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In this paper, an improved Global Dynamic Evolution Snow Ablation Optimizer (GDSAO) is proposed in 
order to solve the problem of global optimization and Unmanned Aerial Vehicle (UAV) path planning in 
3D space with obstacle threats. Three improvement schemes are proposed in GDSAO: (1) Population 
initialization is carried out using the theory of the best point set to obtain a more diverse initial 
population; (2) A dynamic snowmelt ratio using the global evolutionary dispersion is proposed to 
adapt the exploitation process of the original SAO to the evolutionary process of population fitness; 
(3) A neighborhood dimensional search scheme is proposed to update the locations of all searched 
individuals outside the elite pool to obtain better population fitness. The algorithm was tested on 
30 10-dimensional problems at CEC 2017 and performed better than a series of joint and leading 
optimization algorithms. The path planning problem of UAV was solved, and the path satisfying all 
obstacle avoidance threats and corner constraints was obtained. By comparison, GDSAO is superior to 
the existing algorithms in terms of reliability and stability of optimization.
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With the development of unmanned navigation technology, the flexibility and mobility of UAVs continue to 
improve. UAV processors with advanced sensors can help people complete many tasks in complex environments1, 
such as industrial inspection, disaster relief, environmental survey, and transportation. For these missions, a 
vital issue is planning safe and efficient flight paths for UAVs. Depending on the specific mission type, the UAV 
must consider flight time, avoid obstacles, and meet its movement constraints.

The UAV path planning problem can be expressed as an optimization problem. The main idea of the 3D UAV 
path planning problem is how to plan to get an optimal flight path while ensuring that the UAV does not collide 
with obstacles during flight. This paper transforms the 3D UAV path planning problem into a multi-constrained 
optimization problem by formulating the path length cost function, the safety cost function, and the turning-
angle cost function. This problem is an entirely NP-hard problem2.

There has been Much research in the field of path planning, which is graph-based, such as aerial Dijkstra 
algorithm3, grid map-based, such as A* algorithm4 and fast marching method5, sampling-based algorithms, 
such as RRT6, and other navigation methods that integrate dynamic rules, such as artificial potential field 
method7. Each of these approaches has worked brilliantly in the problems of their respective fields. However, 
the compatibility of these methods could be better8, and sometimes, some methods may not be applicable in 
complex situations or face significant challenges in algorithm migration and expansion.

Meta-heuristic algorithms are very good at solving problems such as path planning, which have large-scale 
dimensions, nonlinear and non-convex9. The strong adaptability of the meta-heuristic algorithm provides a new 
solution for UAV path planning.

Therefore, an improved snow ablation optimizer algorithm based on global dynamic evolution is proposed. 
The global dynamic evolution of the algorithm is reflected in three improvement mechanisms. They are good 
point set initialization, dynamic snowmelt ratio, and neighborhood dimensional search. The effectiveness and 
sensitivity of these efforts are verified in the following sections, which can ensure the balance between the 
exploration and exploitation process of the search agent as a whole and can dynamically adapt to the dynamic 
process to adjust the degree of exploitation. The main contributions of this paper are as follows: 
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	1.	� The UAV motion planning model in a 3D environment is established. Obstacle threat and Angle constraint 
are applied to the objective function in the form of penalty terms to adapt to the solution of the meta-heuris-
tic optimization algorithm.

	2.	� An improved idea of the GDSAO algorithm is proposed. It consists of three mechanisms: (1) Using the im-
provement strategy of the best point set to generate more diverse initial solutions; (2) A dynamic snowmelt 
rate is proposed, which can dynamically adjust the exploitation degree of the population by using the fitness 
dispersion degree of the population evolution process; (3) Use neighborhood dimensional search to update 
agent locations further, except the elite pool, to improve global fitness.

	3.	� The performance test of GDSAO and the other seven commonly used optimization algorithms and leading 
algorithms in the project was carried out in the benchmark function of CEC2017, and the performance 
evaluation was carried out with the overall mean value, standard deviation after repeated calculation and 
Friedman test ranking.

	4.	� GDSAO is used to solve the UAV path planning problem, and the path conforming to the constraints is ob-
tained. The solution structure of other algorithms performs better on various branches.

Related works
Meta-heuristic optimizer for path planning
Traditional offline planning methods have limited path accuracy for UAVs. In recent years, many researchers 
have focused on UAVs’ autonomous path planning, using grid map-based, sample-based, and meta-heuristic 
algorithms. The meta-heuristic algorithm has outstanding advantages in computational efficiency and accuracy.

Typical meta-heuristic algorithms can be divided into the following categories: The first category is evolution-
based algorithms, which typically include Genetic Algorithm (GA)10 and Differential Evolution (DE)11, which 
make use of the crossing and mutation mechanism of chromosomes to update agent search location. The 
second category is the algorithms based on physical rules, like Gravity Search Algorithm (GSA)12, Simulated 
Annealing algorithm (SA)13, Multiverse Optimization (MVO)14, these algorithms make use of the physical laws 
of nature. The third type of algorithm is based on mathematics, which is derived from mathematical functions, 
formulas, and theories, such as Sine and Cosine Algorithm (SCA)15, Arithmetic Optimization Algorithm 
(AOA)16. The fourth type of algorithm is a population-based algorithm, which is derived from the behavior 
of foraging, breeding and hunting in organisms, such as particle swarm optimization17, Artificial Bee Colony 
algorithm (ABC)18, Gray Wolf Optimization (GWO)9, Whale Optimization Algorithm (WOA)19, Harris Hawk 
Optimization (HHO)20. The above classification is not absolute, and the same algorithm may contain multiple 
mechanisms. They have been used to solve various industrial problems with great success, including in the field 
of UAV path planning. However, faced with complex environments, the performance of most algorithms can 
be further improved. In the in-depth development of meta-heuristic algorithms, many researchers focus on 
introducing more parameters, mechanisms, and multi-level search.

Nadimi et al.21 has proposed an improved Gray Wolf optimizer (I-GWO) to solve global optimization 
and engineering design problems. A dimension learning-based hunting (DLH) search strategy is proposed 
to inherit from the individual hunting behavior of wolves in nature. It has achieved excellent results on the 
CEC 2018 benchmark function. Luo22 proposed a 3D path planning algorithm based on improved holographic 
particle swarm optimization (IHPSO), which uses the system clustering method and the information entropy 
grouping strategy instead of random grouping of structure-particle swarm optimization. Fouad23 introduces the 
PMST-CHIO, a novel variant of the Coronavirus Herd Immunity Optimizer (CHIO) algorithm for individual 
unmanned aerial vehicle (UAV) path planning in complex 3D environments. It innovatively integrates a parallel 
multi-swarm treatment mechanism, significantly enhancing the standard CHIO’s exploration and exploitation 
capabilities. Wang24 proposes an improved tuna swarm optimization algorithm based on a sigmoid nonlinear 
weighting strategy, multi-subgroup Gaussian mutation operator, and elite individual genetic strategy called 
SGGTSO. The problem of 3D UAV path planning under nine different terrain scenarios is solved in their work.

Snow ablation optimizer
Snow ablation optimizer (SAO) is a population-based meta-heuristic optimization method, proposed by Deng 
and Liu25. The melting and sublimation of snow are simulated to find the optimal solution to complex problems. 
The validity of SAO is tested in their work. Compared with other meta-heuristic algorithms, SAO has a more 
flexible structure and fewer parameters. However, SAO also has the disadvantages of low convergence accuracy, 
little population diversity, and premature convergence26.

Many researchers have studied the improvement of SAO. Xiao et al.26 have made a series of improvements 
to the SAO algorithm, called Multi-strategy boosted Snow Ablation Optimizer (MSAO) algorithm, including 
initialization of good point set, greedy selection strategy, differential evolution strategy, and reverse lens learning, 
which shows good optimization ability. However, the search time is long and unsuitable for autonomous path 
planning and other applications suitable for fast operations. Elaziz et al.27 proposed Comprehensive learning-
based Snow Ablation Optimizer with Double attractors (DCSAO), Aims to improve SAO’s ability to explore 
and exploit in the process of discovering the optimal threshold level for segmentation of aerial photographic 
images. Pandya et al.28 proposed Multi-objective Snow Ablation Optimization Algorithm (MOSAO), which 
used crowding distance technique and the elitist non-dominated sorting approach, addressing expansive 
optimal power flow challenges inherent in intricate power systems. Lu et al.29 propose a fusion algorithm, named 
Differential Vectors Empower Snow Ablation Optimizer (DESAO), that combines the strengths of SAO and 
differential evolution, which has the advantages of optimization capability and fast convergence speed. Jia et 
al.30 has improved SAO in terms of mechanism, and the proposed SAOHTC includes heat transfer strategy 
and conditioning strategy, which improves the optimization efficiency of the original algorithm, addresses the 
shortcomings of the original dual population mechanism, and enhances the convergence speed.
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In terms of engineering applications, Deng and Liu25, Xiao et al.26 use SAO and its improved versions to 
solve 22 CEC2020 real-world constrained optimization issues which consist of 7 process synthesis and design 
issues and 15 mechanical engineering issues, to validate the competitiveness and effectiveness of SAO. Ding et 
al.31 incorporate the snow ablation optimizer (SAO) to optimize the hyperparameters of the autonomous echo 
state network, whose study demonstrates that the SAO is an effective fusion strategy for reducing computational 
resource usage, while enhancing the time evolution performance and robustness of chaotic systems. Ismaeel et 
al.32 use SAO to solve one of the key problems of power systems, the economic load dispatch problem. In the six 
scenarios set, SAO performs better than other swarm optimization algorithms.

UAV path planning
UAVs are widely used in engineering inspection, disaster search and rescue, and transportation-related 
applications. It can help an engineering team assess the field environment as quickly as possible, which requires 
planning out the drone’s shortest flight path. At the same time, in a complex environment, the collision threat 
of obstacles must be considered. The problem scenario is shown in Fig. 1. The UAV’s mission is to get from the 
start point rs to the goal point rg  as quickly and safely as possible. The fundamental problem of this paper can 
be expressed as Eq. 1:

	

arg min
pk

J = F (pk)

s.t. (a) ∀pk ∈ X

(b) pk ∩ O = 0
(c) hmin ≤ h < hmax

(d) 0 ≤ |ψ| < ψmax, 0 ≤ |φ| < φmax

� (1)

Path length
J in Eq. 1 is the Path length objective function, F (pi) represents the path length of the UAV consisting of 
waypoints pk = (Xk, Yk, Zk), k = 1, 2, · · · , N , which can be calculated by Euclidean distance between two 
waypoints as Eq. 2:

	
F =

N−1∑
k=1

√
(Xk − Xk+1)2 + (Yk − Yk+1)2 + (Zk − Zk+1)2� (2)

where N is the total number of waypoints, the primary task of UAV path planning is to find a set of path control 
points Pi between the start and the goal point to optimize the path length F. The complete waypoints pk  are 
generated from the path control point Pi by Piece-wise Cubic Hermite Interpolation (PCHI) to speed up 
processing and maintain path shape.

The boundary constraint of Eq. 1(a) must be satisfied when the path is generated. Define the upper and lower 
bounds of the search space as ub = [Xub, Yub, Zub] and lb = [Xlb, Ylb, Zlb], and pk  should be limited to:

	

{Xlb ≤ Xk ≤ Xub

Ylb ≤ Yk ≤ Yub

Zlb ≤ Zk ≤ Zub

� (3)

Fig. 1.  The UAV working environment.
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Obstacle threat constraint
In addition to path length optimization, the UAV path also needs to meet the constraints of Eq. 1(b–d). In the 
process of meta-heuristic optimization, some constraint formulas need to be transformed into penalty functions 
of targets to play a role. The navigation area of the UAV may be surrounded by obstacles or no-fly zones, which 
are called obstacle threats O . Let the center of the obstacle threat be C and the radius of the obstacle threat be ro

. To give the UAV enough room to maneuver, set a threat zone outside ro with a radius of r, r > ro.
Equation 1(b) means that the path of the UAV is not affected by the obstacle threat O  show as Fig. 2. When 

the path point pk  is inside the obstacle Oj , the distance d to the center is less than the radius r, then the point 
is threatened. If d > r, it is not threatened. If d < ro, the UAV has been collided. The obstacle threat penalty 
function D has the following form Eq. 4. Where Dinf  is the collision penalty, set to a large value.

	




D =
O∑

j=1

N∑
k=1

Dk(dk, rj , ro,j)

Dk(dk, rj , ro,j) =





0, if dk > rj

1 − dk/rj , if ro,j < dk ≤ rj

Dinf , if dk < ro,j

� (4)

Height threat constraint
In order to complete tasks, such as photographing the ground environment in the area of interest, also to ensure 
the safety of navigation, the UAV needs to be a certain height above the ground. Flying too high consumes too 
much energy on the UAV, and too low there is a risk of collision with the ground, so Eq. 1(c) means that the 
UAV should be kept within a certain height from the ground. The high threat penalty term is defined as Eq. 
5, where hkis the altitude of the UAV from the ground, ground(Xk, Yk) is the altitude of the ground, and 
Zk = hk + ground(Xk, Yk) is the altitude of the UAV, shown as Fig. 3.

	




H =
N∑

k=1

Hk(hk)

hk = Zk − ground(Xk, Yk)

Hk(hk) =

{ ∣∣∣hk − hmax + hmin

2

∣∣∣ , if hmin < hk ≤ hmax

Hinf , if hk < hmin or hk > hmax

� (5)

Angle constraint
The smoothness of the generated path can be measured by two angles: directional Angle φ and pitch Angle ψ, 
shown as Fig. 4. In a segmented path, the two are defined as Eq. 6:

Fig. 2.  Obstacle threat penalty function.
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


φi+1 = arccos
−−−−−→
P′

iP′
i+1 ·

−−−−−−→
P′

i+1p′
i+2

|
−−−−−→
P′

iP′
i+1||

−−−−−−→
P′

i+1P′
i+2|

ψi+1 = arctan Zi+2 − Zi+1

|
−−−−−−→
P′

i+1P′′
i+2|

� (6)

where P′ represents the orthographic projection of P on the reference plane of Z = 0, and P′′
i+2 is the 

orthographic projection of Pi+2 on the reference plane Z = Zi+1. The penalty function of the path smoothing 
cost is Eq. 7:

	




A =
n−2∑
k=1

Ak(φk, ψk)

Ak(φk, ψk) =





α1|φk| + α2|ψk − ψk−1|
α1 = 1, if |φk| > φmax, α1 = 0, if |φk| ≤ φmax

α2 = 1, if |ψk − ψk−1| > ψmax, α2 = 0, if |ψk − ψk−1| ≤ ψmax

� (7)

where α1 and α2 are the coefficients that balance the two angular penalty. According to the Eqs. 2–7, the 
constrained UAV path planning problem can be stated as Eq. 8, where λ1, λ2, λ3, λ4 > 0 are penalty coefficients.

	

arg min
pk

J = λ1F + λ2D + λ3H + λ4A

s.t. pk ∈ [lb, ub]
� (8)

Fig. 4.  Obstacle threat penalty function.

 

Fig. 3.  Obstacle threat penalty function.
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The proposed GDSAO algorithm
In this section, the primordial SAO algorithm is introduced, and three improvement methods are proposed: 
initialization of the good point set theory, dynamic snowmelt ratio, and neighborhood dimensional search. The 
improved GDSAO is tested on essential functions.

The SAO algorithm
As shown in Fig. 5, SAO was inspired by two processes in which snow turns into liquid water and steam: melting 
and sublimation, and the evaporation process in which liquid water turns directly into steam, to search for 
the optimal value. The SAO constructs four parts to search for the optimal solution: the initialization phase, 
exploration phase, exploitation phase, and two-population mechanism.

Initialization
The iterative process of SAO starts with randomly generated populations. Assume that the dimension of the 
optimization problem is D, the upper and lower boundaries of the search domain are Ub, Lb, the number of 
search agents is N, and the initial position of the entire population can be represented by the matrix of N row D 
column:

	

X = Lb + rand(·) × (Ub − Lb)

=




x1,1 x1,2 · · · x1,D−1 x1,D

x2,1 x2,2 · · · x2,D−1 x2,D

...
...

. . .
...

...
xN−1,1 xN−1,2 · · · xN−1,D−1 xN−1,D

xN,1 xN,2 · · · xN,D−1 xN,D




N×D

= {xi,j}N×D, ∀i ∈ [1, N ], j ∈ [1, D]

� (9)

where rand(·) is the random number of [0,  1]. The ith search agent position vector can be described as 
Xi = [xi,1, xi,2, · · · , xi,D−1, xi,D].

Exploration
The exploration phase simulates the transition of snow and liquid water to steam, allowing the search agent 
to spread randomly into the search space. When snow or liquid water is converted to steam, the search agent 
exhibits highly dispersed characteristics due to irregular movement. In the exploration phase, the Brownian 
motion of microscopic particles describes the process of snow and water transforming into steam. Brownian 
motion is a random process that simulates the unstable motion of microscopic particles. The step size of the 
Brownian motion in SAO can be obtained from the probability density function of a normal distribution with a 
mean of 0 and a variance of 1, calculated as Eq.  10:

	
fBM (x; 0, 1) = 1√

2π
exp

(
−x2

2

)
� (10)

Brownian motion has a dynamic and uniform step size, which ensures that the agent can explore as much as 
possible in the search space and propagate to more feasible areas. Therefore, it can effectively describe the scene 
of steam diffusion. Each search agent xi in an exploration iteration can update its current location using the Eq. 
11:

	

Xi(t + 1) = Xelite(t) + BMi(t) ∗ (r1(Xbest(t) − Xi(t))
+ (1 − r1)(Xmean(t) − Xi(t)))

� (11)

Fig. 5.  The inspiration source of SAO.
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where Xi(t + 1) represents the position of the ith agent in the iteration of t + 1, and BMi(t) is a set of random 
numbers with Brownian motion symbols, which is a D × 1 vector. BMi(t) = [fBM,1, fBM,2, · · · , fBM,D]T . 
(∗) is the inner product operator, r1 is the randomly generated value between 0 and 1, and Xbest(t) is the best 
solution obtained so far. In addition, Xmean(t) represents the current average location of the overall population, 
and Xelite(t) represents random individuals selected from the elite pool, calculated as Eq. 12:

	

Xmean(t) = 1
N

N∑
i=1

Xi(t)

Xelite(t) ∈ [Xbest(t), Xsecond(t), Xthird(t), Xc(t)]

Xc(t) = 1
N1

N1∑
i=1

Xi(t)

� (12)

where Xsecond(t) and Xthird(t) represent the second and third best search agents in the current population, 
respectively. Xc(t) represents the centroid position of the individuals who rank in the top 50% of fitness scores, 
also known as leaders. N1 is the total number of leaders. In this study, N1 = N/2. In two dimensional search 
space across a r1(Xbest(t) − Xi(t))and (1 − r1)(Xmean(t) − Xi(t)) intuitively as shown in Fig. 6. The 
variable r1 controls the movement and leader centroid position of the optimal individual obtained so far. The 
combination of these two crossing terms mainly captures the interaction between individuals.

Exploitation
The exploitation phase simulates the transition of snow to liquid water. When snow converts to liquid water 
through melting behavior, search agents are encouraged to focus on leveraging high-quality solutions around 
the current optimal solution rather than expanding in search domains with highly dispersed characteristics. 
In the exploitation stage, the snowmelt process is modeled using the classical degree-day method, and the 
mathematical expression is Eq. 13:

	

M(t) = DDF (t) × T emp(t)

=
(

0.35 + 0.25 ×
exp[ t

Tmax
] − 1

e − 1

)
× exp −t

Tmax

� (13)

where M(t) represents the snowmelt ratio, Temp(t) represents the average daily temperature, t, and Tmax are the 
current and maximum iterations, respectively, and DDF(t) refers to the degree-day coefficient ranging from 0.35 
to 0.6. Fig. 7 illustrates the iterative trends of DDF(t) and snowmelt ratio M(t), which roughly show an exponent-
logarithmic trend. Then, the position update equation for this stage is as Eq. 14:

	

Xi(t + 1) = M(t)Xbest(t) + BMi(t) ∗ (r2(Xbest(t) − Xi(t))
+ (1 − r2)(Xmean(t) − Xi(t)))

� (14)

where r2 is a random number between 0 and 1. M(t) makes the position update of the agent more inclined to 
move to the position of the optimal individual as the number of iterations increases.

Dual-population mechanism
In order to achieve a trade-off between exploration and exploitation in SAO, a two-population mechanism was 
introduced. As mentioned earlier, liquid water from snow can also be converted into steam for exploration. As 
the number of iterations increases, search agents are more inclined to perform irregular motions using highly 
dispersed features to explore the search space. Thus, in the initial iteration, the entire population Pis incidentally 

Fig. 6.  Schematic diagram of the cross term in SAO.
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divided into two equally sized subpopulations: Pa and Pb, where Pa is responsible for exploration, and Pb 
is used for exploitation. The sizes of P, Pa, and Pb correspond to N, Na, and Nb respectively. In a successful 
iteration, the amount of Na gradually decreases, and the amount of Nb increases accordingly. The mathematical 
representation is as follows:

	 Na = Na + 1, Nb = Nb − 1, if Na < N � (15)

To sum up, the SAO algorithm is shown in pseudo-code Algorithm 1.

Algorithm 1.  Snow ablation optimizer (SAO).

Fig. 7.  Trend curve of DDF and snowmelt ratio over iterations.
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Improving method
Good point set initialization
The method using random numbers cannot guarantee the diversity of the initial population and may limit 
the improvement of convergence accuracy and search efficiency.26 proposed a method to improve the initial 
population diversity by using the good point set theory of33 so that agents are more evenly distributed in the 
search domain than the original method, thus improving the ability to solve high-dimensional optimization 
problems. The basic principle of the good point set theory is shown as Eqs. 16–17. Let r be the unit cube GD  
point in the D dimensional Euclidean space. The definition of a good point set PN (k) and a good point r are:

	
Pn(k) =

{(
r

(n)
1 × k, · · · , r

(n)
i × k, · · · , r

(n)
D × k

)
, 1 ≤ k ≤ n

}
� (16)

Its deviation satisfies ϕ(n) = C(r, ϵ)nϵ−1, where ϵ represents any positive value, and C(r, ϵ)represents the 
constant associated with r, ϵ. The value of rk  is {2 cos(2πk/p), 1 ≤ k ≤ s}, p is to meet the D ≤ (p − 3)/2 
the smallest prime Numbers. The method of initializing the population with the good point set is as follows: 1. 
Calculate the value of r, where rj = mod (2 cos( 2πj

p
)ni, 1), 1 ≤ j ≤ D, where ni is the ith agent; 2. The 

structure of point set with number N, Pn(k) = {rii}, i = 1, 2, ·N . Then Map Pn to the search domain where 
the population resides:

	

X = Lb + Pn(·) × (Ub − Lb)
= {Xi,j}N×D, ∀i ∈ [1, N ], j ∈ [1, D]

� (17)

The distribution of agents generated by the good point set method is affected by the number of points N. Figure 
8 shows the initial solution set generated by the best-point set method and the uniformly distributed sampling 
method in a space with a search domain of [−100, 100]. Under the same conditions, the agents generated by the 
best point set method can be neatly distributed in the search space without overlapping. Therefore, this method 
can improve the overall diversity of the population to a certain extent and improve global fitness.

Dynamic snowmelt ratio
This paper proposes an adaptive dynamic snowmelt ratio method to improve the traditional degree-day process. 
Based on the standard deviation improvement of agent population fitness under the current iteration, this 
method proposes an evolutionary dispersion ratio of agent population to express the change of global fitness 
standard deviation, shown as Eq. 18:

Fig. 8.  The distribution between good point set initialization and random initialization.
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ktmp(t) =




1, t = 1
Std_F itness(t)

Std_F itness(t − 1) , t > 1

k(t) = min[ktmp(t), kmax] or max[ktmp(t), kmin]

� (18)

where k(t) is the global evolution dispersion ratio in iteration t, which is limited by the upper and lower bounds 
(kmax, kmin), and Std_F itness(t) is the fitness average of the N agents in the population under the tth 
iteration process. Std_F itness(t)/Std_F itness(t − 1) reflects the fitness improvement of the two adjacent 
iterations. When the value of k(t) is greater than 1, the reaction algorithm is in the optimization process, and k(t) 
approaches 1, reflecting the gradual convergence of optimization.

The Sigmoid function (Eq. 19) is a nonlinear function commonly used to construct the neurons’ activation layer, 
characterized by continuous smooth and strictly monotonic. S(x) exhibits linearity near x = 0 and nonlinearity 
approximately after x > 6.

	
S(x) = 1

1 + exp(−x) � (19)

Combining it with k(t) can prevent the search process from falling into premature convergence. It can further 
activate the local neighborhood search ability when the optimization process enters the convergence stage. The 
calculation formula of the adaptive dynamic snowmelt ratio is defined as:

	

DDFda(t) = DDFmax + (DDFmin − DDFmax)

1 + exp
[

−10b

(
2t

k(t) · Tmax
− 1

)]
� (20)

Among them, the DDFmin, DDFmaxis to set the minimum value and maximum value of DDF. b is the damping 
factor, whose general value is [0, 1], t is the current iteration, and Tmax is the maximum iteration.

	 Mda(t) = DDFda(t) × T emp(t)� (21)

It can be seen from the SAO algorithm process that the evolutionary process is a process of gradual degradation 
of particle diversity, and particles generally maintain the characteristics of convergent evolution. k(t) well 
reflects the variation of the dispersion of such particles in the course of evolution. Figure 9 shows the change of 
DDFda(t) and Mda(t) value when T = 300, kmax = 2, kmin = 0.5. In the initial stage, the change of Mda(t) 
is almost the same as that in Fig. 7, which ensures that the agent can fully explore the solution space in this 
stage. In the middle of the iteration, when the evolutionary dispersion ratio k(t) is close to 1, this method can 

Fig. 9.  Trend curve of dynamic DDF and dynamic melt ratio over iterations.
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bring some oscillation to the agent iteration to increase the search activity. In the late iteration period, the M(t) 
oscillation range is gradually narrowed to ensure that the agent fully exploits the current position.

Neighborhood dimensional searching
Standard works to improve meta-heuristic algorithms include differential evolution, iterative local search, reverse 
learning, and local oscillation. In this paper, a neighborhood dimensional search (NDS) method is proposed to 
improve the exploration position of other individuals except the optimal individual in the elite pool, which is a 
method using cross-mutation and greedy strategy to explore new possible solutions to ensure the quality of the 
current optimal agent. The primary process is shown in Fig. 10.

First, the ith agent’s position based on the exploration-exploitation process above named Xi−SAO , and 
whose fitness value named F it[Xi−SAO] next. Through the exploration-exploitation process, Xi(t) moves to 
the Xi−SAO(t + 1) position with distance Ri(t) (Eq. 22), which is the radius of the search neighborhood 
Ni(t) :

	 Ri(t) = ||Xi−SAO(t + 1) − Xi(t)||2� (22)

The individuals in the neighborhood Ni(t) form the following set (Eq. 23), Where Di(·, ·) is the Euclidean 
distance between Xi(t) and Xj(t).

	 Ni(t) = {Xj(t)| Di(Xi(t), Xj(t)) ≤ Ri(t), ∀Xj}� (23)

Based on the idea of cross-mutation, conduct the neighborhood dimensional search process on Ni(t) by Eq. 24, 
where Xn,d(t) is the dth dimension of the randomly selected neighbor from Ni(t), Xr,d(t) is the dth dimension 
of the random individual outside the Ni(t). The position of Xi,d(t) after NDS process is Xi−NDS,d(t + 1):

	 Xi−NDS,d(t + 1) = Xi,d(t) + r3(Xn,d(t) − Xr,d(t))� (24)

where r3 is a random value from 0 to 1. Finally, compare the fitness values of the two candidates position 
Xi−SAO  and Xi−NDS , a better agent position Xi(t + 1) was selected (Eq. 25).

	
Xi(t + 1) =

{
Xi−SAO(t + 1), F it[Xi−SAO] < F it[Xi−NDS ]
Xi−NDS(t + 1), other

� (25)

In this process, the positions of the top three individuals in the elite pool (Xbest, Xsecond, Xthird) do not do the 
NDS process, because the current global optimal value should be guaranteed.

The proposed GDSAO
In this section, three methods are proposed to improve the original SAO. The good point set increases the 
diversity of the initial solution, and the dynamic snowmelt ratio can prevent the premature convergence of the 
search agent. However, randomness exists in both methods. The increase in search diversity of agents can further 
reduce global fitness, but there is also the possibility of migrating to the worse local optimal solution. The NDS 
process ensures that the population moves towards a better solution, and the lousy solution brought by the first 
two methods can be effectively improved through this process.

In this study, the maximum Fitness Evaluations Number (F ENmax) is used as the condition to terminate 
the optimization. Based on the above process, the proposed GDSAO algorithm is shown in the pseudo-code 
Algorithm 2, and the calculation process is shown in the flow chart Fig. 11.

Fig. 10.  Schematic diagram of the cross term in NDS process.
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Algorithm 2.  Global dynamic evolution snow ablation optimizer (GDSAO).

The time complexity of GDSAO mainly depends on five elements: population initialization, location 
updating, fitness calculation, and fitness ranking. The computational complexity required by the optimal 
point set strategy to generate individual positions is O(N × D), where N is the number of search agents 
and D is the solution space dimension. The fitness values of all individuals need to be calculated and sorted 
in each iteration. The calculation complexity is O(N × Tmax) + O(N log N × Tmax), where Tmax is the 
maximum number of iterations. The computational complexity for updating the location of all candidate 
solutions in the exploration and exploitation phase is O(N × D × Tmax). The time complexity of this paper’s 
neighborhood dimensional search strategy is O((N − 1) × D). So overall, the time complexity of GDSAO is 
O(ND + Tmax((2N − 3)D + N(1 + log N))).

Testing on benchmark functions
The experiment and simulation studies in this section and the next section use MATLAB. The code runs on a 
computer equipped with a 12th Gen Intel(R) Core(TM) i7-12700H @ 2.30 GHz CPU, 16.0 GB RAM, and the 
Windows 11 operating system. The version of MATLAB used is R2024a.

Fig. 11.  The flowchart of the proposed GDSAO.
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Optimization results and comparison
The proposed GDSAO algorithm is used to optimize CEC 2017. Thirty 10-dimensional benchmark functions 
were studied experimentally. More details on these typical testing problems can be found in the paper34. These 
benchmark functions include four types: unimodal problems (F1–F3), simple multimodal problems (F4–F10), 
hybrid problems (F11–F20), and composition problems (F21–F30). These benchmark problems can reflect 
the algorithm’s performance in real-world optimization problems. Compare the proposed GDSAO with other 
improved SAO algorithms and advanced algorithms. There are original SAO, MSAO26, DESAO29, MPA35, EO36, 
CMA-ES37, jSO38.

The eight algorithms’ main parameters are shown in Table 1. In addition, the fundamental parameters 
remain consistent, such as the number of search agents N = 100, the maximum fitness evaluation number 
F ENmax = 100, 000, the search dimension dim = 10, the search upper bound Ub = 100, and the search 
lower bound Lb = −100. Each algorithm was independently repeated 30 times, and two evaluation metrics 
were utilized to compare and analyze the optimization performance of each method intuitively: average value 
(mean) and standard deviation (std):

	

mean = 1
n

n∑
i

(f∗
i − fopt)

std =

√√√√ 1
n − 1

n∑
i

(f∗
i − fopt − mean)2

� (26)

where mean reflects the convergence accuracy of the algorithm, std quantifies the dispersion degree of the 
optimization results, i represents the number of repeated runs, n is the total number of runs, f∗

i  represents the 
global optimal solution of the ith run, and fopt is the theory optimal value of the reference function.

At the same time, the Friedman test39 was used to rank the average fitness of GDSAO and other algorithms. 
In Eq. 27, k is the sequence number of the algorithm, Rj  is the average ranking of the jth algorithm and n is 
the number of test cases. The test assumes χ2 distribution with k − 1 degrees of freedom. It first finds the rank 
of algorithms individually and then calculates the average rank to get the final rank of each algorithm for the 
considered problem.

	
Ff = 12n

k(k + 1)

[∑
j

R2
j − k(k + 1)2

4

]
� (27)

After calculation, the solution results of GDSAO and the other seven algorithms are shown in Table 2, where 
the bold terms are the optimal solution results under the reference function referred to in the row. We discuss 
the experimental results according to the class of the benchmark function. In all of the above problems, GDSAO 
outperforms the original SAO algorithm and several improved versions of SAO. 

	1.	� Unimodal functions (F1–F3): These three functions have only one global best solution, which is suitable for 
testing the exploitation ability of the algorithm. The performance of the GDSAO algorithm is better than 
other algorithms due to its dynamic snowmelt ratio and the improvement of the neighborhood dimensional 
search process in the exploitation process.

	2.	� Simple multimodal functions (F4–F10): This kind of function has many locally optimal solutions, which is 
suitable for testing the exploration ability of the algorithm. GDSAO exhibits the best global exploration ca-
pabilities. The main reason is that the two-population mechanism always ensures the exploration ability and 
the initialization of the good point set improves the diversity of the initial population, which is beneficial in 
this multi-local optimal solution problem.

Algorithm Abbr. Parameters settings References

Global dynamic evolution snow ablation optimizer GDSAO DDT ∈ [0.35, 0.6], b = 0.5, kmax = 2, kmin = 0.5 –

Snow ablation optimizer SAO DDT ∈ [0.35, 0.6] 25

Multi-strategy boosted snow ablation optimizer MSAO DDT ∈ [0.35, 0.6], CR = 0.8 26

Differential vectors empower snow ablation optimizer DESAO DDT ∈ [0.35, 0.6], CR = 0.8, F = 0.5 29

Marine predators algorithm MPA F ADs = 0.2, P − 0.5, 35

Equilibrium optimizer EO a1 = 2, a2 = 1, GP = 0.5 36

Covariance matrix adaptation evolution strategy CMA-ES α = 2 37

Single objective real-parameter optimization jSO pmax = 0.25, pmin = pmax/2, H = 5, MF = 0.3 38

Table 1.  The main parameters of algorithms involved.
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Function Metric GDSAO SAO MSAO DESAO MPA EO CMA-ES jSO

F1
Mean 2.23E+00 3.90E+03 2.89E+00 6.30E+01 5.99E+01 4.91E+03 2.24E+05 0.00E+00

Std 4.82E+02 4.73E+03 2.62E+00 6.65E+01 6.25E+01 5.45E+03 1.94E+05 0.00E+00

F2
Mean 0.00E+00 6.44E+00 2.46E−12 1.05E+09 1.05E+09 1.40E+08 4.58E+31 0.00E+00

Std 3.82E+06 1.56E+01 7.29E+16 3.41E+09 3.46E+09 2.10E+08 7.19E+31 0.00E+00

F3
Mean 0.00E+00 4.09E+04 3.18E+04 6.06E+04 5.97E+04 7.11E+02 3.59E+05 5.94E−14

Std 2.66E+03 9.51E+03 9.89E+03 1.01E+04 1.07E+04 9.53E+02 4.73E+04 0.00E+00

F4
Mean 2.00E−01 8.18E+01 6.41E+01 8.97E+01 8.54E+01 8.81E+01 2.33E+01 6.86E+01

Std 1.21E+01 9.25E+00 3.90E+01 1.99E+01 1.65E+01 2.25E+01 8.98E−01 0.00E+00

F5
Mean 4.90E+00 4.75E+01 8.22E+01 5.35E+01 5.17E+01 6.52E+01 2.49E+02 2.44E+01

Std 2.81E+01 1.48E+01 6.55E+01 1.57E+01 1.22E+01 1.89E+01 1.52E+01 0.00E+00

F6
Mean 0.00E+00 3.57E−03 3.72E−04 5.72E−02 6.15E−02 3.40E−03 0.00E+00 3.25E−06

Std 7.39E−08 7.75E−03 1.56E−03 1.14E−01 1.50E−01 8.40E−03 0.00E+00 3.82E−06

F7
Mean 5.36E+01 7.47E+01 1.89E+02 6.74E+01 7.17E+01 9.26E+01 2.54E+02 4.32E+01

Std 2.31E+01 1.43E+01 5.37E+01 5.67E+00 6.13E+00 3.13E+01 1.17E+01 8.82E−01

F8
Mean 2.62E+01 4.98E+01 8.01E+01 4.81E+01 3.84E+01 6.31E+01 1.56E+02 6.45E+00

Std 7.81E+01 1.82E+01 5.84E+01 1.29E+01 1.28E+01 1.53E+01 4.54E+00 7.62E−01

F9
Mean 0.00E+00 7.46E+00 2.77E+00 2.70E+00 3.09E+00 2.26E+01 0.00E+00 0.00E+00

Std 9.03E−01 1.25E+01 4.60E+00 4.39E+00 4.55E+00 4.60E+01 0.00E+00 0.00E+00

F10
Mean 2.29E+02 3.00E+03 7.35E+03 2.68E+03 2.76E+03 3.76E+03 7.48E+03 2.85E+03

Std 1.66E+03 6.43E+02 8.82E+02 5.14E+02 4.53E+02 5.72E+02 2.97E+02 2.44E+02

F11
Mean 3.88E+01 4.68E+01 3.44E+01 4.48E+01 4.21E+01 5.69E+01 2.51E+03 2.04E+01

Std 4.14E+01 3.59E+01 4.06E+01 3.26E+01 3.63E+01 3.47E+01 9.03E+02 7.56E−01

F12
Mean 1.65E+04 6.88E+04 6.82E+04 3.15E+04 3.01E+04 7.68E+04 2.13E+07 1.45E+03

Std 1.86E+04 3.64E+04 5.97E+04 9.04E+03 8.57E+03 5.54E+04 8.01E+06 3.93E+02

F13
Mean 3.21E+02 9.26E+03 1.56E+04 2.45E+04 2.54E+04 2.23E+04 4.85E+06 3.29E+02

Std 2.18E+03 1.09E+04 9.31E+03 2.37E+04 2.13E+04 2.77E+04 4.12E+06 5.87E+00

F14
Mean 6.27E+02 1.87E+04 2.57E+02 1.21E+02 1.97E+02 8.90E+03 2.12E+05 2.55E+01

Std 5.32E+02 1.43E+04 6.10E+01 2.39E+01 3.18E+01 6.61E+03 2.71E+05 1.66E+00

F15
Mean 5.21E+02 3.92E+03 4.96E+02 2.49E+03 1.78E+03 4.43E+03 2.58E+06 2.02E+01

Std 1.49E+03 3.29E+03 6.09E+02 1.92E+03 2.13E+03 3.75E+03 1.98E+06 1.72E+01

F16
Mean 5.54E+01 7.42E+02 5.25E+02 8.34E+02 8.33E+02 7.14E+02 1.55E+03 3.27E+02

Std 4.71E+02 2.92E+02 4.08E+02 2.48E+02 2.42E+02 2.44E+02 1.85E+02 1.90E+02

F17
Mean 3.19E+01 2.65E+02 1.91E+02 3.18E+02 2.44E+02 2.73E+02 5.93E+02 5.54E+01

Std 2.43E+02 1.69E+02 7.20E+01 2.42E+02 2.14E+02 2.44E+02 2.86E+02 4.10E+00

F18
Mean 9.27E+03 1.82E+05 3.67E+05 7.00E+04 7.03E+04 1.62E+05 3.80E+06 2.96E+01

Std 1.45E+04 6.04E+04 3.79E+05 6.96E+04 6.85E+04 8.45E+04 3.53E+06 3.14E+00

F19
Mean 9.99E+01 3.79E+03 2.03E+03 2.94E+03 2.96E+03 4.29E+03 2.87E+06 2.46E+01

Std 9.92E+01 3.81E+03 2.76E+03 2.27E+03 2.49E+03 5.30E+03 1.61E+06 3.75E+00

F20
Mean 1.90E+01 2.54E+02 2.28E+02 3.17E+02 2.89E+02 3.66E+02 6.32E+02 9.39E+01

Std 2.76E+02 2.11E+02 1.39E+02 1.89E+02 2.04E+02 2.12E+02 1.78E+02 7.59E+01

F21
Mean 2.71E+02 2.94E+02 2.60E+02 3.14E+02 3.17E+02 3.36E+02 3.75E+02 1.67E+02

Std 7.71E+01 1.73E+01 5.55E+01 1.41E+01 2.00E+01 2.49E+01 7.46E+00 4.81E−01

F22
Mean 1.93E+02 1.13E+02 1.59E+03 1.94E+02 1.35E+02 6.43E+02 8.03E+03 1.61E+02

Std 2.16E+02 1.66E+00 3.88E+03 1.78E−11 1.45E−11 1.62E+03 3.67E+02 0.00E+00

F23
Mean 3.98E+02 4.48E+02 4.13E+02 4.51E+02 4.04E+02 4.30E+02 5.54E+02 3.64E+02

Std 2.01E+01 2.02E+01 4.74E+01 7.40E+00 7.91E+00 2.77E+01 1.78E+01 4.61E+00

F24
Mean 3.45E+02 5.46E+02 5.87E+02 5.72E+02 5.27E+02 5.22E+02 5.92E+02 5.33E+02

Std 4.76E+01 2.77E+01 6.72E+01 2.27E+01 2.61E+01 2.57E+01 7.15E+01 1.89E+01

F25
Mean 4.26E+02 4.14E+02 4.74E+02 4.82E+02 4.82E+02 4.36E+02 3.99E+02 4.12E+02

Std 5.89E−01 2.82E+00 2.39E+00 2.22E+00 1.96E+00 1.90E+01 3.22E−01 5.74E−02

F26
Mean 2.16E+02 2.53E+03 2.05E+03 1.62E+03 2.04E+03 2.56E+03 2.78E+03 2.03E+03

Std 1.05E+02 2.02E+02 8.19E+01 6.02E+02 6.31E+02 2.51E+02 1.66E+02 3.03E+02

F27
Mean 3.92E+02 6.14E+02 5.32E+02 5.49E+02 5.65E+02 6.12E+02 5.08E+02 5.55E+02

Std 1.77E+01 7.37E+00 2.46E−05 1.73E+01 1.72E+01 1.90E+01 4.31E−05 6.33E−01

Continued

Scientific Reports |        (2024) 14:29876 14| https://doi.org/10.1038/s41598-024-81100-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	3.	� Hybrid functions (F11–F20): This kind of function contains many unimodal and multimodal functions, 
which are more challenging to optimize. On F12, F16, and F20, GDSAO is better than other methods, while 
on F14, F15, GDSAO optimization results are ranked 5-th and 3-rd, and the best result solved by jSO. In 
other benchmark functions, such as F11, F13, F17, F18 and F19, GDSAO achieved the second highest per-
formance ranking, closely after jSO. The algorithm proposed in this paper gets relatively good results on such 
problems.

	4.	� Composition functions (F21–F30): The composition benchmark function combines all the above function 
combinations. GDSAO achieves the best results on the ten benchmark functions on F22, F26 and F27. The 
second results were achieved on F21, F23, F24, F29, F30, and the third on F25 and F28. The results further 
show that the proposed algorithm has a good effect.

The Friedman test rankings for all the algorithms above are shown in Table 3 and Fig. 12, and the evolution curve 
of the population’s average fitness is shown in Figs. 13 and 14. The proposed GDSAO algorithm performs very 
well, with a comprehensive ranking of 2.0667. In particular, compared to the original SAO’s ranking of 5.1333, 
the performance has improved significantly, also better than MSAO’s 4.4333 ranking and DESAO’s 4.9000 
ranking. The ranking is second only to jSO algorithm 1.9333. This shows that the three improvement measures 
proposed, initialization of the best point set, dynamic snowmelt ratio, and neighborhood dimensional search, 
effectively complete the improvement in exploration and exploitation and cooperate reasonably with each other.

Fig. 12.  Test ranking of each algorithm on CEC2017.

 

Algorithm Ranking

GDSAO 2.0667

SAO 5.1333

MSAO 4.4333

DESAO 4.9000

MPA 4.8000

EO 5.8000

CMA-ES 6.9333

jSO 1.9333

Table 3.  The Friedman test ranking. Significant values are in bold.

 

Function Metric GDSAO SAO MSAO DESAO MPA EO CMA-ES jSO

F28
Mean 4.24E+02 4.75E+02 5.83E+02 4.13E+02 4.77E+02 4.15E+02 5.19E+02 3.74E+02

Std 6.14E+01 6.50E+01 1.77E−05 6.08E+01 5.72E+01 4.71E+01 6.49E−05 8.99E+01

F29
Mean 5.13E+02 7.21E+02 5.94E+02 6.82E+02 7.22E+02 7.01E+02 2.40E+03 3.04E+02

Std 2.51E+02 2.41E+02 8.79E+01 1.47E+02 1.74E+02 1.62E+02 2.63E+02 5.02E+01

F30
Mean 2.83E+03 5.67E+03 4.72E+03 6.01E+03 5.51E+03 6.42E+03 3.12E+06 2.82E+03

Std 3.51E+02 2.62E+03 3.35E+03 3.68E+03 4.33E+03 3.05E+03 2.01E+06 2.71E+02

Friedman Ranking 2.0667 5.1333 4.4333 4.9000 4.8000 5.8000 6.9333 1.9333

Table 2.  The experimental results from different algorithms. Significant values are in bold.
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In addition, Wilcoxon tests39 are tested on GDSAO and seven other algorithms. Test results such as Table 4, 
in all cases, obtain a Wilcoxon tests value p less than 5%. In all cases, the optimization performance of GDSAO 
is significantly better than other algorithms.

Through the evolution curve, it can be seen that the convergence speed of GDSAO (green line) is much faster 
than other algorithms, and it can quickly converge to the optimal value. GDSAO showed rapid evolution in the 
early stage of iteration, showing an excellent ability to search the global space. In contrast, in the middle and late 

Fig. 13.  Evolution curve of CGO and other algorithms on CEC2017 10-dimension reference function (F1–
F15).
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stages of iteration, GDSAO maintained a persistent local exploitation ability on many issues, and its evolution 
curve consistently declined slowly to avoid premature convergence. This also shows the adaptive ability to 
improve the dynamic snowmelt ratio to evolutionary dispersion k.

Fig. 14.  Evolution curve of CGO and other algorithms on CEC2017 10-dimension reference function (F16–
F30).
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Improvement strategy analysis
GDSAO incorporates three improvement strategies, each of which plays a different role in different stages of 
evolution: 

	1.	� Good point set initialization (GPSI): Use the position diversity to evaluate the diversity of population distri-
bution in search space. 

	

Div = 1
N

N∑
i=1

√√√√
D∑

j=1

(xij − x̄j)2� (28)

 where xij  is the coordinates of the i particle in the j dimension, and xj  is the average coordinates of all individuals 
in the j dimension. The GPSI can greatly improve the fitness and diversity of the initial population. When the 
search space and the number of particles are determined, the result of the GPSI is determined. In the 30 problems 
of 10-dimensional CEC2017, 30 initial populations are randomly generated and the optimal fitness is calculated, 
and the optimal fitness of the initial populations is compared with the GPSI. The result is that in 900 sets of 
random initialization results, the optimal fitness of the GPSI exceeds 792 of them. In addition, When N = 100, 
Ub = 100, Lb = −100, dim = 10, the initial population diversity generated by GPSI is Div = 179.677. The 
average Div from 900 random initializations is 179.5733. The results show that GPSI can ensure better location 
diversity of the initial population and improve the initial fitness to a large extent.

	2.	� Dynamic snowmelt ratio (DSR): The DSR adds dynamic changes to the process of population evolution. 
Hussain et al.40 put forward an approach to measure and analyze the capability of exploitation and explora-
tion in meta-heuristic algorithms. We used this method to measure the extent of population exploration and 
exploitation: 

	

Epl% = Div

Divmax
× 100

Ept% = |Div − Divmax|
Divmax

× 100
� (29)

 where Divmax represents the maximum diversity. Epl% and Ept% refer to the exploration percentage and 
exploitation percentage, respectively. Fig. 15 shows the evolution of Epl% and Ept% on some benchmark 
functions (F1, F5, F13, F16, F17, F26) with SAO incorporates DSR and original SAO. It can be seen that DSR 
method can improve the exploitation capability of the original SAO. In some Hybrid functions (such as F13 and 
F16), the exploitation capability of the original SAO deteriorates at the end of the iteration, and DRS can make 
up for the deficiency of SAO in the face of Hybrid functions.

	3.	� Neighborhood dimensional searching (NDS): NDS uses the idea of cross-mutation and greedy strategies 
to further enhance the overall fitness of the population through repeated searches. It is also GDSAO’s main 
strategy for improving fitness. By comparing the original SAO with the GDSAO (The first and second col-
umns of the Table 2), it can be seen that the NDS process can improve the optimization ability of SAO and 
obtain better population fitness.

Solving UAV path planning based on GDSAO
Problem statement
This section uses the GDSAO algorithm to plan the path of the UAV from the starting point to the target point. 
We construct a configuration space X  with a range of 850 × 850 × 350, and the topographical elevation data is 

Comparison Wilcoxon test

GDSAO versus SAO 9.318e−06

GDSAO versus MSAO 2.410E−04

GDSAO versus DESAO 1.056E−04

GDSAO versus MPA 1.251E−04

GDSAO versus EO 2.126E−05

GDSAO versus CMA-ES 4.716E−06

GDSAO versus jSO 2.104E−03

Table 4.  The Wilcoxon test result of CGO and other algorithms on CEC2017.
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Center (X, Y) Obstacle radius Threaten zone radius

(300, 500) 80 90

(500, 200) 70 80

(450, 350) 80 90

(250, 200) 70 80

(600, 550) 70 80

(550, 750) 80 90

Table 5.  The obstacle threaten zones position and radius.

 

Fig. 16.  Configuration space and obstacle threaten zones for UAV path planning.

 

Fig. 15.  The optimal navigation path obtained by GDSAO.
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derived from the digital elevation model (DEM) measured by LiDAR sensors, as cited in Phung and Ha’s work41. 
The UAV starts with ps = [100, 100, 100]T and ends with pg = [800, 800, 100]T . Several obstacles threaten 
the zones distributed in the space. As shown in Fig. 16. Table 5 lists each obstacle’s spherical center position and 
radius.

Instead of directly using the Cartesian coordinates [X, Y, Z]T to describe the waypoints, use Spherical 
coordinates [ρ, φ, ψ]T  to represent the flight action of the UAV better. Where ρ represents the Euclidean distance 
between the front and back path points, φ represents the direction Angle of the front and back paths projected 
onto the datum plane Z = 0, and ψ represents the pitch Angle of the front and back paths on the vertical plane. 
Spherical coordinate system [ρ, φ, ψ]T transition to the Cartesian coordinate system [X, Y, Z]T formula is:

	





Xi = Xi−1 + ρi cos(ψi) sin(φi)
Yi = Yi−1 + ρi cos(ψi) cos(φi)
Zi = Zi−1 + ρi sin(ψi)

� (30)

Parameters setup
The number of path control points for path planning is 4 (without starting and goal point), representing five 
paths, so the dimension of the decision variable D is 15. The maximum fitness evaluation number of the 
algorithm F ENmax = 100, 000, the number of search agents is 100, and running 30 times independently. The 
parameters are defined as Table 6.

To make each cost have the same impact on the result, the corresponding weight coefficient of each cost 
should be adjusted to make the order of magnitude as consistent as possible42: [λ1, λ2, λ3, λ4]. Due to the 
different orders of magnitude of different penalty functions, the weight coefficients are different, where λ1 = 5 
to maintain the basic path length constraint, λ2 = 3 and λ3 = 10 to enhance the obstacle avoidance threat and 
flight height constraint, to ensure the safety of navigation. The λ2 value is relatively small to give the optimizer 
the possibility to explore between obstacles. λ4 = 1 provides basic Angle constraints.

In this experiment, the UAV navigation path was simulated from the control point using the Piece-wise 
Cubic Hermite Interpolation method in MATLAB. The total path points of the interpolation path, including the 
starting and goal points, are 101, so the path segments are 100. In calculating the path objective function, Eq. 8 
is needed to consider all the path points.

Optimized performance of GDSAO and comparison
Figure 17 is the optimal navigation path obtained by the GDSAO solution, and the route satisfies the navigation 
obstacle avoidance threat constraint and Angle constraint. Figure 17a is a 3D image of the path planning result. 
Figure 17b Path planning results as viewed from above. The inner ring of the red concentric circle is the obstacle 
area where the UAV is not navigable, and the outer ring is the threat area where the UAV can navigate, but 
the cost is high. The path does not enter the threat area. Figure 17c Path planning results as viewed from the 
right. Figure 17d is the evolution curve of the GDSAO solution, which converges to the result state after 40,000 
evaluations.

Among those 10 planned paths, the fitness value of the best path is 5073.741, and the fitness value of the longest 
path is 5887.507. Table 7 shows the optimal fitness, average fitness, worst fitness, and standard deviation of 10 
repeated experiments of UAV path solution results of eight optimization algorithms. Figure 18 represents eight 
optimization algorithms’ best path results and evolution curves. Moreover, we get the following observations: 

	1.	� All the meta-heuristic algorithms can find the solution satisfying the constraint, which shows that it is fea-
sible to solve the spatial path planning with this idea. At the same time, the diversity of solutions also shows 
the complexity of the problem, and many local optimal values can be used to test the optimization ability of 
the algorithm.

	2.	� As can be seen from Fig. 18, most algorithms tend to plan a path through a group of obstacle threatens 
zones, such as SAO, MSAO, MPA, EO, jSO, and GDSAO. CMA-ES and DESAO fared poorly in this problem, 
bypassing the obstacle from the outside. It shows that most algorithms have good exploration ability in this 
problem. Even if the primary trend is consistent with other algorithms, GDSAO can find a better fitness path, 
indicating that GDSAO has better exploitation ability.

	3.	� In terms of the best and average results shown in Table 7, the GDSAO algorithm is entirely ahead of other 
algorithms, which also show different performances. CMA-ES performs the worst.

GDSAO parameters Value Problem parameters Value Problem parameters Value

D 15 Dinf 10,000 λ1 5

N 100 Hinf 10,000 λ2 3

F ENmax 100,000 hmax 200 λ3 10

b 0.5 hmin 100 λ4 1

kmax 2 φmax 45 Waypoints 101

kmin 0.5 ψmax 45 Segments 100

Table 6.  The parameters setup of UAV path planning.
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	4.	� The GDSAO has a slight standard deviation, which is followed by CMA-ES, DESAO, and jSO. It is further 
proved that the GDSAO algorithm is effective and ensures the optimality and stability of the generated path.

	5.	� From the average evolution curve (Fig. 18d), it can be seen that the evolution process of the GDSAO algo-
rithm in the initial evaluations stage (FENs < 20,000) is relatively fast. In the middle and late evaluations 
(FENs> 20,000), the average fitness of GDSAO populations continued to decline. At the same time, SAO, 
DESAO, MSAO, EO, jSO, and other algorithms converged during the same period.

Path planning in different scenarios
GDSAO’s ability to solve UAV path planning was tested in four scenarios. The four scenarios’ central coordinates, 
obstacle radius, and threat area radius are shown in Table 8. Scenario 1 is a single obstacle threat scenario to 
test basic path planning capabilities. Scenario 2 is a multi-obstacle threat scenario, which is symmetrically 

Algorithms Best Mean Worst Std

GDSAO 5073.741 5146.414 5887.507 265.597

SAO 5078.040 5641.256 6500.378 382.861

MSAO 5110.285 5892.034 6580.728 303.868

DESAO 5110.008 5345.213 5910.998 268.650

MPA 5359.281 5509.101 6221.366 347.806

EO 5106.335 5460.537 6164.635 322.017

CMA-ES 6053.564 6592.493 6905.274 263.752

jSO 5083.865 5169.144 5897.199 188.564

Table 7.  The paths’ fitness value from different algorithms.

 

Fig. 17.  The optimal navigation path obtained by GDSAO.
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distributed to the path planner with multiple path choices. The UAV can choose a more conservative external 
path or an internal path with less overhead. Scenario 3 is a more complex multi-obstacle threat scenario that 
further validates the optimization capabilities of the path planner. Scenario 4 is the hybrid scenario by randomly 
generated obstacle threat zones.

Scenario Center (X, Y) Obstacle Threaten zone

1
(400, 400) 100 110

(300, 300) 70 80

2

(600, 450) 80 90

(450, 600) 80 90

(400, 400) 90 100

(600, 400) 70 80

3

(200, 400) 70 80

(400, 600) 70 80

(400, 200) 70 80

(700, 700) 60 70

(240, 370) 50 60

4

(400, 600) 50 60

(600, 400) 80 90

(500, 200) 80 90

(400, 400) 65 75

Table 8.  The obstacle threaten zones position and radius in four different scenarios.

 

Fig. 18.  Configuration space for UAV path planning.
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After solving, the optimal fitness of GDSAO and the other seven algorithms is shown in Table 9. In Scenario 
1, Scenario 3, and Scenario 4, GDSAO obtained optimal path results of 5114.396, 5164.851, and 5474.661, 
respectively. In scenario 2, the optimal path is obtained by the DESAO, which is 5166.529, and GDSAO obtains 
the third result, 5170.354, very close to 5168.134 of the original SAO in the second place. It can be seen that 
GDSAO’s path planning performance in various scenarios can obtain relatively good results.

Figures 19 and  20 show the path solution results and evolution curves of various optimization algorithms in 
four scenarios. In scenario 1, with only a single obstacle, it is not difficult to find a suitable path. However, the 
smoothness of the generated path can be tested, and the algorithm’s exploitation ability can be seen. The path 
generated by GDSAO is closer to the edge of the obstacle threat area, and the path corners are smoother than 
those generated by other algorithms such as CMA-ES, etc. Scenario 2 adds two barrier threats to this distribution 
on top of Scenario 1. The GDSAO, jSO, MPA, CMA-ES, and SAO obtained the path through the obstacles, 
which was shorter in terms of distance. EO obtained the more smooth path, but because some of the paths 
passed through the threat area, the overall fitness was higher than otherwise planned. Scenario 3 consists of five 

Fig. 19.  Result of UAV path planning in four scenarios.

 

Algorithms Scenario 1 Scenario 2 Scenario 3 Scenario 4

GDSAO 5114.396 5170.354 5164.851 5474.661

SAO 5127.293 5168.134 5171.069 5488.419

MSAO 5131.991 5429.322 5168.997 5516.781

DESAO 5127.452 5166.529 5722.731 5589.687

MPA 5126.176 5403.372 5253.598 5606.115

EO 5608.788 5507.475 5177.141 5594.212

CMA-ES 5230.970 5519.666 5903.849 5671.965

jSO 5139.551 5202.336 5166.304 5482.377

Table 9.  The paths’ fitness value from different algorithms in four different scenarios. Significant values are in 
bold.
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centrally symmetrical obstacle threats. Most of the generated paths are from the outside around the obstacle 
threat, with the GDSAO, MPA, jSO and EO algorithm going through the middle of the obstacle, which shows 
that these algorithms show strong exploitation ability in this scenario. Scenario 4 is an unplanned obstacle threat 
where all paths are routed from the same side. GDSAO also achieves optimal results.

In summary, the GDSAO proposed in this paper performs well in UAV space path planning. It shows that 
this algorithm has advantages in solving complex real problems and has the possibility of further research and 
application.

Conclusion and discussion
This paper establishes UAVs’ path obstacle avoidance model in a three-dimensional environment with obstacle 
threats. In path-planning modeling, the objective function of the UAV path is established in the form of penalty 
terms by obstacle threat, height threat, and permissible Angle, and a complete UAV path is generated based on 
several path control points through Spline interpolation.

In the optimization algorithm part, this paper proposes a global dynamic evolution improved snow ablation 
optimizer algorithm based on SAO. It includes three algorithm improvement measures, all of which can improve 
the global evolution of the population. The optimal point set initialization makes the initial solution evenly 
distributed in the search space, improves the diversity of the initial population, and ensures the quality of the 
initial solution. The dynamic snowmelt ratio method introduces the concept of evolutionary dispersion of the 
population, which reflects the degree of fitness change of the population under two adjacent iterations and 
applies it to the algorithm’s exploitation process. This enables the population to dynamically and automatically 
adapt to the changes in Fitness under different exploitation situations, thus reducing the exploitation speed of 
agents that develop too fast and increasing incentives for agents that gradually converge. The neighborhood 
dimensional search increases the local exploitation ability and finds a better solution near the current population 
location. Meanwhile, the neighborhood dimensional search does not modify the top three optimal agents in the 
elite pool, which ensures the global optimal value and the overall evolution trend.

To test the proposed algorithm’s performance, we first tested it on thirty 10-dimension functions of CEC 
2017. We compared it with seven advanced optimization algorithms: SAO, MSAO, DESAO, MPA, EO, CMA-
ES, and jSO. According to the Friedman test, the GDSAO algorithm ranks 2.1667 out of 8 algorithms, the 

Fig. 20.  Evolution curve of UAV path planning in four scenarios.
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performance is very close to that of jSO. The solution process shows that GDSAO performs well in exploration 
and exploitation processes.

Solving the UAV path planning problem in a 3D environment, all eight optimization algorithms can obtain 
the path without violating the obstacle threat and angle constraint. After 30 repeated runs of each algorithm, the 
results show that the results of the GDSAO algorithm are optimal in terms of optimal path length and average 
path length. The standard deviation of the path is also smaller than that of other algorithms, which proves the 
validity and stability of GDSAO in solving the path planning of space UAVs. It further indicates that GDSAO has 
the competitive power of optimization.

GDSAO is a single-objective optimization algorithm for continuous problems, so in future work, versions 
of GDSAO can be further developed for more types of problems. At the same time, the ability to solve more 
complex and cutting-edge large-scale problems can also be further studied.

Data availability
All data generated or analysed during this study are included in this published article. The GDSAO code, 
CEC2017 parameters and terrain data are included in: ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​​b​.​​c​o​​m​/​​R​​i​v​e​n​S​a​r​t​r​e​/​G​D​S​A​O​_​u​a​v​_​p​a​t​h​_​p​l​
a​n​n​i​n​g​​​​​.​​
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