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ABSTRACT
Commonly used two- sex discrete- time population projection models rely on mating functions developed for continuous- time 
frameworks that overestimate the number of unions between reproductive individuals. This has important consequences for our 
understanding of the evolution and demography of two- sex populations and consequently for management and conservation. 
Here, we propose a novel mating function that is robust by obeying all properties necessary to be ecologically valid and flexible by 
accommodating all mating systems and efficiency in mating encounters. We illustrate the usefulness of this novel function with 
an application to the sexually size- dimorphic and polygynous wild boar (Sus scrofa). We show that the population growth rate 
depends on the harem size, the operational sex ratio, and the mating efficiency. This novel function can be applied to all mating 
systems and tactics and is highly relevant in the context of global changes under which mating systems and mating efficiency 
are expected to change.

1   |   Introduction

A better understanding of population dynamics is fundamental 
for management and conservation purposes, especially in the 
current context of global changes. Most demographic studies 
published to date have explored population dynamics using de-
mographic models built on females only. They are technically 
simple and require the monitoring of individuals of that sex only. 
However, these models rely on the crucial assumption that the 
number of males in a population has no influence on females' re-
production (and on other vital rates, such as survival). Moreover, 

they often completely ignore the dynamics of the male compo-
nent of the population, and when they do not, they often con-
sider that vital rates are identical for both sexes (Pollard 1974; 
Caswell 2001; Iannelli, Martcheva, and Milner 2005). However, 
in a large range of species throughout the tree of life, substantial 
sexual dimorphism occurs in life history traits, causing males 
to matter (Mysterud, Coulson, and Stenseth  2002). Because 
male and female mortality trajectories may differ markedly 
(Pollak 1990; Tidiere et al. 2015; Lemaître et al. 2020; Gamelon 
et  al.  2012) due to, for instance, selective harvesting (Fenberg 
and Roy  2008; Zhou et  al.  2010; Milner- Gulland et  al.  2003), 
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two- sex models have been developed to account explicitly for 
sex- specific vital rates.

The number of males in a population, even when lower than 
the number of females, may strongly influence females' repro-
duction (Milner- Gulland et al. 2003). Therefore, it is crucial to 
account explicitly for both the number of males and females in a 
population and to model the number of unions. To do so, two- sex 
population projection models including mating functions have 
been proposed (e.g., Legendre et al. 1999; Jenouvrier et al. 2010; 
Miller and Inouye  2011; Gerber and White  2014; Tahvonen, 
Kumpula, and Pekkarinen  2014; Tenan et  al.  2016; Eberhart- 
Phillips et al. 2017). In that case, the number of unions depends 
on both the number of reproductive males and the number of 
females that are ready to mate, which define together the oper-
ational sex ratio (hereafter OSR; Kvarnemo and Ahnesjo 1996) 
and on the mating system (e.g., monogamy, polygyny, polyan-
dry, or promiscuity; see Box  1: Glossary for the description of 
these different mating systems).

Different mating functions have been proposed in the literature 
to account for different mating systems and OSRs within two- 
sex models (see Miller and Inouye 2011 for a review of existing 
mating functions). Theoreticians have introduced a series of 
mandatory properties that a mating function must satisfy to be 
mathematically and ecologically valid for continuous- time mod-
els (Fredrickson 1971, Gupta 1972, Yellin and Samuelson 1974; 
see Supporting Information  S1 for a commented list of these 
rules). However, for population ecologists, discrete- time projec-
tion models are often more appropriate than continuous- time 

models, particularly for populations with seasonal or periodic 
life history, such as those characterised by a short breeding 
season within a year (Bacaër  2009) or survival rates varying 
amongst time periods within a year (e.g., for exploited species, 
Gamelon et al. 2012). This has yielded direct extensions of the 
continuous- time functions towards the discrete- time frame-
work (e.g., Caswell 2001). However, the resulting mating func-
tions, some of them commonly used in two- sex discrete- time 
projection models, fail to meet ecological standards (see Box 2 
for the state of the art of existing mating functions). Notably, 
one of the most heavily used functions, the harmonic mean 
mating function, even violates the most basic logical property 
that, in a monogamous framework, “the number of unions in-
volving a sex must not exceed the total number of individuals of 
that sex” (Pollak  1986), which can have severe consequences 
(see Box 2). More precisely, the harmonic mean mating func-
tion creates more pairs than the number of available males or 
females in the population (see Figure 1A). It is crucial to model 
accurately and realistically population dynamics using an ade-
quate and robust (to ecological and mathematical validity prop-
erties) mating function for discrete- time models.

In this study, we introduce a novel mating function suitable for 
discrete- time models, designed to ensure that the number of 
unions does not exceed the number of reproductive individu-
als, whether male or female. This new mating function we call 
“Minharmonic mating function” (1) obeys the general rules of 
continuous- time mating functions; (2) does not overestimate 
the number of mating pairs; (3) decreases in mating efficiency 
(i.e., the probability to mate per individual of the limiting sex) 
as one approaches the balanced OSR; (4) allows flexibility in 
how strongly mating efficiency declines upon approach of the 
balanced OSR via a parameter e; and (5) can be extended to other 
mating systems (polygynous, polyandrous, and promiscuous). 
Moreover, we formalise the concept of mating efficiency, which 
enhances the understanding of the behaviour of mating func-
tions and prevents logical fallacies. To illustrate the usefulness 
of our approach, we model a wild boar (Sus scrofa) population 
in a deterministic context (with no variance amongst individ-
uals allowed except between sexes and amongst size classes), 
using a two- sex model including this novel mating function. 
The wild boar is a polytocous, polygynous (Mauget 1980; Gayet 
et al. 2021), and size- dimorphic mammalian species that mark-
edly benefits from current global changes (Touzot et al.  2020, 
2023). Managing wild boar populations through hunting has 
become increasingly challenging due to their significant popu-
lation growth and expansion across Europe over the last decades 
(Massei et al. 2015).

2   |   Materials and Methods

2.1   |   A Novel Mating Function 
for Discrete- Time Models

2.1.1   |   Important Properties of Mating Functions

We propose a new mating function that combines the minimum 
mating function and the harmonic mean mating function (see 
Box  2 for a description of these functions) and in its monoga-
mous formulation obeys the four required properties set by 

BOX 1    |    Glossary.

Monogamy: a mating system where one male mates with one 
female in a breeding season.
Polygyny: a mating system where males mate with more 
than one female. For a population, the number of females 
that mate with one male is defined by the harem size, h. In 
the real world, h can vary amongst males within the same 
population, but a single mean h value is considered in the 
modelling, which corresponds to the mean value at the pop-
ulation level.
Polyandry: a mating system where one female mates with 
more than one male. For a population, the number of males 
that mate with one female is defined by h’. In the real world, 
h’ can vary amongst females within the same population, 
but a single mean h’ value is considered in the modelling, 
which corresponds to the mean value at the population level.
Promiscuity: a mating system where males mate with sev-
eral females and females mate with several males.
Random mating: each individual has the same probability to 
mate with another individual.
Assortative mating: mating is structured: an individual 
mates with another individual with the same (i.e., positive 
assortative mating) or dissimilar (i.e., negative assortative 
mating) phenotype characteristics compared to itself.
Efficiency (in mating): Probability to meet and mate for an 
individual of the limiting sex. A low efficiency in mating 
corresponds to a difficulty for individuals to meet and mate. 
At the opposite, a high efficiency in mating corresponds to 
easy mating.
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theoreticians of two- sex models in a continuous- time frame-
work to have meaningful interpretation (Fredrickson  1971; 
Gupta 1972; Yellin and Samuelson 1974):

-  Monotonicity: the mating function U(m, f), giving the num-
ber of pairs formed in a population with m available males 
and f available females, is a non- decreasing function of 
m and f;

-  Non- negativity: U(m, f) ≥ 0;

-  No union if one sex is absent;

-  Homogeneity: if the number of both sexes increases k times, 
the number of unions increases k times also.

It also obeys a crucial mandatory property for monogamous 
models in discrete- time, given by Pollak (1986):

BOX 2    |    State of the Art on Previously Published Mating Functions in Discrete- Time Models and Their Main Pitfalls.

Two mating functions are commonly used in discrete- time two- sex population projection models: the minimum mating function 
(e.g., Legendre et al. 1999; Jenouvrier et al. 2010; Brodie et al. 2011; Tenan et al. 2016), and the harmonic mean mating function 
(e.g., Caswell 2001, Tsai et al. 2015, Eberhart- Phillips et al. 2017; see Supporting Information S1).
In two- sex models, the mating function is, in general, developed for a monogamous population. Here, we show that each monog-
amous mating function corresponds to a probability for an individual of the limiting sex to meet and mate, which we call “effi-
ciency”. Any monogamous mating function is then readily extendable–with preservation of the efficiency–to non- monogamous 
systems, so that, for instance, the probability of encounter of one male and one female in the monogamous system corresponds to 
the probability of “encounter” of one male and h females in the corresponding polygynous system (with h the mean harem size, 
Caswell 2001).
For the minimum (monogamous) mating function (of parameter 1), the number of pairs is set by the less abundant sex, with f and 
m, respectively, the number of available females and males:

This function is mathematically valid (Supporting Information S1) but assumes a 100% efficiency: every individual of the less nu-
merous sex should encounter a mate and reproduce. This is, in general, ecologically unrealistic for populations in the wild where 
some individuals can be sterile, skip reproduction, or simply not get access to potential mates. For a given number of females f and 
males m in the population, the minimum function actually corresponds to the theoretical maximum number of pairs formed, that 
is, to the maximum possible efficiency in mating (it is 1 across the spectrum of OSR). Two pitfalls of the minimum mating func-
tion are that it yields a discontinuous rate of pair formation at the balanced OSR and an efficiency in mating that is independent 
from the sex ratio, which is also not ecologically realistic (Figure 1A,C).
The harmonic mean mating function (of parameter 2) is often considered the most appropriate function in continuous- time frame-
works (Keyfitz 1972; an “ideal” mating function according to Schoen 1981), since it does capture the expected variation in effi-
ciency of the union formation as a function of the OSR: the less relatively abundant a sex is, the more likely an individual of that 
sex can mate. It has been extended, unchanged, to discrete- time models (Caswell and Weeks 1986; Caswell 2001):

However, in that framework, it is not mathematically valid because it yields a number of pairs (for all m and f but for m = f) that 
exceeds the theoretical maximum number allowed by the minimum function. Simply put, it says that the probability to mate 
of an individual of the limiting sex is higher than 1! This formula has been used in numerous papers and textbooks, some of 
them influential, concerned with theoretical analyses and applications (e.g., Lindström and Kokko 1998; Ranta and Kaitala 1999; 
Miller et al. 2011). The harmonic mean function violates a crucial rule identified by Pollak (1986): “the number of unions involving 
a sex must not exceed the total number of individuals of that sex”. This assumption can be satisfied easily by using a lower multi-
plicator, such as Uh,1(m, f) =

mf

f+m
 (e.g., Gerber and White 2014; Tsai et al. 2015). However, when there are as many available males 

as females in the population (balanced sex ratio), this function only forms n
4
 pairs (with n the total number of individuals in the 

population), and half the males and half the females remain alone. While this captures the fact that the efficiency of union for-
mation is lowest when there are as many males as females, the proportion of unmated individuals is not flexible and too high to 
be ecologically meaningful (Figure 1A).
The modified harmonic mean mating function introduced by Legendre (2004) and applied in empirical studies (e.g. Gerber and 
White 2014):

leads to a number of pairs formed that cannot exceed the number of reproductive females (Legendre 2004). In other words, this 
modified harmonic mean mating function combines the harmonic mean and the minimum mating functions to account for the 
problem of the invalid number of pairs when there are more males than females (Figure S1). However, when there are more fe-
males than males, the number of pairs exceeds the number of males, and this function is not (and was not designed as such by 
Legendre 2004) a monogamous mating function that can be extended to polygamous systems.

Umin,1(m, f) =min(m, f).

Uh,2(m, f) =
2mf

f +m

Umh(m, f) =min

(

f,
2mf

f +m

)
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-  Mathematical validity: “the number of unions involving 
a sex must not exceed the total number of individuals of 
that sex”.

Moreover, it has several desirable properties for mating func-
tions to be ecologically realistic and/or useful for the theoretical 
development and analysis of two- sex models:

-  Symmetry: the mating function is symmetrical with respect 
to a balanced OSR;

-  Mating efficiency (i.e., probability to mate) increases with 
the distance to the balanced sex ratio: the probability to mate 
for an individual of the limiting sex is smaller (i.e., there is 
lower mating efficiency) at or around the balanced OSR than 
away from it;

-  Continuity and derivability: the mating function and its de-
rivative are continuous in m and f;

-  Adaptability to any mating system: it is designed as a mo-
nogamous function readily extendable to any mating system 

FIGURE 1    |    Number of pairs formed U∗ (A and B) and efficiency E∗ (C and D) as functions of the OSR (proportion of females f∗) for the various 
mating functions described in Box 2 (A and C) and for the minharmonic mating function (Equation (3)) for a range of values of the mating efficiency 
parameter e (B and D).
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(polygyny, as we illustrate with the wild boar case study, 
polyandry, or promiscuity);

-  Flexibility: a parameter (e) controlling for the efficiency at 
the OSR and therefore for how strongly mating efficiency 
declines upon approach of the balanced OSR.

2.1.2   |   Formulation of the Novel Minharmonic Mating 
Function in a Monogamous System

A monogamous mating function U(m, f) yields the number of pairs 
formed as a function of available males m and females f. Because of 
the “homogeneity” property, U(m, f) can be described equivalently 
and in a simpler manner as a univariate function U∗

(

f∗
)

 of the rel-
ative number of females: f∗ = f

m+ f
 (i.e., of the OSR). U∗

(

f∗
)

 corre-
sponds to the number of unions per individual in the population:

For example, for the “minimum” function of parameter p, 
commonly used with p = 1 (Jenouvrier et  al.  2010), we have 
U∗

min,p

(

f∗
)

= pmin
(

f∗, 1 − f∗
)

. For the “harmonic mean” function 
of parameter p, commonly used with p = 2 (Caswell 2001), this is 
U∗

h,p

(

f∗
)

= pf∗
(

1 − f∗
)

 (see Box 2 for the full description of these 
functions).

From a monogamous mating function, we can define the mating 
efficiency as the probability for an individual of the limiting sex 
“to meet and mate”, corresponding to:

From Equations (1) and (2), we can write the efficiency as a func-
tion of the number of males m and females f, E(m, f) = U(m,f)

min(f,m)
.

In particular, we denote e, the mating efficiency at the balanced 
sex ratio: e = E∗(0.5) = 2U∗(0.5) (from Equation (2)). The param-
eter e and more generally E∗

(

f∗
)

 are probabilities: they must be 
positive and smaller than 1.

The minimum mating function of parameter p = 1 is not ecologi-
cally realistic because its efficiency E∗

min,1

(

f∗
)

= 1 is independent 
from f∗ (see Figure 1C) and too high (all adult individuals repro-
duce); moreover, the mating function's derivative is not contin-
uous at a balanced sex ratio (see Figure 1A). One can choose a 
different parameter p < 1 for the minimum mating function to 
reduce its efficiency and obtains E∗

min,p

(

f∗
)

= p, which shows 
that the latter is still independent from the OSR (see the case 
p = 0.5 for the minimum function on the Figure 1C). The har-
monic mean mating function requires a parameter p ≤ 1 to 
avoid the violation of the Pollack rule: for p > 1 (as for the widely 
used harmonic function of parameter 2), the probability to mate 
(i.e., the efficiency) is higher than 1 (see Figure 1C). For p ≤ 1, 
the harmonic mean mating function is not logically flawed but 
corresponds to an unrealistically low efficiency (see Figure 1C).

To obey the required properties (see Supporting Information S1 
for the full description of each property), our novel mating func-
tion is built as a combination of the minimum mating function 
and a modified harmonic mean mating function. This mixture 
(and its derivative) must be continuous in each point and the 
mixing is performed according to the efficiency parameter e of 
the resulting mating function (see Supporting Informations S2 
and S3 for the construction of the minharmonic mating func-
tion and its effect at the population level). For 0 ≤ e < 0.5, the 
minharmonic mating function is simply the harmonic mean 
function of parameter p = 2e (from e = E∗

h,p
(0.5) = 0.5∗p), lead-

ing to U∗

minh,e

(

f∗
)

= 2ef∗
(

1 − f∗
)

 (see Figure 1). For 0.5 ≤ e ≤ 1, the 
minharmonic function corresponds to:

The minharmonic mating function of parameter 0.5 ≤ e ≤ 1, 
therefore, corresponds to the minimum mating function with 
p = 1 for unbalanced OSRs; i.e. all individuals of the limiting sex 
mate at small f∗ (0 ≤ f∗ ≤ e − 0.5) and symmetrically, at large 
f∗ (0 ≤ 1 − f∗ ≤ e − 0.5). In the extreme case e = 1, the minhar-
monic function is the minimum function of parameter p = 1 
across all f∗. For balanced OSRs, that is e − 0.5 ≤ f∗ ≤ 1.5 − e, 
the minharmonic function has the shape of the harmonic func-
tion of parameter p = 1

2(1− e)
, but is not equal to it (its intercept 

is not zero), unless in the case e = 0.5, where the minharmonic 
function is the harmonic mean function of parameter p = 1. The 
mating efficiency with the minharmonic function, decreases 
continuously from E∗(0) = E∗(1) = 1 to the efficiency at the 
balanced OSR: E∗(0.5) = e (see Figure  1B and computation of 
E∗(0.5) in Supporting Information S2).

2.1.3   |   Formulation of the Minharmonic Mating 
Function in a Polygynous System

Any correctly built monogamous mating function U(m, f) can be 
extended to other mating systems. For a polygynous population 
with a mean harem size h, for example, one gets for the number 
of harems formed in a population with m available males and f 
available females (see Supporting Information S4 for other sys-
tems such as polyandry or promiscuity):

For the minharmonic mating function, from Equations (3) and 
(4) we get:

(1)U∗
(

f∗
)

=
U(m, f)

m + f

(2)E∗
(

f∗
)

=
U∗

(

f∗
)

min
(

f∗, 1 − f∗
)

(3)U∗

minh,e

�

f∗
�

=

⎧

⎪

⎨

⎪

⎩

min
�

f∗, 1− f∗
�

for f∗≤ e−0.5 and f∗≥1.5−e

f∗
�

1− f∗
�

−(e−0.5)2

2(1−e)
for e−0.5≤ f∗≤1.5−e

(4)Upg(m, f, h) = U

(

m,
f

h

)

=

(

m +
f

h

)

U∗

(

f

hm + f

)

(5)

U
pg

minh,e
(m, f, h) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

h
min(f,mh)for

f

hm+ f
≤ (e−0.5) and

f

hm+ f
≥ (1.5−e)

mf

(hm+f)
−

(hm+f)

h
(e−0.5)2

2(1−e)
for (e−0.5)≤

f

hm+ f
≤ (1.5−e)
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The monogamous mating system is a special case of the polyg-
ynous case with h = 1 (see the equation (7) from the Supporting 
Information S2).

Finally, from the polygynous mating function Upg

minh,e
(m, f, h) and 

K, the mean number of offspring produced by a mated female, 
we can generate the birth functions for females (Bf) and for 
males (Bm), which compute the expected number of offspring 
produced by a female and a male, respectively. These birth func-
tions correspond to the expected number of offspring produced 
by a mated individual (K offspring for a female and hK offspring 
for a male) times the probability to mate (

h×U
pg

minh,e
(m,f,h)

f
 for females 

and 
U
pg

minh,e
(m,f,h)

m
 for males):

2.2   |   Application to the Case Study of an 
Intensively Exploited Population of Wild Boar

To illustrate the usefulness of our approach, we built a two- sex 
body size- structured matrix projection model A for the polyg-
ynous wild boar (see Table  1). Our model was comparable to 
the one developed by Gamelon et al. (2012), as it includes three 
body- size classes for females (small < 30 kg, 30 kg < medium 
< 50 kg, large > 50 kg), three body- size classes for males (small 
< 45 kg, 45 kg < medium < 75 kg, large > 75 kg). It also incorpo-
rates sex-  and size- specific vital rates (growth, survival, repro-
duction), which were previously estimated in the population of 
Châteauvillain- Arc- en- Barrois, France (Gamelon et  al.  2012; 
see Table 2 for the value and biological meaning of all parame-
ters). Over one year, an individual grows towards the size class 
i directly above its current one, with probability Gi (where i: 
Mf = medium females, Mm = medium males, Lf = large females 
and Lm = large males, so GMf , for instance, is the probability for 
a small female to be in medium- size class the following year), or 
can remain in its size class with probability 1- Gi. Juveniles will, 
at the end of their first year, be of size medium with probability 
GjuvMf  (for females and GjuvMm for males) or of small size with 
probability 1 − GjuvMf  (for females and 1 − GjuvMm for males; see 
Table 1 for the matrix and Table 2 for the value and biological 
meaning of parameters).

During the non- hunting period (from March to September), each 
individual has a natural survival probability depending on its 
size class (see Table 2). During the hunting period (from October 
to February), the proportion of individuals killed in each size 
class for each sex is denoted as HSf  for small females, and Hf  for 
other females (medium and large females are considered to be 
killed in the same proportion), and HSm,HMm,HLm for small, 
medium and large males, respectively. The probability not to be 
killed by hunters corresponds to 1 −H, with H the proportion 
of individuals killed (see Supporting Information S5 for the full 
description of the matrix). Small- sized individuals are not sexu-
ally mature. Medium and large individuals can reproduce, and 
medium females produce KM = 5 offspring per litter, while large 

females produce on average KL = 6 offspring per litter (Gamelon 
et al. 2012). The young produced have a postnatal survival of s0 
(see Table 2). In contrast to Gamelon et al. (2012) that included 
both alive and dead individuals, our model here only includes 
alive individuals, and more importantly, includes the novel min-
harmonic mating function.

We denote f and m as the number of sexually mature females 
and males in total, respectively (i.e., m = mM + mL with mM 
the number of medium males and mL the number of large 
males; and f = fM + fL with fM the number of medium females 
and fL the number of large females). Each breeding male 
mates with h females. In our mating function, we assume that 
males in unions with h females are not available for other fe-
males. The minharmonic function controls for the number of 
unions, leading to the following birth functions for body- size 
classes of females (BfM for medium females and BfL for large 
females) and for males (Bm) for a harem size h (see Supporting 
Information S6 for the full description of the size- structured 
birth functions):

In the two- sex projection model (Table 1), we included the sex 
ratio at birth (balanced, see Servanty et al. 2007), and, since an 
offspring is produced by both a male and a female, we used half 
of the birth rates as fertility rates (Table 1), so that offspring are 
only counted once.

We projected the wild boar population size over a T = 20 year- 
period using the following equation: Nt+1 = ANt, where Nt is 
the population vector describing the number of individuals in 
each size class z (S: small, M: medium and L: large) for each 
sex at time t and A is the population matrix of Table 1. Birth 
functions depend on the number of available breeding individ-
uals at time t, so we estimated BfM,t, BfL,t, and Bmt for a given 
year t. We initiated the simulations with the following popula-
tion vector: fS = mS = 31, fM = mM = 92 and fL = mL = 154, which 
corresponds to the average number of females observed post- 
hunt and before births in the field, in each size class in this 
population (see Gamelon et  al.  2021). We approximated the 
asymptotic population growth rate λ, by λ ≈ λ(T) =

Ntot(T+ 1)

Ntot(T)
, 

with Ntot =
∑

z

�

fz +mz

�

; as after T = 20 time- steps, in all cases, 
the transient dynamics had dissipated and the two- sex size- 
structured relative abundances corresponded to equilibrium 
values.

At this stable state, we calculated the asymptotic OSR as 
f(T)

(m(T) + f(T))
. To explore the influence of a change in the OSR on 

the population growth rate, we incorporated different hunting 
scenarios targeting varying proportions of the reproductive fe-
males. To do so, we kept all other vital rates constant and had 
the proportion of sexually mature females killed by hunters Hf , 

(6a)Bf(m, f, h) = K × h ×
U
pg

minh,e
(m, f, h)

f

(6b)Bm(m, f, h) = K × h ×
U
pg

minh,e
(m, f, h)

m

BfM = KM × h ×
U
pg

minh,e
(m, f, h)

f

BfL = KL × h ×
U
pg

minh,e
(m, f, h)

f

Bm =
fMKM + fLKL

f
× h ×

U
pg

minh,e
(m, f, h)

m
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vary from 0 (i.e., leading to a sex ratio in favour of females as 
only males are harvested) to 1 (i.e., leading to a sex ratio in fa-
vour of males as only breeding females are shot by hunters). For 
a given mating efficiency at the balanced OSR, e and harem size 
h, a given hunting scenario yields therefore a unique OSR and a 
unique � at the equilibrium. We projected the population for dif-
ferent values of e (from 0.6, a weak efficiency in mating, to 0.9, a 
high efficiency in mating), and over different harem sizes (from 
h = 1 to h = 15) and plotted the results in Figure 2.

Additionally, to compare the application of our minharmonic 
mating function to alternative mating functions, we pro-
jected the wild boar population and approximated the pop-
ulation growth rate, for a monogamous mating system (i.e., 
h = 1), across the three mating functions we have focused on 
(i.e., minharmonic, harmonic mean and minimum), stan-
dardised to the same efficiency in mating at the balanced 
sex ratio: e = E∗(0.5) = 2 × U∗(0.5) = 0.8. For the minimum 
mating function, this corresponds to a parameter p = 0.8 as 
E∗
min,p

(

f∗
)

= p. For the harmonic mean mating function, this cor-
responds to a parameter p = 1.6 as E∗

h,p

(

f∗
)

= pmax
(

f∗, 1 − f∗
)

 and 
therefore E∗

h,p
(0.5) = 0.5 × p. Note that the harmonic function 

with p = 1.6 corresponds to a mating function that violates man-
datory property 8 (with mating probability higher than 1; see 
Supporting Information S1). We did the same thing for e = 0.9.

All analyses were performed with R (v.4.1.3, R Core Team 2021).

3   |   Results of the Application to the Wild Boar 
Case Study

As expected, hunting scenarios impacted the OSR through a 
change in female wild boar survival, and, together, vital rates, 
and OSR had major effects on the population growth rate. For a 
given OSR, the population growth rate increased with both the 
efficiency and the harem size (see Figure 2 and see Supporting 
Information S7 for the relation between Hf , the OSR and the 
population growth rate). For instance, for a population with an 
OSR of 0.75 (i.e., 3 mature females for 1 mature male, that cor-
responds to a hunting strategy with a low number of females 
killed leading to a high number of reproductive females) and 
a low efficiency in mating (i.e., e = 0.6, top left quadrant of 
Figure  2), the population growth rate varied from 0.72 for a 
monogamous mating system to 1.40 for a polygynous mating 
system with a harem size of 15 (i.e., 15 females for 1 male). 
For the same OSR, but with a high efficiency in mating (i.e., 
e = 0.9, bottom right quadrant of Figure  2), the population 
growth rate ranged from 0.77 for a monogamous mating sys-
tem to 1.42 for a polygynous mating system with a harem size 
of 5 or more (i.e., 5 or more females for 1 male; see Figure 2). 
In this case, where OSR is strongly female- biased ( f∗ = 0.75), 
and mating efficiency is high (e = 0.9), the population growth 
rate is constant for any h > 5. This is because the harem size 
is then sufficiently large for the f

f+mh
 sex ratio to correspond to 

the minimum mating function (of parameter 1) component of 
the minharmonic, where all females reproduce (we are in the 
case f ≤ (e − 0.5)(f +mh) of Equation (5)).

TABLE 2    |    Parameters, their biological meanings, and values 
(in rows) estimated by Gamelon et  al.  (2012) and used in the matrix 
population model A.

Parameter Biological meaning
Value 

estimated

SSf Natural survival of 
small females

0.978

SMf Natural survival of 
medium females

0.855

SLf Natural survival of 
large females

0.859

HSf Proportion of small 
females killed by hunting

0.449

SSm Natural survival 
of small males

0.962

SMm Natural survival of 
medium males

0.777

SLm Natural survival 
of large males

0.904

HSm Proportion of small males 
killed by hunting

0.511

HMm Proportion of medium 
males killed by hunting

0.541

HLm Proportion of large males 
killed by hunting

0.789

GMf Probability for a small 
female to grow in 
medium size class

0.879

GLf Probability for a 
medium female to grow 

in large size class

0.569

GMm Probability for a small male 
to grow in medium size class

0.747

GLm Probability for a 
medium male to grow 

in large size class

0.678

GjuvMf Probability for a juvenile 
female to grow in 
medium size class

0.4

GjuvMm Probability for a 
juvenile male to grow 
in medium size class

0.4

s0 Postnatal survival 0.75

KM Mean number of 
juveniles produced by 

a medium female

5

KL Mean number of juveniles 
produced by a large female

6
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In contrast, for an OSR biased in favour of males (i.e., high hunt-
ing mortality for females and OSR lower than 0.5), the popula-
tion growth rate was lower than 1 (in all cases, see Figure 2), 
leading to a declining population size. For example, for a popula-
tion with a sex ratio of 0.25, and with a low efficiency in mating 
(i.e., e = 0.6), the population growth rate varied from 0.44 for a 
monogamous mating system, to 0.46 for a polygynous mating 
system with a harem size of 3 (i.e., 3 females for 1 male). For the 
same OSR, but with a high efficiency in mating (i.e., e = 0.9), the 
population growth rate did not vary amongst mating systems 
or harem sizes (� = 0.46; Figure  2). Even though, here again, 
all adult females reproduced, � was small due to a high hunting 
mortality of females, resulting in a reduced number of reproduc-
tive females.

For extreme sex ratios, for instance, an OSR of 0.99 (i.e., ex-
tremely biased in favour of females), the asymptotic population 
growth rate is estimated at 0.87 for a monogamous mating sys-
tem, corresponding to a declining population whatever the value 
of e. At the opposite, for a sex ratio of 0.01 (i.e., extremely biased 
in favour of males), the asymptotic population growth rate is 
estimated at 0.20 for a monogamous mating system, whatever 
the value of the efficiency in mating, leading the population to 
extinction very quickly.

Overall, sex- specific survival rates that can be modified by more 
or less selective hunting pressure strongly impact the number of 
reproductive individuals, and therefore the OSR. This OSR has 
a strong impact on the population growth rate, leading to popu-
lation size increases when OSR is in favour of females. However, 
the mating efficiency does not change the general pattern of 
the variation in the population growth rate to the OSR, but it 

modifies the harem size needed to reach the highest population 
growth rate (Figure 2).

The response of the population growth rate to various survival 
scenarios leading to various OSR shows that the three mating 
functions we have studied (i.e., the minimum function, the 
harmonic mean and the minharmonic) have very different be-
haviours and influence population dynamics differently (see 
Figure 3). This is true even for OSRs that are close to f∗ = 0.5, 
which should allow distinguishing a best fit between these func-
tions when operating statistical model selection from data.

4   |   Discussion

Modelling a two- sex population using the novel minharmonic 
mating function allows accounting for (1) sex- specific vital rates, 
(2) the number of available breeding individuals in the popu-
lation, (3) various mating systems, and (4) flexibility in mating 
efficiency and how this efficiency varies with the OSR. Contrary 
to commonly used mating functions, the flexible minharmonic 
mating function obeys all properties, mandatory and desirable, 
for a mating function to be mathematically valid and ecologi-
cally meaningful. As expected and illustrated with the wild boar 
case study, the OSR largely influences population growth rate, 
highlighting the importance of appropriately modelling unions 
producing offspring.

Social monogamy is displayed by about 90% of bird species and 
approximately 3% of mammalian species (Lack 1968). In these 
species, one reproductive male per reproductive female is re-
quired to produce offspring. Incorporating the number of unions 

FIGURE 2    |    Population growth rate in relation to the operational sex ratio (OSR) in response to various hunting scenarios, for the wild boar 
population modelled with the minharmonic mating function with different harem sizes h (different colours) and efficiency e (various plots).
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formed by males and females without overestimating that value 
is critical to obtain accurate estimates of the Malthusian fit-
ness from two- sex population models. The mating function we 
introduce here rights the wrongs of numerous past studies by 
using the “harmonic mean” mating function (of parameter 2) 
in a discrete- time framework. This novel mating function, like 
the “harmonic mean” one, produces a union formation that in-
creases in mating probability for the less numerous sex as one 
moves away from the balanced OSR, but avoids the major pit-
fall of yielding more pairs than the number of available males 
and females. The minharmonic function has one parameter 
(i.e., the mating efficiency at the balanced OSR, e) that mixes its 

two underlying components: the minimum mating function for 
extreme OSRs (either large or small) and a modified harmonic 
mean function for balanced OSRs. Since the harmonic compo-
nent has a non- zero intercept, the behaviour of the minharmonic 
mating function differs markedly from both the minimum and 
the harmonic functions (even when scaled by a parameter to 
have equal e, see Figure 3), allowing for statistical assessment 
of the function that best fits the data. The minharmonic mating 
function is readily extendable to other mating systems, as we 
showed with the case study of a polygynous wild boar popula-
tion intensively hunted (see Supporting Information S4 for poly-
andry and promiscuity).

FIGURE 3    |    Comparison of the effects of the minimum, harmonic mean, and minharmonic mating functions, standardised for E∗
(

f∗ = 0.5
)

= 0.8 
(A) and E∗

(

f∗ = 0.5
)

= 0.9 (B), on wild boar population growth rate for a monogamous mating system (i.e., h = 1).
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As for monogamous species, in the case of polygyny character-
ised by a harem size h greater than 1, it is crucial to properly 
incorporate the correct number of unions. We showed that the 
population growth rate is not solely dependent on h, but also on 
the value of e, representing mating efficiency. When e is low, in-
creasing the harem size leads to a sharp increase in population 
growth rate. However, when mating efficiency is high, even a 
small harem size is sufficient to achieve high population growth 
rates (Figure 2). It is noteworthy that while e affects population 
dynamics, it has little effect on the general pattern of variation 
in the population growth rate to the OSR, compared to harem 
size and vital rates themselves. Strikingly, two- sex models ac-
counting for polygynous mating systems may be an interesting 
tool to estimate the population growth rate across a wide range 
of harem sizes, even in the absence of prior biological knowledge 
about h, as long as there is some understanding of the OSR of the 
population.

The OSR may vary as a result of changes in management or con-
servation strategies. In exploited populations subject to sex-  or 
size- selective harvesting, the OSR can be biased in favour of one 
sex, directly influencing the number of unions between repro-
ductive individuals. In this study of a wild boar population, we 
showed that when females were less intensively hunted than 
males, a biased OSR in favour of females led to an increase in 
population size, while the opposite was observed for a biased 
OSR in favour of males (see Figure 2). In the case of endangered 
populations, considering the OSR and the mating system using 
a relevant mating function can also help provide valuable rec-
ommendations for managers or conservationists. For example, 
in the polygynous saiga antelope (Saiga tatarica tatarica), clas-
sified as “critically endangered” by the IUCN due to intensive 
poaching of males for their horns, the OSR was strongly skewed 
in favour of females. With too few adult males, many females 
were unable to find a mate, resulting in a sharp decline in pop-
ulation size (Milner- Gulland et al. 2003). Here, a two- sex pop-
ulation model including the minharmonic mating function for 
polygynous mating system would help develop effective con-
servation measures. Our minharmonic mating function is a 
relevant tool for considering mating system and the number of 
reproductive individuals in two- sex models, making it widely 
applicable to monogamous, polygynous, polyandrous, or pro-
miscuous mating systems (see Supporting Information  S4). 
Moreover, it includes mating efficiency explicitly as a parame-
ter (e), contrary to most standard functions for which (implicit) 
efficiency is rarely computed. The commonly used “minimum” 
mating function (of parameter 1) corresponds in fact to a very 
high efficiency (i.e., 100% of the adult individuals that can repro-
duce), while the “harmonic mean” of parameter 1 corresponds 
to a rather weak efficiency (i.e., only 50% of the adult individu-
als reproduce in the population at the balanced OSR), while the 
classic “harmonic mean” (of parameter 2) corresponds to prob-
abilities to mate higher than 1 (see Figure 1A,C). The minhar-
monic mating function allows incorporating realistic levels of 
efficiency and is versatile by fixing this efficiency to a parameter 
e (see Figure 1B,D). Depending on the species or the population, 
mating efficiency can vary greatly, which affects strongly the 
population growth rates (Figure 2).

A flexible and straightforward approach to account for the influ-
ence of OSR and mating system is crucial to realistically model 

population dynamics in the wild, particularly in the current 
context of climate change. For instance, a shift from one mating 
system to another can be observed in response to changing en-
vironmental conditions (Byers and Kitchen 1988; Lane, Forrest, 
and Willis 2011). In the Bering Sea, the occurrence of El Niño 
events has deleterious consequences on seabird species like kit-
tiwakes (Rissa tridactyla), the main food resource for the red fox 
(Vulpes vulpes). As a result, the diet of the red fox shifts to alter-
native food resources such as parakeet auklets (Aethia psittac-
ula) and rodents, inducing a change in red fox habitat use, which 
in turn affect the probability to find mates, ultimately causing 
a shift from polygyny to monogamy (Zabel and Taggart 1989). 
Evidence for environmentally induced intraspecific variation in 
mating tactics (e.g., lek or assortative mating) is also accumu-
lating (Jackson 1978). In western Montana, USA, an especially 
harsh winter causing high mortality in adult male pronghorns 
(Antilocapra americana) led to a change in population age struc-
ture that caused a shift in mating tactic from territorial males 
to non- territorial ones (Byers and Kitchen 1988). All these en-
vironmentally induced shifts in mating systems or tactics can 
influence population dynamics. For instance, the change in red 
fox mating system in our first example led to a decline in fox pro-
ductivity through an increase in the proportion of non- breeding 
females and a decrease in reproductive success (Zabel and 
Taggart 1989). For wild boar, the mating system is also expected 
to shift from polygyny to promiscuity in response to changes in 
harvesting regimes. Indeed, the marked decrease in the number 
of large reproductive males in heavily hunted populations leads 
to multi- paternity (e.g., with on average 2.28 fathers within a 
litter, Gayet et  al.  2016; Gamelon et  al.  2018). The occurrence 
of multi- paternity indicates a shift towards promiscuity under 
high hunting pressure (Gayet et al. 2021).

5   |   Conclusions

For populations with sex- specific vital rates and/or where the 
number of males influences female vital rates, we argue that 
two- sex models integrating mating systems should be consid-
ered in demographic studies. In the current context of global 
change where the mating system, the sex ratio, the harem size, 
or the efficiency in mating can change due to habitat fragmenta-
tion (Martin and Martin 2007), exploitation, or a shift in spatial 
resources' distribution (Zabel and Taggart 1989), the use of accu-
rate, robust and flexible mating functions, such as the minhar-
monic function proposed here, could improve estimates of the 
population growth rates and help provide relevant management 
or conservation strategies. Noticeably, our minharmonic mating 
function can be straightforwardly applied to various mating sys-
tems, including monogamous, polyandrous, or any polygynous 
species. In addition, while we modelled a mating pattern at ran-
dom, our approach can be fine- tuned to account for assortative 
mating by allowing individuals of similar size or age to mate 
preferentially together. Moreover, the flexibility of this novel 
mating function can be useful for any species with sexual repro-
duction and an OSR that can vary (e.g., vertebrates, insects (e.g., 
Miller and Inouye  2011), or dioecious plants (e.g., Timerman 
and Barrett 2020)). Finally, while we modelled the influence of 
the number of males available on female reproduction, the num-
ber of males may also influence female survival in some taxa. 
For instance, harassment of females by males may reduce adult 
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female survival (Le Galliard et  al.  2005; Réale, Boussès, and 
Chapuis 1996). This can easily be included in the two- sex model 
using the same approach as for reproduction.
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