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Spatial cell graph analysis reveals skin
tissue organization characteristic for
cutaneous T cell lymphoma
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Cutaneous T-cell lymphomas (CTCLs) are non-Hodgkin lymphomas caused by malignant T cells
which migrate to the skin and lead to rash-like lesions which can be difficult to distinguish from
inflammatory skin conditions like atopic dermatitis (AD) and psoriasis (PSO). To characterize CTCL in
comparison to these differential diagnoses, we carried out multi-antigen imaging on 69 skin tissue
samples (21 CTCL, 23 AD, 25 PSO). The resulting protein abundance maps were then analyzed via
scoring functions to quantify the heterogeneity of the individual cells’ neighborhoods within spatial
graphs inferred from the cells’ positions in the tissue samples. Our analyses reveal characteristic
patterns of skin tissue organization in CTCL as compared to AD and PSO, including a combination of
increased local entropy and egophily in T-cell neighborhoods. These results could not only pave the
way for high-precision diagnosis of CTCL, but may also facilitate further insights into cellular disease
mechanisms.

Cutaneous T-cell lymphomas (CTCL) present in the form of erythe-
matous lesions, eruptions or patches on the skin. These lesions can both
clinically and histologically resemble other non-cancerous inflamma-
tory dermatological conditions, including atopic dermatitis (AD) and
psoriasis (PSO)1–4, making diagnosis of CTCL challenging. Since CTCL
needs to be treated thoroughly early on5–9, this is a major clinical pro-
blem. Techniques to reliably distinguish CTCL from the mimicking
conditions AD and PSO therefore hold the promise to improve patient
care in CTCL.

While several studies have explored the spatial heterogeneity of the
tumor microenvironment in CTCL and its potential relevance in
prognosis10,11, a systematic quantification of spatial tissue heterogeneity in
the context of CTCL does not exist. This prompted us to generate imaging-
based spatially resolvedprotein abundancemaps of skin tissue samples from
CTCL, AD, and PSO patients treated at the University Hospital Erlangen,
using multi-epitope ligand cartography (MELC)12,13. Based on a visual
assessment of the images, tissue organization was indeed altered in CTCL
compared to AD and PSO samples. To quantify and objectivize this first
subjective impression, we used the popular Squidpy package14 to generate
graph representationsof our data,wherenodesare cells annotatedwith their
cell type and edges encode spatial vicinity.

Since analysis with existing techniques available in Squidpy revealed
only few differences, we developed a Python package called SHouT (short
for “spatial heterogeneity quantification tool”, available at https://github.
com/bionetslab/SHouT), which allows to quantify tissue heterogeneity
based on spatial cell graphs. Relying on well-established concepts such as
Shannon’s entropy15 which have been successfully used for spatial hetero-
geneity quantification inmedical imaging16–18 and single-cell omicsdata19–21,
SHouT provides fast and user-friendly implementations of six graph-based
scores to characterize tissue organization in spatial omics data. SHouT
revealed clear CTCL-specific characteristics of tissue organization, includ-
ing highermixing of cells of different types in the vicinity of T cells in CTCL
as compared to AD and PSO. Randomization tests based on label permu-
tation and subsampling verified the robustness of these findings.

Results
Overview of study design
Figure 1providesanoverviewof ourwork (see “Methods” for details):Using
MELC, we generated spatial protein abundance maps for 69 skin tissue
samples (21 CTCL, 23 AD, 25 PSO). With this, we obtained images of
resolution 2018 × 2018 pixels for at least 35 protein channels per sample,
leading to over 140 million pixel values. We then carried out cell
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segmentation for all images, using the propidium iodide andCD45channels
as markers for the nucleus and cell membrane, respectively. Upon manual
inspection of the segmentation results, one CTCL sample was excluded due
to insufficient segmentation quality, leaving us with a cohort of 68 patients
in total. Subsequently, adaptive thresholding was used to quantify protein
abundances within the individual cells, and cell types were assigned via a
rule-based marker gene approach (Supplementary Fig. 1), using skin tissue
single-cell RNA sequencing (scRNA-seq) data from the Human Protein
Atlas (HPA)22 as reference. We then projected the cell-type labels back on
the 2018 × 2018 image grid, and quantified heterogeneity of cell-type co-
occurrence patterns in the individual samples via Leibovici’s entropy23

(using the leibovici function from the geoentropy package available at
https://github.com/maxkryschi/geoentropy).

Quantifying spatial heterogeneity of spatial omics data with methods
such as Leibovici’s entropy that operate directly on the image space is
straightforward but has the disadvantage that pixels, i.e. entities without
direct biological meaning, are the primary units of analysis. To also enable
cell-based spatial heterogeneity quantification, we therefore computed a
spatial graph for each sample, where two cells are connected by an edge if
they are adjacent to each other in the spatial map. The spatial graphs were
then analyzed with Squidpy’s centrality_scores and nhoo-
d_enrichment functions, which compute the degree and closeness
centralities of the individual cells within the spatial graphs and enrichment
of cell-type co-occurrence within one-hop spatial neighborhoods, and by
computing the modularity24 of the node partitions induced by the assigned
cell types (using the modularity function of NetworkX25). We selected
these scores because they are readily available in the Python packages
Squidpy and NetworkX, which are very widely used in the field of spatial
omics analysis.However, it is important tonote thatnoneof these scoreswas
originally proposed as a score to distinguish between samples fromdifferent
conditions (for instance, the primary purpose of the neighborhood
enrichment method is to mine spatial omics data for cell communication
events).

In addition to relying on these existing tools, we analyzed the cell
graphswith ournovel Pythonpackage SHouT,whichwedevelopedwith the
task of downstream differential analysis in mind. SHouT provides two
sample-level scores that quantify overall tissue heterogeneity:
• The edge-based global homophily score represents the fraction of edges

in the spatial graph that connect cells of the same type. A high score
indicates low overall heterogeneity.

• The node-based global entropy score represents howwell-balanced the
numbers of cells of each cell type are throughout the network. A high
score indicates high overall heterogeneity.

Moreover, SHouT provides three cell-level scores that quantify tissue
heterogeneity within the r-hop neighborhood of an individual cell c in the
spatial graphs (Fig. 1B):
• The edge-based local homophily score represents the fraction of edges

in the r-hop neighborhood of c that connect cells of the same type. A
high score indicates low heterogeneity in the tissue region surrounding
cell c.

• The node-based local entropy score represents how well-balanced the
numbers of cells of each cell type are in the r-hop neighborhood of c. A
high score indicates high heterogeneity in the tissue region surround-
ing cell c.

• The node-based egophily score represents the fraction of cells within
the r-hop neighborhood of c that have the same cell type as c. A high
score indicates lowheterogeneity in the tissue region surrounding cell c.

By specifying the radius r, the user can select the desired granularity of
the cell-level scores. With r = 1, only cells in the immediate vicinity of c are
considered. On the other extreme, setting r to the diameter of the spatial
graph renders local homophily and entropy equivalent to global homophily
and entropy, respectively. Setting r to intermediate values allows the
quantification of mesoscale patterns in the spatial graphs.

Figure 2 provides a high-level overview of the dataset. Figure 2A shows
the average cell-type composition stratified by sample type (see Supple-
mentary Fig. 2 for underlying distributions of sample-specific cell-type
fractions and Supplementary Fig. 3 for a joint t-SNE projection of the
protein expression data of all 68 patients, colored by cell type). With the
exception of an increased abundance of endothelial cells in AD samples and
increased abundance of macrophages in PSO samples, we did not observe
strong differences in cell-type composition between the three conditions,
emphasizing the need for more in-depth analyses. Figure 2B shows the
propidium iodide channel used for cell nucleus identification for one
sample.

Heterogeneity analysis reveals CTCL-specific patterns in the
neighborhoods of T cells and basal keratinocytes
Figure 3 shows the results of analyzing the spatial graphs with SHouT,
Leibovoci entropy, modularity, and Squidpy’s centrality_scores
function (see Supplementary Fig. 10 for the results obtained with the
nhood_enrichment function). All shown P values were computed with
the two-sided Mann–Whitney U (MWU) test and were Bonferroni-
corrected with respect to the number of tests per score type (neighborhood
enrichment scores: number of condition pairs × number of cell-type pairs;
centrality scores, network modularity, Leibocovi centrality, and all global

Fig. 1 | Overview of our analyses. A We generated
multi-antigen images for skin tissue samples from
CTCL, AD, and PSO patients. Subsequently, images
were pre-processed via cell segmentation, cell-level
protein abundance quantification, and cell-type
assignment. BWe then computed spatial graph
representations for all samples, which we analyzed
using Squidpy, Leibovici’s entropy, modularity, as
well as different heterogeneity scores implemented
in our Python package SHouT: local and global
entropy, local and global homophily, and egophily.
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SHouT scores: number of condition pairs; local heterogeneity SHouT
scores: number of condition pairs × number of cell types × number of tested
radii (10)).

The two global heterogeneity scores show that overall tissue hetero-
geneity is highest in CTCL (lowest global homophily, largest global
entropy), followed by PSO and AD (Fig. 3A1). This is supported by the
results obtainedwith Leibovici centrality (Fig. 3A2, largest values for CTCL,
indicating higher heterogeneity) and network modularity (Fig. 3A3, lowest
values for CTCL, indicating decreased clustering of cells of the same type).
However, of all four global heterogeneity measures, only the differences in
global homophily reach statistical significance for both the comparison
between CTCL and PSO and the comparison between CTCL and AD.

When focusing onT cells (Fig. 3B), we observe significantly elevated
local entropy (Fig. 3B1) and egophily (Fig. 3B2) scores in CTCL. That is,
in skin samples from CTCL patients, T cells tend to cluster together
(unsurprisingly, since the tumor cells are T cells) and at the same time
are surrounded by tissue that exhibits a higher mixing of cell types than
the spatial neighborhoods of T cells in AD or PSO (increased local
entropy). Interestingly, the differences are more pronounced and the
score distributions are smoother for radius r = 5 than for r = 1, thereby
highlighting the importance of incorporating r-hop neighborhoods into
SHouT’s local heterogeneity scores. At radius r = 100, the score dis-
tributions become less smooth, but nonetheless maintain the pro-
nounced differences between the conditions (see Supplementary Figs.
4–6 for additional results with r = 5 for all cell types; and Supplementary
Fig. 7 for distributions of local SHouT scores across radii r∈ {1, 2, 3, 4, 5,
10, 20, 50, 100, 500} in T-cell neighborhoods).

In contrast to SHouT, Squidpy’s centrality_scores function
did not reveal significant differences between the three conditions (Fig. 3B3,
see Supplementary Fig. 9 for additional results corresponding to all cell
types). Neighborhood enrichment analysis with Squidpy’s nhoo-
d_enrichment function (Supplementary Fig. 10) did reveal some dif-
ferences in co-occurrence between T cells and, respectively, macrophages,
fibroblasts, and basal keratinocytes. However, the observed differences are
much smaller than for local entropy and homophily, do not reach statistical
significance after multiple testing correction, and no clear picture emerges
that would allow to robustly distinguish CTCL samples from AD and PSO
samples based on neighborhood enrichment scores of T cells.

We obtained highly significant differences in SHouT’s local hetero-
geneity scores also for another cell type besides T cells, namely, basal ker-
atinocytes (Fig. 3C, see Supplementary Fig. 8 for distributions of local
SHouT scores across radii r ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100, 500} in basal
keratinocyte neighborhoods). Like for T cells, local entropy is increased in
CTCL in comparison to AD and PSO (Fig. 3C1), i.e., tissue in the vicinity of
basal keratinocytes exhibits a higher cell-type mixing in CTCL than in the
two other conditions.Moreover, and in contrast to the results for T cells, we
simultaneously observe elevated local homophily scores for basal kerati-
nocytes (Fig. 3C2). That is, tissue in the vicinity of basal keratinocytes
exhibits a higher co-localization of cells of the same type in CTCL than in
PSO or AD (increased local homophily), even though the cell-type het-
erogeneity is increased (increased local entropy). This shows that the see-
mingly similar local entropy and local homophily scores indeed quantify
distinct properties of spatial tissue organization. As for T cells, the differ-
ences between the three conditions are more pronounced for r = 5 than for
r = 1. For larger radii including r = 100, the differences remain highly sig-
nificant, but the score distributions again become noisier than for r = 5.

Squidpy’scentrality_scores function did not reveal significant
differences related to basal keratinocytes (Fig. 3C3). Neighborhood
enrichment analysis, however, showed that in CTCL samples, the occur-
rence of macrophages, melanocytes, smooth muscle cells, suprabasal kera-
tinocytes, and Langerhans cells is increased in the vicinity of basal
keratinocytes (Supplementary Fig. 10), although results do not reach sta-
tistical significance after multiple testing correction.

The identified CTCL-specific patterns are robust to label per-
mutation and subsampling
We carried out permutation tests to assess the reliability of the identified
differences in the local heterogeneity scoreswith radius r = 5 shown inFig. 3.
Specifically, we shuffled the condition labels across all 68 samples and then
used the MWU test to compare the local heterogeneity scores between the
obtained randomized conditions. We repeated this for 100 iterations,
leading to 100 P values per cell type and condition pair. Figure 4 shows the
resulting P value distributions (histograms), together with the P values for
the original condition labels (red lines). For all elevencombinationsof scores
and condition pairs where results are significant for the original, unshuffled
condition labels (all plots inFig. 4, except for theoneat thebottom left), theP

Fig. 2 | Summary of the multi-antigen imaging
dataset used for this study. A Mean cell-type frac-
tions per condition, across all of the samples. B The
propidium iodide channel used for cell segmenta-
tion for one sample. Left: Compressed image of the
entire tissue section. Right: Magnified view repre-
senting the actual resolution used for cell
segmentation.

https://doi.org/10.1038/s41540-024-00474-x Article

npj Systems Biology and Applications |          (2024) 10:143 3

www.nature.com/npjsba


values obtained for the original condition labels aremuchsmaller than those
obtained for the shuffled labels. This indicates that the heterogeneity scores
indeed reveal robust differences between CTCL, AD, and PSO.

Moreover, we carried out subsampling to assess if the identifiedCTCL-
specific tissue organization patterns are robust to varying compositions of
theCTCL,AD, andPSOcohorts. Specifically,we subsampled15 samples for
each of the three conditions. Subsequently, for each condition pair, we
computedMWU P values based on the SHouT’s local heterogeneity scores
(with r = 5) for T cells and basal keratinocytes, using only the samples from
the subsampledpatients.We repeated this 100 times, leading to100MWUP
values for each condition pair, considered cell type, and SHouT score. The
resulting P value distributions (boxplots) are shown in Fig. 5, together with

theP valuesobtainedwhenusing all samples (red lines) and theBonferonni-
corrected significance cutoff Pcutoff = 0.05/(number of condition pairs ×
number of cell types×number of tested radii)(blue lines). For all caseswhere
the original P values are significant (red lines to the right of blue lines), all or
the vastmajority of the P values obtained upon subsampling are significant,
too. This shows that SHouT reveals CTCL-specific tissue patterns that are
robust to subsampling.

SHouT scales to samples with large numbers of cells
To ensure usability, runtime efficiency is an important property of data-
centric methods for the analysis of biomedical data. We therefore system-
atically tested SHouTwith respect to its runtime requirementswhen run on

Fig. 3 | Results of spatial analyses of AD, PSO, and CTCL samples with adjusted
MWU P values. The most important differences between CTCL samples as com-
pared to AD or PSO are: elevated local entropy and egophily scores for neighbor-
hoods of T cells; and elevated local entropy and local homophily scores for

neighborhoods of basal keratinocytes. A Distributions of global (i.e., sample-level)
scores for the different conditions. BDistributions of local (i.e., cell-level) scores for
all T cells from samples from the different conditions.CDistributions of local scores
for all basal keratinocytes from samples from the different conditions.
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samples with varying numbers of cells or when run with varying radii. The
results are shown in Fig. 6. We observe that SHouT scales linearly with the
numbers of cells per sample, achieving runtimes of littlemore than aminute
even for the samples with the highest cell counts in our dataset (Fig. 6A).
Increasing the radius r only marginally increases the runtime, showing that
SHouT’s heterogeneity scores can be computed efficiently independently of
the choice of r (Fig. 6B).

Discussion
Our analyses identified CTCL-specific patterns of tissue organization as
compared to PSO and AD in the vicinity of T cells and basal keratinocytes.
Since CTCL is a T-cell malignancy, observing characteristic patterns in the
vicinity of T cells is not too surprising. In fact, existing studies suggest that
malignantT cells and their cross-talkwithother cells inducedisorganization
in the epidermal architecture26–28, which is well aligned with our findings.
Also, our results for basal keratinocytes are plausible in the light of the
literature. For instance, several studies have identified hyperproliferation
and/or de-differentiation of keratinocytes in CTCL27,29,30.

An important aspect of our findings is that the SHouT scores under-
lying our results are (1) purely quantitative, (2) interpretable by design (each
SHouT score has a natural interpretation that can be explained with few
sentences), and (3) deterministically computed (computing the SHouT
scores does not involve randomized subroutines). Their purely quantitative
nature sets our SHouT scores apart from the current standard of care in
CTCL diagnosis, which is typically based on (subjective) expert opinions.
Their interpretability is a decisive advantage over predictions provided by
deep learning models, which are often perceived as black boxes31. The fact
that SHouT is deterministic ensures that it consistently computes the same
results when run several times on equivalent input—unlike many other
methods in data-centric biomedicine32,33. Together, these three properties
make the SHouT scores ideal ingredients for potential future biomarkers
based on spatial omics data, both in the CTCL use case presented here and

beyond. Therefore, we are convinced that SHouT will be of value for the
analysis of spatial omics data also beyond this study, complementing
existing toolboxes such as Squidpy.

However, several limitations of our study have to be addressed before
translation into clinical care may become feasible. First and foremost, the
MELC technology used to generate the data underlying this study is highly
non-standardized (only few prototypes exist worldwide, two of them at
UKER). This had strong implications for the data analysis pipeline used for
this study, wherewe had to resort to customized solutions for almost all pre-
processing steps (cell segmentation, protein abundance quantification, cell-
type assignment). While we are confident that the methodological choices
we made for individual steps in our pipeline are adequate for the data, they
still introduce a certain amount of contingencywhichmaydistort the results
of our analyses in a hard-to-control way. Before translation into clinical care
can become an option, it would hence be important to see if our results can
be reproduced for spatial omics generated with more established technol-
ogies (e.g., MERFISH34 or MIBI35), for which validated pre-processing
pipelines are available.

Methods
Sample collection and multi-antigen imaging
In total, 69 skin tissue samples (21 CTCL, 23AD, 25 PSO) from a total of 27
treated patients (8 CTCL, 7 AD, 12 PSO) were collected at the University
Hospital Erlangen.The studyhas beenapprovedby theEthicsCommitteeof
the Medical Faculty of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (approval date: July 5, 2023; approval number: 23-132-B). We
used the MELC technology12,13,36 to generate multi-antigen imaging data.
MELC efficiently combines seamless assimilation of molecular and anato-
mical information in situ by employing a cyclic process of three steps: (1)
protein-specific fluorescent antigen staining, (2) imaging, and (3) photo-
bleaching. The workflow is completely automated, performing multi-
antigen imaging on a fixed and mounted tissue or cell sample, without the

Fig. 4 | Results of permutation tests to assess the robustness of the differences in
the local heterogeneity scores with radius r= 5 shown in Fig. 3. All P values were
computed with the MWU test. Unlike for the P values shown in Fig. 3, we did not

apply Bonferroni correction to adjust for multiple testing (since we are comparing P
values, adjusting for multiple testing leaves the results invariant).
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requirement of any human involvement. Thanks to this automated work-
flow, post imaging, the individual protein channels can bemapped into one
consolidated tissue map whilst preserving spatial information. In order to
assemble a set of antibodies with a strong and specific staining pattern, we
screened over 500 antibodies on CTCL tissue. This unbiased approach
yielded 36 antibodies (Supplementary Table 1).

Cell segmentation and protein abundance quantification
Owing to the properties of DNA- and histone-binding, propidium iodide is
pervasively used to stain cell nuclei in fluorescent microscopy37. We

therefore used the propidium iodide channel for cell nucleus segmentation,
relying on a pre-trained model provided by the stardist.models.-
StarDist2D function of the popular cell detection library StarDist38,39.

For cell membrane segmentation, we used the channel for the trans-
membrane protein tyrosine phosphate (CD45), which is not only present in
all nucleated hematopoietic cells but is also one of the most commonly
foundmembrane proteins in such cells40. However, owing to the often non-
convex shape of cell membranes as opposed to cell nuclei in our dataset, the
StarDist model under-segments the cytoplasm. As a workaround, for all
nuclei where the StarDist model managed to automatically identify the cell

Fig. 6 | Results of scalability tests for our Python package SHouT. Runtime
measurements include all subroutines detailed in the “Quantification of spatial tissue
heterogeneity with SHouT” subsection of the “Methods”: construction of the spatial
neighborhood graph G = (V, E, λV), computation of the two global scores H(G) and
h(G), and computation of the three local scoresHr(c), hr(c), and er(c) for all cells c∈V
and a fixed radius r. To ensure a stable execution environment, tests were run on a

Linux compute server with 500 GB of main memory and four AMD EPYC 7402 24-
core processors with 1.5 Ghz (without using multi-threading). However, SHouT
does not require such large-scale resources and can be run on a standard laptop.
A Runtimes with a fixed radius r = 5 for all samples in our dataset. B Runtime
distributions for varying radii across all samples in our dataset.

Fig. 5 | Results of subsampling tests to assess the robustness of the differences in
the local heterogeneity scores with radius r= 5 shown in Fig. 3. All P values were
computed with the MWU test. The significance cutoff is Bonferroni-adjusted, i.e.,

Pcutoff = 0.05/(number of condition pairs × number of cell types × number of tested
radii) = 0.05/(3 × 11 × 10). P values are non-adjusted.
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membrane, we calculated an average ratio between the radii of cells and
nuclei. We then used this average ratio to draw a circle around each of the
segmented nuclei for which the StarDist model did not identify a cell
membrane. If two such circles overlapped, pixels within the intersection
were assigned to the closest nucleus, thereby ensuring that all cell segments
were pairwise disjoint. All segmentation results weremanually inspected by
a histopathology expert, and one CTCL sample was excluded due to
insufficient segmentation quality.

Transitioning frompixel intensity to cell-level protein abundances was
challenging due to the following factors: (1) MELC images are especially
susceptible to salt-and-pepper noise. (2) Different protein channels have
different intensity levels. (3) Evenwithin the same channel, different regions
often have different levels of intensity. Because of these factors, there is no
single mapping which would allow to uniformly compute cell-level protein
abundance scores based on pixel intensities across all samples and sample
regions. We therefore made use of adaptive thresholding which helps cir-
cumvent this issue by breaking the image into smaller windows comprising
fewer pixels, subsequently computing a different threshold for every win-
dow. Specifically, we used OpenCV’s (https://opencv.org/) cv2.a-
daptiveThreshold function to perform adaptive thresholding. This
function binarizes the individual channels by setting each pixel to 1 if its
intensity is above theGaussianweightedmeanof its vicinity (here, awindow
of size 201 × 201) plus a constant C (here, the standard deviation of the
intensity values across the current protein channel). We then transformed
the binarized images into floating point protein abundance matrices A by
setting the abundanceA(c, p) of protein p in cell c to the fraction of positive
binarized pixels within the segment corresponding to c.

Cell-type assignment
Since only few exemplars of the MELC imaging system exist, automated
cell-type annotation tools for our data do not exist. Moreover, initial tests
showed that cell-type annotation tools developed for data generated by
other multiplexing platforms are not applicable for our data. We therefore
developed a simple rule-based cell-type annotationworkflow,making use of
single-cell RNA sequencing (scRNA-seq) data specific to skin tissue from
HPA as reference. Specifically, we downloaded normalized gene expression
valuesX(C, g), whereC denotes cell clusters provided inHPA and g denotes
genes. Moreover, we made use of HPA’s cell-type annotations σ(C) ∈ Σ,
where Σ is the set of cell types for skin tissue used by HPA. Since, in HPA,
there are cell types towhich several clusters are assigned, we computed cell-
type-specific gene expression values

Xðt; gÞ ¼
X

C:σðCÞ¼t
jCj

 !�1
�
X

C:σðCÞ¼t
jCj � XðC; gÞ ð1Þ

via weighted mean aggregation, for all pairs of cell types t and genes g.
Let C be the set of all cells contained in any of the samples for any of the

three conditions CTCL, PSO, andAD,G be the set of all genes encoding the
measured proteins, andA(c, g) be the abundance of the protein encoded by g
in the cell c. Our cell-type assignment workflow iteratively assigns cell types
t⋆ ∈ Σ to a subset Ct? � C of the cells. Upon assigning the cell type t⋆ to the
cells contained in Ct? , C and Σ are updated as C C n Ct? and Σ ← Σ⧹{t⋆},
respectively. The process stops when either C ¼ ;, Σ ¼ ;, or there are no
good genes (defined below). In the latter two cases, the remaining cells in C
are assigned the cell-type label “unknown”.

To find t⋆ and Ct? within one iteration, we computed HPA-based
spread scores

sðt; gÞ ¼ Xðt; gÞ �maxfXðt0; gÞjt0 2 Σ n ftgg ð2Þ

for all pairs of not yet assigned cell types t∈Σ andgenes g 2 G and sorted the
pairs indecreasingorder of s(t, g), leading to a sorted listL.Genesgwith large
spread scores s(t, g) are potential marker genes for the cell type t, based on
the scRNA-seq data in HPA. Next, we fit a bimodal Gaussian mixture

models to the vectors of protein abundances ðAðc; gÞÞc2C for the not yet
assigned cells (using scikit-learns’s GaussianMixture class) and all
genes g 2 G and assessed if the obtained distributions are indeed bimodal.
For this, we checked the condition

μ0ðgÞ þ 1:96 � σ0ðgÞ < μ1ðgÞ � 1:96 � σ1ðgÞ; ð3Þ

where μ0(g) and σ0(g) are the mean and standard deviation values for the
mode with the lower mean and μ1(g) and σ1(g) are the mean and standard
deviation values for the mode with the higher mean. Genes for which the
conditionholds are called “good”.Whenwe foundat least onegoodgene,we
picked the first pair (t⋆, g⋆) from the sorted list L for which g⋆ is good. Then,
we assigned the cell type t⋆ to the cells Ct? ¼ fc 2 CjAðc; g?Þ > μ1ðg?Þ �
1:96 � σ1ðg?Þg and continued with the next iteration of our cell-type
assignment protocol. When no good gene was found (for our data, this
happened when “granulocytes” was the only cell-type label left in Σ), we
stopped the protocol.

The resulting rule-based cell-type assignment tree is shown in Sup-
plementary Fig. 1. Heatmaps showing the corresponding (A) cell-type-
averaged gene expression values from HPA and (B) protein abundances
fromourdata, are shown in Supplementary Fig. 11. In the following,we letT
denote the set of used cell-type labels (in our case: the label “unknown” and
all labels contained in Σ except “granulocytes”) and let λ : C! T denote
the constructed cell-type label function.

Quantification of spatial tissue heterogeneity with SHouT
SHouT starts by computing sample-specific spatial neighborhood graphsG
= (V, E, λV) from the pre-processed imaging data, whereV � C is the set of
cells for the sample under consideration, the set E contains an edge cc0 for
two cells c; c0 2 V if c and c0 are spatially adjacent (computedwith Squidpy’s
spatial_neighbors function with the parameter delaunay set to
True), and λV denotes the restriction of the cell-type label function λ to V.
We decided to use Delaunay triangulation to construct the spatial graphs
insteadof otherapproaches suchask-nearest neighborordistance threshold
graphs because the latter approaches require essential hyper-parameters
(the number of neighbors k and the distance threshold) which are very
difficult to select in a principled way. Based on the spatial graphs, SHouT
computes two global scores that quantify heterogeneity for the entire graph
G and three local, cell-specific scores.

The first global score—global (normalized) entropy—is defined as

HðGÞ ¼ � log ðjTjÞ�1 �
X

t2T
pGðtÞ � logðpGðtÞÞ 2 ½0; 1�; ð4Þ

wherepG(t) = ∣{c∈V∣λV(c) = t}∣/∣V∣ is the fractionof cells inV that areof type
t. Large values of H(G) indicate that cell-type heterogeneity is high for the
sample represented by G. The second global score—global homophily—is
defined as the fraction of edges

hðGÞ ¼ jEj�1 �
X

cc02E
½λV ðcÞ ¼ λV ðc0Þ� 2 ½0; 1� ð5Þ

in the spatial graph G that connect cells of the same type ([ ⋅ ]: {True,
False}→ {0, 1} is the Iverson bracket, i.e., [True] = 1 and [False] = 0).
Large values ofh(G) indicate that cells tend to be adjacent to cells of the same
type in the sample represented by G.

In addition to the four global scores, SHouT provides three local scores
to quantify heterogeneity within the r-hop neighborhood NrðcÞ ¼ fc0 2
VjdGðc; c0 ≤ rg of an individual cell c∈ V. Here, r is a hyper-parameter and
dG : V ×V !N is the shortest path distance. The first local score—local
(normalized) entropy—is defined as follows:

HrðcÞ ¼ � log ðjTjÞ�1 �
X

t2T
pNr ðcÞðtÞ � logðpNr ðcÞðtÞÞ 2 ½0; 1� ð6Þ
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The only difference to its global counterpart is that the cell-type fractions
pNr ðcÞðtÞ ¼ jfc 2 NrðcÞjλV ðcÞ ¼ tgj=jNrðcÞj are computed only with
respect to the cells contained in the r-hop neighborhood of c. Also the
second local score—local homophily—is defined in a similar way as the
global version:

hrðcÞ ¼ jENr ðcÞj
�1 �

X

c0c002ENr ðcÞ

½λV ðc0Þ ¼ λV ðc00Þ� 2 ½0; 1� ð7Þ

Here, the difference to the global version is that we only consider the subset
of edges ENr ðcÞ ¼ fc0c00 2 Ejc0; c00 2 NrðcÞg that connect two cells contained
in the r-hop neighborhood of c. The last local score—egophily— does not
have a global counterpart. It is defined as the fraction

erðcÞ ¼ pNr ðcÞðλV ðcÞÞ 2 ½0; 1� ð8Þ

of cells within the r-hop neighborhood of c that have the same cell type as c.
SHouT provides very efficient vectorized implementations of all hetero-
geneity scores, relyingonSciPy’ssparse.csgraph.shortest_path
function for fast computation of shortest path distances.

Data availability
The MELC data underlying this study are available on Zenodo: https://doi.
org/10.5281/zenodo.11125482. Pre-clustered, skin-specific scRNA-seq data
used as a reference for cell-type assignment are available at https://www.
proteinatlas.org/download/rna_single_cell_type_tissue.tsv.zip. The corre-
sponding cluster annotations can be obtained at https://www.proteinatlas.
org/download/rna_single_cell_cluster_description.tsv.zip.

Code availability
The code of the SHouT Python package is available at https://github.com/
bionetslab/SHouT. Code to reproduce the results reported in this paper is
available at https://github.com/bionetslab/ctcl_case_study.
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