex tandem mass tag (TMT)-labeled samples
were processed for peptide fractionation using an Agilent 1260 Infinity
HPLC system (Agilent)26 and then prepared for global proteome and
phosphoproteome analyses. Phosphopeptide enrichment was performed
using immobilized metal affinity chromatography27. The TMT-labeled
peptides were loaded onto a trap column (Acclaum PepMapTM 100, 75 mm
× 2 cm), separated on an analytical column (EASY-Spray column, 75mm ×
50 cm; Thermo Fisher Scientific) via an Ultimate 3000 RSLCnano system
(Thermo Fisher Scientific), and analyzed using the top 10 data-dependent
methods using a Q Exactive HF-X hybrid quadrupole–orbitrap mass
spectrometer (Thermo Fisher Scientific).

Cell lines and reagents
Human breast cancer cell lines were cultured according to the distributors’
instructions. We obtained breast cancer cell lines from the American Type
Culture Collection (ATCC) in Manassas, Virginia, USA; the Korean Cell Line
Bank in Seoul, Korea; and the DSMZ in Braunschweig, Germany. MDA-MD-
453, BT-474, and HCC-1954 cells were maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS). SKBR3 cells were
cultured in McCoy’s 5A medium supplemented with 10% FBS. JIMT-1 cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% FBS. Penicillin/streptomycin (1%) was added to
all of the culture media, and the cells were cultured at 37 °C with 5% CO2.

Droplet digital PCR (ddPCR)
The copy number of the HER2 gene was analyzed using droplet digital PCR
(ddPCR) on a QX200 Droplet Digital PCR System by Bio-Rad Laboratories.
Fluorescent probes (FAM and HEX) were prepared from the PrimePCRTM

ddPCRTM Copy Number Assay for ddPCR (dHsaCP1000116 for HER2,
dHsaCP2500349 for EIF2C1, and dHsaCNS516206038 for POLR2A as the
reference control) (Bio-Rad Laboratories Inc., Hercules, CA, USA). A total of
20 µl of PCR mixture was prepared with 10 ng of genomic DNA using 2X
ddPCR supermix for the probe (10 µl) and 20X HER2 and EIF2C1 or POLR2A
probes (FAM/HEX) (1 µl). PCRs were run on a Mastercycler nexus gradient
Thermal Cycler (Eppendorf, Hamburg, Germany) at 95 °C for 10min,
followed by 40 cycles of 94 °C for 30 s, 55 °C for 60 s, and a 10min
incubation at 98 °C. Then, the PCR plates were read with a Bio-Rad QX200
droplet reader (Bio-Rad Laboratories, Inc.) and QuantaSoftTM version
1.4.0 software (Bio-Rad Laboratories, Inc.) to assess the number of droplets
positive for HER2 and EIF2C1 or POLR2A.

Viability assay
Breast cancer cell lines were seeded in triplicate at 2–4 × 103 cells per well,
depending on the cell line, in 96-well plates. We also treated breast cancer
cell lines with neratinib (Selleckchem, Houston, TX, USA) or lapatinib
(Selleckchem). After 48 h of treatment with the test compounds, cell
viability was examined using a Cell Counting Kit-8 (CCK-8, Dojindo
Laboratories, Kumamoto, Japan). Dimethyl sulfoxide (DMSO) (0.1%) was
used as the control. The half-maximal inhibitory concentration (IC50) was
analyzed using GraphPad Prism (version 5.03, GraphPad Software, San
Diego, CA, USA).

Western blot
Total protein was extracted from cell lines or tissues using RIPA lysis buffer
(Thermo Fisher Scientific) with protease and phosphatase inhibitor
cocktails (GenDEPOT, Baker, TX, USA) following the manufacturer’s
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instructions. The protein concentrations were determined via a protein
assay solution from Bio-Rad Laboratories. Proteins were separated via
sodium dodecyl sulfate‒polyacrylamide gel electrophoresis (SDS‐PAGE),
and the separated proteins were transferred to polyvinylidene fluoride
(PVDF) membranes (Merck Millipore, Billerica, MA, USA). The blots were
then blocked for 1 h with 5% skim milk (BD Biosciences, San Diego, CA,
USA) in Tris-buffered saline containing 0.1% Tween 20 and incubated
overnight with the indicated primary antibodies. Antibodies against the
following proteins were used: phospho-HER2-Tyr1248 (Cell Signaling
Technology, CST), HER2 (Abcam, Cambridge, UK), phospho-HER2-Ser1054
(Thermo Fisher Scientific), and β-actin (CST, used as the loading control).
Proteins were visualized via a horseradish peroxidase-conjugated second-
ary antibody (CST) and an enhanced chemiluminescence (ECL) reagent
(Bio-Rad Laboratories).

Multiplex immunofluorescence staining
Multiplex immunofluorescence staining for cytokeratin (CK), PD-L1, CD68,
CD8, FOXP-3, and PD-1 proteins was performed using a Leica Bond Rx
Automated Stainer (Leica Biosystems, Newcastle, UK). Slides with tumor
tissue sections were incubated with antibodies against the following
proteins: CK (NBP2-29429; Novus Bio; dilution 1:300), PD-L1 (136845; CST;
dilution 1:300), CD68 (ab192847; Abcam; dilution 1:300), CD8 (MCA1817;
Bio-Rad; dilution 1:300), FOXP3 (ab20034; Abcam; dilution 1:100), and PD-1
(ab137132; Abcam; dilution 1:500). Then, the sections were incubated with
the Polymer HRP Ms+Rb (ARH1001EA, AKOYA Biosciences) and subse-
quently treated with an Opal fluorophore (Opal690, Opal570, Opal520,
Opal620, Opal480, or Opal780). Nuclei were subsequently visualized with
DAPI, and the sections were coverslipped with ProLong Gold antifade
reagent (P36934, Invitrogen). The slides were scanned using the Vectra
Polaris Automated Quantitative Pathology Imaging System (Akoya
Biosciences, Marlborough, MA, USA), and regions of interest were selected
for all available tumor-containing areas. Images were analyzed using
Inform 2.5 software (Akoya Biosciences, Marlborough, MA, USA) and TIBCO
Spotfire™ (TIBCO, Palo Alto, CA, USA).

Homologous recombination deficiency (HRD) score
The HRD score was determined as a simple sum of three factors: NtAI
(number of telomeric allelic imbalances), LST (large-scale state transitions),
and HRD-LOH (HRD loss of heterozygosity). Tumors with HRD scores ≥ 42
were defined as HRD-high. For the determination of HRD scores via WES,
BAM files of tumor samples were applied to the Sequenza followed by the
scarHRD and/or HRDetect package using the default parameters as
previously described28–30.

Differentially Expressed Gene (DEG) analyses
DEG analyses were conducted using edgeR31, Cuffdiff232, and DESeq233

following previously published protocols with default parameters. edgeR
employed generalized linear models with tagwise dispersion, and raw
counts were used as the primary input. As Cuffdiff2 does not work with
count matrices, aligned transcriptomic reads were assembled into
transcripts using Cufflinks with quartile normalization, bias correction,
multiread correction, and a reference gene model. Cuffdiff2 identified
DEGs via geometric library normalization and per-condition dispersion
estimation. Adjusted p values were calculated with Benjamini‒Hochberg
false discovery correction (5%) for all methods.

Significance of mutation
The MutSigCV algorithm (v.1.3.5)34 was employed to discern significantly
mutated genes in our cohort. The default parameters of three inputs,
coverage table files, covariate table files and mutation type dictionaries,
were used to run MutSigCV, which uses a statistical framework to
evaluate the observed mutation patterns against background mutation
rates while considering covariates, including sequence context and
replication timing.

Integrative data analysis
Subtypes were identified on the basis of individual types of data (mRNA
sequencing data, whole proteome, phosphoproteome) expressed in at
least 70% of patient samples. Median absolute deviations (MADs) were
calculated for the individual data, and the top 10% of the most variably
expressed genes were subjected to subsequent statistical analyses. On
the basis of the MAD values, we then selected the molecules with the

top 10% of MADs: 1,468 genes, 723 proteins, and 128 phosphopeptides.
Next, we applied network integration based on consensus clustering to
conduct unsupervised classification and to identify proteogenomic
features that represent characteristic expression patterns for each
cluster. The three data types were aggregated to generate an integrated
network and similarity matrix, followed by the designation of consensus
clusters. The criteria for determining the number of clusters were as
follows: relatively high consistency within clusters, a relatively low
variation coefficient, and no appreciable rise in the area under the
cumulative distribution function (CDF) curve. The samples most
representative of the clusters were identified on the basis of their
positive silhouette width.
To determine the representation of intrinsic subtypes of our cohort, the

PAM50 model was applied to TPM-normalized RNA-seq data using the
“genefu” R package (v3.12)35.
Single-sample gene set enrichment analysis (ssGSEA) was performed for

each sample using log2-transformed and quantile-normalized RNA-seq
data and the global proteome for the molecular signatures database
(MSigDB) GeneSets36 via GenePattern 2.037 and Gene Ontology (GO)
biological process signatures. The gene set scores represent the
enrichment scores obtained from ssGSEA. To generate the receiver
operating characteristic (ROC) curve and calculate the area under the
curve (AUC) from the ssGSEA results and binary phenotype classification,
we used ssGSEA_ROC from GenePattern 2.0. Statistical significance was
determined using a false discovery rate (FDR) of less than 0.01. To obtain
individual enrichment scores for each pairing of a sample and a gene set,
we used the ssGSEA projection on the GenePattern server using t test
statistics with a p-value less than 0.001.

Immune profiling and downstream analysis
To calculate RNA-based tumor immune scores and estimate immune-cell-
specific contributions to each tumor, TPM data were analyzed using
ESTIMATE38, CIBERSORT in absolute mode39, xCell40, and the MCP
counter41. We also inferred the immune cell infiltration by ssGSEA using
a published immune gene signature42. Protein-based immune scores for
stimulatory and inhibitory immune modulators, as well as the set of HLA
proteins, were calculated as the mean of the protein log ratios in each set
defined in Thorsson et al43.

Kinase phosphorylation outliers
To identify the kinase activity characteristic of each PAM50 and major
integrative clusters (iClusters), we used BlackSheep’s differential extremes
value analysis module44. For each phosphosite, the median and
interquartile range (IQR) were calculated across all tumors. A site was
defined as an outlier if it was more than 1.5 times the IQR above the
median. The phosphosites were then collapsed into proteins by counting
outlier and nonoutlier values per sample. For each group of interest (e.g.,
PAM50 or iCluster), proteins that were not enriched in outliers in that
group and proteins without at least 30% of samples with an outlier were
removed. Following filtering, outlier and nonoutlier sites per gene were
counted for each group of interest, and Fisher’s exact test was used to
calculate a p-value with multiple hypothesis correction via the Benjamini‒
Hochberg (BH) procedure. For additional insight into kinase activity, we
visualized the enrichment of kinase activation loop phosphorylation, which
was calculated using a rank sum test.

Kinase-substrate enrichment analysis (KSEA)
KSEA was performed using the KSEA App web-based tool45 with
phosphosite data with a cutoff of p < 0.05 and a substrate count of ≥ 1.
Student’s t-test was used to calculate the p value, and the mean ratio was
used to determine the fold change compared with the other four subsets.
KSEA computes a normalized score to measure relative kinase activity in
cluster 1 versus others using the difference in the mean log fold changes of
predefined substrate groups of the kinase, as referenced from the
PhosphoSitePlus46 and NetworKIN databases47. In the latter database,
kinase–substrate annotations with a NetworKIN score of less than five are
discarded. The mean log fold changes of all substrates were divided by the
standard deviation of log fold changes across all phosphosites, followed by
an adjustment to the score for the number of substrates in the data that
were annotated to the kinase. The statistical significance of the scores was
calculated using a one-tailed z test, followed by BH multiple testing
correction. Kinases with z scores and corresponding p values less than 0.05
were considered significant.
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RESULTS
Patient Cohort Description
The baseline characteristics of the 126 patients with YBC are
summarized in Supplementary Table 1. The median patient age
was 37 years (range: 25–40). Seventy-six patients (60.3%) had
stage II disease, and 64 patients (50.8%) had node metastasis at
the time of diagnosis. Sixty-five patients (51.6%) had a histological
grade of 3. ER was positive in 84 patients (66.7%), PR was positive
in 73 patients (57.9%), and HER2 was positive in 25 patients
(19.8%). Based on the clinical classification of breast cancer with
ER, PR, HER2, and Ki-6748 statuses, 33 patients were classified as
luminal A type (26.2%), 55 as luminal B type (43.7%), 10 as HER2
type (7.9%), and 25 as TNBC type (19.8%). All patients were
diagnosed with invasive ductal carcinoma. Overall, 113 patients
(89.7%) underwent systemic chemotherapy, 104 patients (82.5%)
underwent adjuvant radiotherapy, and 89 patients (70.6%)
underwent adjuvant hormone therapy. The median follow-up
period was 94.3 months (range: 4.0–254.3), 37 patients (29.4%)
experienced recurrence, and 17 (13.5%) died.
All of the patients in this study (n= 126, 100%) were initially

diagnosed under the age of 40 and premenopausal, and TCGA
data largely consists of patients with breast cancer over the age of
40 (n= 1,998, 91.1%). Compared with the TCGA cohort (n= 1116),
our patients demonstrated a greater proportion of the basal
subtype (28.6% KNCC-YBC vs. 16.5% TCGA) and HER2-enriched
subtype (15.9% vs. 6.3%). This difference was maintained when
compared to young patients (age ≤ 40) in the TCGA cohort (basal
type 17.7%, HER2 type 4.4% in TCGA_YBC [n= 158]). This finding
is comparable to the findings of a previous study in which Asian
patients with breast cancer had a greater prevalence of HER2-
positive cancers than Caucasian women did10,49.

Genomic landscape of early-onset breast cancer
We performed an integrated analysis of molecular data from
patients through WES, WTS, and mass spectrometry-based
proteomics, which provided robust quantification of proteins
and phosphoproteins (Fig. 1a). Whole-exome sequencing of
126 samples revealed 30,193 somatic mutations in the study
cohort. Each patient harbored a median of 119 somatic mutations
per sample (range: 2–2858 somatic mutations). Significance
analysis of the somatic mutations, employing covariates related
to the mutational processes, identified the key mutated genes,
including TP53, PIK3CA, GATA3, MAP2K4, and ARID1A (Fig. 1b). TP53
(60%), PIK3CA (43%), and GATA3 (36%) were the most frequently
mutated genes in this cohort. GATA3 somatic mutations were
mostly mutually exclusive with TP53 mutations (Fisher’s exact test,
P < 0.01), with PIK3CA mutations exhibiting similar mutual
exclusivity patterns (P < 0.01). Overall, approximately 68% of the
patients possessed at least one mutation in one of these three
genes. The prevalence of somatic mutations in MAP2K4 and
ARID1A in breast cancer has also been documented in other
studies50–53, indicating the presence of a congruent mutational
profile within the early-onset Asian breast cancer demographic.

Molecular subtype classification on the basis of multiomic
profiles
In addition to classical pathological and clinical laboratory-based
stratification of the molecular subtypes of the cohorts using
hormone receptor and HER2 immunohistochemistry (IHC) ana-
lyses, we attempted a robust molecular classification of YBC
cohorts based on a multiomics dataset. Unsupervised clustering of
the three data platforms (proteome, transcriptome, and phospho-
proteome) resulted in discordant stratification unique to each
molecular layer. A consensus integrative classification encompass-
ing the three molecular data layers produced five iClusters within
the young Korean breast cancer cohort (Fig. 1c).
Cluster 1 was significantly concordant with the classical PAM50-

based HER2-enriched subtype. This cluster was characterized by a

high prevalence of HER2 amplification and TP53 mutations (69.6%
and 82.6% in cluster 1, respectively). The key pathways in this
cluster included protein secretion, DNA replication, and repair.
Cluster 2 was almost invariably consistent with the basal-like
cancer type and presented a high frequency of TP53 mutations
and an absence of hormone receptor and HER2 mutations.
Cluster 2 was associated with the activation of pathways such as
KRAS signaling, autophagy, and cell cycle processes and the
negative regulation of apoptosis. Clusters 1 and 2 demonstrated
the worst prognosis, with recurrence and metastasis events
frequently observed within 5 years after surgical resection (Fig.
1d). Cluster 3 largely overlapped with the classical luminal B
subtype, whereas cluster 4 demonstrated closer alignment with
the classical luminal A subtype. The important pathways of cluster
3 and cluster 4 included estrogen signaling, the cell cycle, DNA
replication and repair, and fatty acid metabolism (Fig. 1c). Those
clusters of young Korean patients with breast cancer experienced
more frequent recurrence and/or death events 5 or more years
post-diagnosis of breast cancer (Fig. 1d). All cases of late relapse
in these clusters were ipsilateral (11/11, P < 0.00001, Fisher’s exact
test); thus, the late recurrent tumors seemed to have originated
from residual and/or resistant tumor cells left from their primary
tumors after a sustained period of dormancy rather than from the
manifestation of a second primary tumor. In contrast, basal-type
and HER2-type Korean YBC demonstrated completely opposite
biphasic patterns of survival probability; these groups’ relapse
and consequent death events were more clustered in the first 5
years, followed by a plateau in survival probability. The
dichotomy of biphasic survival probability between luminal and
nonluminal Korean patients with breast cancer is substantially
distinct from the clinical course of Caucasian breast cancer, where
luminal A breast cancer shows the most indolent phenotype,
followed by luminal B breast cancer and HER2 breast cancer, with
the basal group having the highest risk patterns54. The results of
the integrated analysis revealed a distinct subtype, cluster 5,
which had a very good prognosis, unlike the other four clusters
(Fig. 1d). The significant pathways of cluster 5 included
vasculature development, endothelial cell proliferation, and
oxidative phosphorylation.
To examine the impact of somatic copy number alterations

(SCNAs) on the levels of mRNAs and proteins, we conducted
univariate correlation analysis to identify features that exhibited
statistically significant correlations (Fig. 1e). This analysis consid-
ered changes in ‘cis’—affecting genes within the altered loci—and
‘trans’—impacting genes located elsewhere. We evaluated the
genes in this cohort, each with corresponding SCNA, mRNA, and
protein data, by calculating the correlation and its statistical
significance for all CNA–mRNA and CNA–protein pairings. Notably,
61% of the CNA-mRNA pairs and 30% of the CNA–protein pairs
demonstrated significant positive ‘cis’ correlations. We further
scrutinized the subset of these pairs that included well-
characterized oncogenes and tumor suppressor genes. ‘Trans’
effects appeared as prominent vertical bands in the analysis, with
frequency histograms highlighting significant ‘hot spots’ of ‘trans’
correlation. Interestingly, correlations between CNA and proteins
were generally weaker than those observed for CNA and mRNAs.
The most pronounced ‘trans’ relationships at the protein level
were identified in specific CNA regions, including regions of
chromosome 5 and chromosome 8, in early-onset Korean breast
cancer.

Targetable elements associated with clusters and genomic
alterations
Next, we examined the functional impact of genetic alterations
on the abundance of both cis-acting (cognate gene products)
and trans-acting (other gene products) proteins and their
phosphorylation sites (Fig. 2a, b). Several cis and trans associa-
tions were discernible. These include enhanced expression of
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HER2 proteins (Fig. 2a) and strong cis-phosphorylation (Fig. 2b) in
HER2-positive breast cancers, cementing their role as potent
drivers of alterations in a subset of breast cancers. Migration and
invasion enhancer I (MIEN1) and growth factor receptor-bound
protein 7 (GRB7) are genes located proximal to the ERBB2 gene
and are concomitantly overexpressed in HER2-positive breast
cancer subgroups (Fig. 2a, b). MIEN1 has been shown to
functionally increase the invasive and migratory phenotypes of
various types of cells in breast cancer55. Additionally, GRB7
overexpression facilitates the phosphorylation of both AKT and
HER2/neu in HER2/neu-overexpressing cells, promoting tumor
growth in vivo56. These findings suggest additional roles for
these proximal genes in breast cancer. Several phosphorylation
sites associated with common breast cancer oncogenes were

identified and clustered in the cell cycle and DNA repair
activities, which is consistent with their established roles in
cancer.
We investigated which kinase activities were enriched in the

molecular subgroups defined in this study (Fig. 2c). As expected,
HER2 kinase activity was upregulated in cluster 1, which was
highly correlated with the classical PAM50 Her2 subgroup. Cluster
2 (basal subgroup) was enriched with cell cycle kinases, including
CDC7, CDK1, and CDK2. Hormone receptor-positive cancer groups
(clusters 3-4) presented increased activity of kinases involved in
immune regulation. To identify potential therapeutic targets
specific to each iCluster subtype, we used phosphoproteomic
data to determine kinase activation (Fig. 2d). We identified
phosphorylated kinases that were enriched in each iCluster

Fig. 1 Molecular portraits of early-onset breast cancer. a Data structure outlining the molecular profiles of 126 patients with early-onset
breast cancer, categorized according to each type of molecular data generated in the current study. WES (n= 163), RNA-seq (n= 170),
proteome (n= 140), and phosphoproteome (n= 139) data were generated for 178 young- breast cancer patients. Among these patients,
multiomic data were generated for 126 individuals. b Genomic landscape of major breast cancer driver genes on the basis of mutational and
somatic copy number status. Genomic alterations are color-coded in accordance with the type of mutation. The bar graph on the right
denotes the total count of each specific genomic alteration observed. PAM50: PAM50 breast cancer subtypes; Stage: Pathological stage of
breast cancer; iCluster: 5 integrative clusters based on proteogenomic analysis of the current study cohort; HRD: the level of homologous
recombination deficiency on the basis of next-generation sequencing data; HRD LASSO: classification of HRD status from next-generation
sequencing data; c Heatmap illustrating supervised clustering of differentially expressed genes (upper panel) and proteins (lower panel)
across integrative molecular clusters (Kruskal‒Wallis test, FDR p < 5 × 10−5). The pathways enriched by the differentially expressed genes and
proteins are annotated on the left. d Kaplan‒Meier curves showing the progression-free survival outcomes of patients in the integrative
clusters in the dataset. Stratification of patients on the basis of comprehensive multiomics data yielded five distinct molecular clusters, each
associated with a different clinical outcome. Clusters 1 (red), 2 (blue), 3 (yellow), 4 (green), and 5 (violet) are shown. e Correlations of somatic
copy number alterations (SCNAs, x-axis) with mRNA (left) and protein (right) abundances (y-axis).
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subtype via outlier enrichment analysis. The dataset revealed
several druggable targets and kinases, including ERBB2 (trastuzu-
mab), in the cluster 1 subtype. The cluster 2 subtype includes
isolated PML (tretinoin) and RCSD1 (imatinib). PDCD4 (paclitaxel)
was found in cluster 4, whereas CD34 (prednisolone) and TJP1
(dexamethasone) were present in cluster 5.
These proteins and kinases are potential targets for subtype-

specific treatment. We also investigated the associations between
specific genomic alterations and kinase activity (Fig. 2e). We
identified 16 kinases significantly associated with genomic
alterations. RB1, PTEN, and MAP2K4 mutations formed a strong
subcluster with increased activity of several canonical cell cycle
kinases, including the CDK1, CDK2, CDK7, and CDC7 proteins.
These associations were also detected in ARID1A-mutant breast
cancers. The PLK4, CSNK2A2, HER2, PRKCT, and PRKCH proteins
are associated with HER2 genomic alterations. GATA3 genomic
alteration was associated with increased activity of the HCK and
TYK2 kinases, whereas PIK3CA genomic alteration was linked with
the CDK19 kinase.

Proteogenomic analysis of HER2-type YBC
We assessed the HER2 driver status by integrating genomic and
proteomic data to refine its classification and clinical significance.
HER2 status was also grouped by classical IHC and in situ
hybridization testing following ASCO-CAP guidelines (HER2+: IHC
score of 3+ or an IHC score of 2+ fluorescence in situ
hybridization (FISH); silver-enhanced in situ hybridization (SISH):
HER2 equivocal status: IHC score of 2+ without FISH results or
amplification by FISH without IHC results)57. Proteogenomic
analysis revealed that 19 patients who presented high levels of
both HER2 protein and phosphorylated HER2 were designated as
HER2 proteogenomic status positive (HER2 PG+) (Fig. 3a). HER2
PG+ cases were enriched mostly in cluster 1, followed by cluster 3.
The majority of HER2 PG+ samples (16 out of 19) demonstrated
largely consistent pathological designations with confirmed HER2-
positive expression according to IHC, FISH, and SISH tests. The
remaining three patients who were grouped according to HER2
equivocal status demonstrated a high HER2 copy number as a
result of droplet digital PCR analysis. Although we identified 28

Fig. 2 Targetable elements associated with clusters and genomic alterations from proteogenomic analysis of early-onset East Asian
breast cancer. Cis- and trans-effects of major genomic alterations, including mutations and copy number variations, on protein (a) and
phosphoprotein (b) levels. The cis and trans effects of each genomic alteration can be categorized into major cancer hallmark pathways. c Plot
depicting kinases that exhibited preferential substrate phosphorylation within each integrated molecular cluster. d Heatmap showing the
fraction of outlier values in each sample per protein. The proteins shown are kinases highly phosphorylated in each cluster, with an FDR of less
than 0.01 according to BlackSheep. The top panel shows the classifier based on the five major integrative clusters (iClusters). The right panels
depict the abundance of the kinase activation loop and kinase substrate enrichment. e Heatmap showing q values from kinase substrate
enrichment analysis for enrichment of phosphorylation outliers (y-axis) in samples with the indicated mutated gene (x-axis). Kinases with an
FDR of less than 0.01 are shown.
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Fig. 3 Proteogenomic classification of HER2 status in YBC. a Proteogenomic analysis of the HER2 locus in the current cohort. The heatmap
displays the clinical and molecular data (top panel), SCNA data (center upper panel), RNA expression data (center lower panel), and protein
expression data (bottom panel) of genes located near HER2 on chromosome 17q in the corresponding samples. HER2 IHC FISH SISH:
pathological index of HER2 status from immunohistochemistry, fluorescence in situ hybridization or silver-enhanced in situ hybridization,
HER2 PG Status: Her2 proteogenomic status. b Proteogenomic classification of the HER2 breast cancer subtype. Proteogenomic status of HER2
combined with HER2 protein levels (x-axis) and HER2 phosphorylation status (y-axis). HER2 proteogenomic status was stratified and depicted
as either blue (positive) or red (negative). c Phosphopeptide levels of components of the HER2 signaling pathway according to the refined
classification of HER2. The top panel of the heatmap outlines the subtype classifications and clinical marker status for each sample, whereas
the center panels denote SCNAs and protein levels for genes in the amplicon closely associated with HER2, followed by the corresponding
protein levels. The bottom panel illustrates the abundances of phosphopeptides, such as serine residues 1066, 1107, 1054, 1083, and 1151
from the HER2 pathway. d HER2 protein levels and drug response to HER2 inhibitors in breast cancer cell lines. (Left upper) Distribution of
HER2 copy number in HER2-positive cell lines. The HER2 copy number was measured in HER2-positive breast cancer cell lines via droplet-
digital PCR (ddPCR). EIF2C1 and POLR2A were used as reference genes to determine the ratios of HER2 to EIF2C1 or POLR2A. (Left lower)
Western blot analysis was conducted to assess the expression and phosphorylation status of HER2 in HER2-positive breast cancer cell lines.
The HER2-positive breast cancer cell lines SKBR3, JIMT-1, HCC-1954, MDA-MB-453, and BT-474 were separated via SDS‒PAGE and
immunoblotted. Western blotting was performed for total HER2, p-HER2 (Ser1054, Tyr1248), and β-actin. (Right) Drug sensitivity test of HER2
inhibitors (neratinib, lapatinib) in breast cancer cells phosphorylated at serine 1054. MDA-MB-453, BT-474, and SKBR3 cells were treated with
neratinib or lapatinib for 48 h. Data are presented as the mean ± SEM. Drug sensitivity assays were performed independently in triplicate.
e Kaplan‒Meier curves showing progression-free survival outcomes according to HER2 PG status or PAM50 class.
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patients with HER2 gene amplification on the basis of copy
number alterations, only 19 of these patients were positive for
HER2 by PGstatus. Consistent with the proximal location of the
HER2 gene on chromosome 17q12, the copy number, RNA, and
protein expression of GRB7 and STARD3 were concomitantly
increased in patients with HER2 amplification (Fig. 3a). The protein
levels and phosphorylation metrics of HER2 more robustly and
clearly segregated the designation between patients with positive
(HER2-PG+) and negative (HER2-PG-) HER2 PG status (Fig. 3b).
In the stratification of patients with breast cancer with HER2

driver dependency, there was a notable incompatibility between
conventional PAM50-based classification, classical pathological
HER2 type designation, and proteogenomic-based integrative
clustering. To gain deeper insights into the biological character-
istics that led to sample clustering within the HER2-enriched
subtype (HER2E) group despite inconsistent ERBB2 status, we
conducted an analysis of phosphosites that are known to
canonically relay kinase signaling from the human ERBB2 protein.
Patients assigned to the HER2E group were divided into HER2EPG-
and HER2EPG+ groups on the basis of their PG status (Fig. 3c). As
anticipated, all PAM50 HER2EPG+ samples presented elevated
levels of ERBB2 phosphopeptides. Five additional cases of the
PAM50 HER2-enriched subtype were classified into the HER2EPG-
subgroup. A close examination of the five cases revealed that
these samples shared common activated receptor tyrosine kinase
(RTK) downstream pathway signatures, including ARAF, MAPK3,
and AKT1 (Fig. 3c). This finding indicates that the
PAM50 simplification scheme mistakenly designates some sam-
ples with activated RTKs as belonging to the HER2 subtype,
regardless of their subtype-specific nature. Indeed, some samples
demonstrated an activated phosphorylation profile of IGF2R,
further suggesting that some breast cancer samples might be
targetable with precise segregation of RTKs with a suitable driver
dependency nature14.
Quantitative phosphoproteomic analysis revealed that HER2

PG+ cases exhibited elevated levels of HER2 serine phosphopep-
tides, including serine residues 1054 and 1066, in comparison to
PG- cases (Fig. 3c). Given the close association between the
phosphorylation status at serine 1054 (S-1054) and HER2 PG
status, we investigated its potential as a predictive biomarker for
the sensitivity of breast cancer cell lines to HER2 inhibitors. Despite
the limited number of cell lines analyzed, the phosphorylation of
S-1054 was found to be correlated with the response to lapatinib
and neratinib treatments (Fig. 3d). We then compared the effects
of a HER2 inhibitor on the phosphorylation status of HER2-positive
breast cancer cell lines. The phosphorylation level of HER2 at
tyrosine 1248 (Y-1248) decreased following treatment with
neratinib. The phosphorylation of S-1054 decreased in HER2-
positive breast cancer cell lines following neratinib treatment
(Supplementary Fig. 1). These results suggest that decreased
phosphorylation of S-1054 on HER2 could serve as a predictive
marker for sensitivity to HER2 inhibitors.
Among patients with amplified HER2, the proteogenomic status

of HER2 was potentially prognostic, whereas PAM50 HER2
enrichment was not (Fig. 3e). The patients with HER2 PG+ status
tended to have poorer clinical outcomes among the patients with
amplified HER2 (p= 0.024).

Proteogenomic analysis of the tumor immune
microenvironment
Using transcriptome, proteome, and phosphoproteome datasets,
we attempted to classify patients according to their immune
signals to understand their tumor immune microenvironments at
the molecular and cellular levels (Fig. 4a). Clusters 1 and 2 were
enriched in immune signatures, and the mRNA and protein
expression levels of immune checkpoint targets, such as CD276,
TIGIT, LAG3, and CTLA4, were also elevated relative to those in the
other clusters. Cluster 3 included an increased proportion of

patients with fewer immunogenic features, with decreased
numbers of T, B, NK, and monocytic lineages, as well as immune
checkpoint targets. Multiplex IHC staining of five different immune
cell markers (CD8, CD68, FOXP3, PD1, and PD-L1) confirmed the
validity of inferring tumor immune microenvironment features
from a multiomics dataset (Fig. 4b). Correlation analyses of
multiplexed IHC staining data revealed that YBC immune cells
have highly intercorrelated molecular features, confirming the
established correlative nature of immune checkpoint molecules,
such as augmented PD-L1 staining, which is highly correlated with
an increased number of exhausted CD8+ Tregs and immunosup-
pressive macrophages in the tumor parenchyma (Supplementary
Fig. 2). CD8-positive T-cell IHC further validated the inferred active
immunogenic tumor microenvironment (Fig. 4c). We also identi-
fied three immune-based subtypes with distinct immune char-
acteristics (Fig. 4d). Among the three clusters, immune-cluster 2
was assigned an immune hot phenotype, immune-cluster 3 an
immune cold phenotype, and immune-cluster 1 an immune
-intermediate phenotype. There was a positive correlation
between the stromal and immune scores according to the three
immune-based subtypes (R2= 0.4246, p < 0.0001; Fig. 4e).
Classical RNA-seq-based PAM50 classification demonstrated

that each subtype of YBC comprises a subset of patients with an
active immune signature (Supplementary Fig. 3), albeit with higher
immune scores in the basal PAM50 subtype (Supplementary Fig.
4) (ANOVA, P= 0.007). The active immune tumor microenviron-
ment consisted of elevated levels of stimulatory immune proteins
and HLA proteins and increased proportions of tumor-infiltrating
lymphocytes (TILs) and myeloid dendritic cells (Supplementary
Fig. 3).
In contrast to the PAM50 stratification, integrative multiomics-

based clustering generated immune microenvironment features
that segregated cluster 3 from the other clusters (ANOVA,
P= 0.001) (Supplementary Fig. 5). The evaluation of the clinical
characteristics of the poorly immunogenic subgroup tended to be
associated with a poor clinical prognosis (Supplementary Fig. 6).
The clinical association of poor immunogenic features with a poor
prognosis was observed in the luminal B PAM50 subtypes in this
study cohort (Fig. 4a), suggesting that immune microenvironment
features in specific subgroups of early-onset breast cancer
identified through multiomics integration may serve as prognostic
molecular markers for stratifying high-risk late-onset luminal B
subtype patients.

Proteogenomic analysis of homologous recombination-
deficient (HRD) breast cancer
To investigate the mutational processes involved in early-onset
East Asian breast cancer, we deconvoluted the mutational
signatures in the cohort. Four prevalent mutational signatures—
BRCAness, APOBEC, mismatch repair defects, and aging signa-
tures—were observed (Fig. 5a). We also examined germline
pathogenic variations, defined as mutations that were reported as
the most likely disease-causing variants in ClinVar or mutations
that are truncating proteins in 10 genes reported to increase
breast cancer susceptibility with a relatively strong pene-
trance10,58,59. Among the 10 breast cancer susceptibility genes,
10.3% (13/126) of patients harbored pathogenic germline
variations, whereas one patient was observed to possess
pathogenic variations in both RAD50 and BRCA1. Pathogenic
BRCA1/2 germline mutations were more prevalent in Korean
patients with YBC, affecting 8.7% of patients in the study cohort
compared with 3.8% of patients in the TCGA database (Fisher’s
test, P < 0.02). BRCA germline mutations, which are classical
biomarkers of BRCAness and PARP inhibitors, only partially
explained the proportion of patients with elevated genomic
HRD levels (Fig. 5b). We interrogated the proteome data to search
for proteins closely associated with the features of HRD (Fig. 5c).
Among these, 20 highly ranked proteins were chosen whose
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combination could segregate genomic HRD-positive and HRD-
negative cancers (Fig. 5d).

Prognostic significance of protein‒RNA correlations
Positive correlations existed between the majority of the
quantified proteins (>90%) and their corresponding mRNA
transcripts within the present study cohort, with a median of
0.34 (Supplementary Fig. 7a). These correlations were not
contingent upon technical factors such as the average protein
precursor area or the number of peptide spectral matches.
Structural ribosomal proteins and those involved in translational
processes presented the lowest correlations between protein
and transcript abundance (Supplementary Fig. 7a), highlighting
their function and regulatory control, primarily at the protein
level.
Notably, proteins derived from transcripts identified in breast

cancer drivers, including estrogen receptor responses, exhibited
the strongest mRNA‒protein correlations (Supplementary Fig.
7a), underscoring a direct connection to the protein phenotype

in the major canonical breast cancer driver signaling pathway. In
hormone receptor-positive breast cancer patients, the subgroup
with a high RNA‒protein correlation was associated with a
poorer prognosis than the subgroup with a low RNA‒protein
correlation (Supplementary Fig. 7b, p= 0.0049). This is reinforced
by the greater correlation of genes that respond to estrogen
receptor signaling blockade (Supplementary Fig. 7a). These
findings suggest that protein‒RNA correlations could serve as
promising prognostic markers for predicting late recurrence in
the luminal subtype, necessitating comprehensive external
validation accounting for potential confounders in future
investigations.

DISCUSSION
Patients with YBC have a poor prognosis not only in Western
countries7,60 but also in Korea5, particularly those with luminal A
and luminal B/HER2-type breast cancer61. This phenomenon has
been attributed to tamoxifen resistance5,61. Our proteogenomic

Fig. 4 Immunological landscape of early-onset Korean breast cancer. a Heatmap showing the wide range of expression levels for immune-
related features in each integrative molecular cluster. Protein-derived signatures for immune modulator gene sets are depicted in the top
panel. Z scores of RNA-based immune signatures from xCell, CIBERSORT, ESTIMATE, gene sets from Angelova, and the MCP counter are shown
in the second data panel. The third to fifth data panels show log2 ratios for normalized RNA-seq and proteomics data (the phosphoprotein is
the median for all sites on a given protein) for immune cells and immune checkpoint targets, such as CD276, TIGIT, LAG3, and CTLA4. MCP
median expression: ER: pathological staining of estrogen receptor, PR: pathological staining of progesterone receptor. b Multiplex imaging
portrays the immune microenvironment of the tumor. The upper and lower panels represent samples that correspond to high and low
computational immune scores, respectively. The samples were probed for CK (cytokeratin), PD-L1, CD68, CD8, FOXP-3, and PD-1. The
morphological features are indicated by H&E staining. c Graphs depict the linear regression for correlations between cell counts per total area
(cells/mm2) of each patient from all available ROIs for multiplex imaging probes and the CIBERSORT absolute immune score. *P < 0.05 d YBC
samples are classified into immune-hot (yellow), immune-intermediate (pink), and immune-cold (blue) groups. The heatmap on the right
illustrates various immune components (y-axis) as per the immune clusters. e Collinearity between immune and stromal scores in early-onset
breast cancer. The scatter plot shows the relationship between the computational immune score (x-axis) and the stromal score (y-axis), with
colors corresponding to the three different immune clusters. Spearman rank correlation coefficient analysis of the immune score (x-axis) and
stromal score (y-axis) for immune clusters 1 ~ 3 (R2= 0.4246, p < 0.0001).
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analysis stratified luminal breast cancer patients into a YBC group
with late recurrence (clusters 3 and 4) and very good survival
(cluster 5). This classification system can be used to identify
patients requiring long-term endocrine therapy.
According to the genomic expression analysis, YBC had

significantly lower ERα, ERβ, and PR mRNA expression but higher
HER-2 and EGFR expression. In addition, lower ERα and higher
EGFR mRNA expression were significant predictors of inferior
disease-free survival62.
In our Korean YBC cohort, TP53, PIK3CA and GATA3 were the

most frequently mutated genes, which is consistent with the
results of the TCGA cohort. The TCGA cohort provides three age
groups (≤45, 46-69, and ≥70), and PIK3CA and TP53 were the most
common somatic mutations in all three age groups while GATA3

was the third most common and independent somatic mutation
in young patients, affecting 15.2%63.
Proteogenomic analysis integrating the phosphorylation status

of HER2 can be used to identify true HER2+ patients. Traditionally,
HER2 has been tested for gene amplification or protein over-
expression by IHC and ISH. Through proteomic profiling, not only
quantitative expression but also posttranslational modification of
HER2 could be used for a more precise classification. We identified
the proteogenomic status of HER2 as a potential prognostic
marker among patients with amplified HER2, as patients with
HER2 PG+ status tended to have poorer clinical outcomes than
PG- patients. Especially for Asian patients with breast cancer who
show a high proportion of HER2 enrichment, HER2 PG status may
help predict the clinical outcomes of HER2-targeted therapies.

Fig. 5 Proteogenomic analysis of homologous recombination-deficient YBC. a Mutational signature in early-onset breast cancer displaying
the quantity (upper) and proportion (lower) of somatic mutations per sample belonging to each mutational signature. These include aging
(red), APOBEC (cyan blue), mismatch repair defects (MMR, yellow), and BRCAness (blue) signatures. b Relationship between the homologous
recombination defect (HRD) index and BRCA germline mutations. Germline BRCA mutations have a limited correlation with the degree of
HRD. c Identification of protein elements that are highly correlated with the degree of HRD in breast cancer samples. d Predictive accuracy of
different scoring methods in forecasting HRD status on the basis of scores derived from 20 proteins associated with HRDness. The data are
presented using two different modeling techniques: a generalized linear model and elastic net regularization. The x-axis represents the
predicted HRD score values for each sample. The y-axis indicates HRD status, with 0 representing non-HRD (HRP) and 1 representing HRD.
Scores of D, P (glm): scores derived from the generalized linear model for Dataset D or P, represented by red and black circles. Scores of D, P
(glmnet): scores derived from the elastic net model for Dataset D or P, represented by brown and blue asterisks. P (HRD=D): glm/glmnet:
predicted logistic probability of HRD using the glm or glmnet model, depicted by a gray solid line or black dashed line. Threshold (HRD=D):
glm/glmnet: The threshold value for HRD is D using the glm or glmnet model, shown as a solid or dotted line estimated from the maximum
ROC. The thresholds help distinguish between HRD and non-HRD samples, providing a visual comparison of the predictive power and
accuracy of the glm and glmnet models.
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Furthermore, compared with PG- patients, HER2 PG+ patients
presented increased phosphorylation of the HER2 protein.
Phosphorylation of the HER2 protein has been extensively studied
as an essential regulatory mechanism for protein function, but
relatively little is known about the effects of serine residues
compared with those of tyrosine residues. Our results suggest that
the phosphorylation status of the serine 1054 residue is a good
marker for estimating the PG status of HER2.
PAM50 is a classification tool used to characterize and predict

the outcomes of patients with breast cancer64–66. However, our
results demonstrated that the proteogenomic status of HER2 was
a potential prognostic factor, whereas PAM50 HER2 enrichment
was not. Patients with a HER2 PG+ status tended to have poorer
clinical outcomes. The HER2-positive subtypes show ethnic
disparities, and Korean patients with breast cancer have a high
degree of HER2 enrichment10,49,67. Our results suggest that HER2
PG status is required to select true-HER2+ patients who respond
well to anti-HER2 treatment. As expected, all of the PAM50
HER2EPG+ samples had high levels of HER2 phosphopeptides,
whereas the PAM50 HER2EPG- samples had markedly lower levels
but elevated levels of phosphorylation of other ERBB family
members and of the mitogen-activated protein kinase (MAPK)
signaling pathway compared with PG+ samples. These findings
suggest that complementary pathways that can replace
HER2 signaling may be targetable in PAM50 HER2E tumors
without HER2 amplification.
The tumor microenvironment (TME) is a critical factor that

influences the response to immunotherapy. The cytotoxic subset
of CD8+ T cells can eliminate cancer cells and is associated with
improved patient survival. Conversely, immunosuppressive reg-
ulatory CD4+ T cells (Tregs) or macrophages are associated with a
poorer prognosis68. “Hot” tumors characterized by high levels of
T-cell infiltration generally exhibit more favorable responses to
immunotherapies than “cold” tumors, which have limited T-cell
infiltration69. The existence of TILs within the TME indicates the
presence of an inherent immune response against the tumor,
which is linked to a more favorable prognosis and increased
responsiveness to chemotherapy70.
Compared with more immunogenic cancers, breast cancer,

which is traditionally considered to be poorly immunogenic, or
“cold” with a modest tumor mutation burden (TMB) and a low TIL
count, shows a notable prevalence of APOBEC mutational
signatures71–73. The mutational load in BC exhibits significant
variability, and tumors with higher TMB may exhibit a more
favorable response to immune checkpoint inhibitors (ICIs)74.
Although PD-L1 expression is commonly used as a biomarker, it
alone is not sufficient as a predictor, demonstrating its predictive
value mainly in metastatic TNBC. TNBC and HER2-positive BC are
considered more immunogenic, whereas hormone receptor-
positive BC is considered less immunogenic. However, certain
patients with HER2-positive or hormone receptor-positive BC may
also show promise for immunotherapy in addition to TNBC75.
The study cohort revealed a clinical association between an

unfavorable prognosis and poor immunogenic characteristics,
specifically within the luminal B PAM50 subtypes. This implies that,
in cases where hot immune groups are identified within specific
subtypes, it is essential to consider immunotherapeutic
interventions.
Our proteome-based analysis identified HRD-associated

proteins and an HRDness that could facilitate the adaptive
and versatile identification of patients with YBC who may
benefit from treatment with PARP inhibitors. Additionally, we
demonstrated that protein–RNA correlations can be used to
predict the late recurrence of hormone receptor-positive breast
cancer. These findings have valuable clinical implications for
improving survival outcomes and reducing treatment-related
toxicity by guiding the optimal duration and selection of
adjuvant treatment for patients with breast cancer. These

findings can be clinically applied to guide the optimal duration
and selection of adjuvant treatment for patients with breast
cancer, which is particularly crucial for patients diagnosed with
breast cancer at a young age. Within each standard molecular
subtype of breast cancer, we identified functionally significant
protein groups whose differential abundance closely correlated
with the clinical progression of breast cancer. Moreover, we
derived a recurrence-predictive cluster capable of predicting
late recurrence, specifically for the luminal subtype, and
validated its efficacy in various patient cohorts. Prognostication
currently used for breast cancer depends largely on clinical
subtypes and mRNA-based information. This proteome-
integrated prognostic index plays a crucial role in guiding
treatment duration decisions for early-onset breast cancer,
thereby contributing to improved patient stratification and
personalized treatment approaches.

DATA AVAILABILITY
All data that support the findings of this study are available from the corresponding
authors upon IRB approval.
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