Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jul 15;182(1):249–251. doi: 10.1042/bj1820249

Inhibition of degradation of insulin by ophthalamic acid and by a bovine pancreatic proteinase inhibitor.

R E Offord, J Philippe, J G Davis, P A Halban, M Berger
PMCID: PMC1161257  PMID: 315228

Abstract

We have previously observed that, on subcutaneous administration, a significant proportion of insulin is degraded at the site of injection. The present paper reports that the degradative activity of slices of rat adipose tissue can be inhibited in vitro by ophthalmic acid, a natural analogue of glutathione, and by bovine pancreatic proteinase inhibitor, whereas it is increased by the addition of reduced glutathione.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger M., Halban P. A., Muller W. A., Offord R. E., Renold A. E., Vranic M. Mobilization of subcutaneously injected tritiated insulin in rats: effects of muscular exercise. Diabetologia. 1978 Aug;15(2):133–140. doi: 10.1007/BF00422259. [DOI] [PubMed] [Google Scholar]
  2. CLIFFE E. E., WALEY S. G. The mechanism of the glyoxalase I reaction, and the effect of ophthalmic acid as an inhibitor. Biochem J. 1961 Jun;79:475–482. doi: 10.1042/bj0790475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Duckworth W. C., Heinemann M., Kitabchi A. E. Proteolytic degradation of insulin and glucagon. Biochim Biophys Acta. 1975 Feb 19;377(2):421–430. doi: 10.1016/0005-2744(75)90322-8. [DOI] [PubMed] [Google Scholar]
  4. Halban P. A., Karakash C., Davies J. G., Offord R. E. The degradation of semisynthetic tritiated insulin by perfused mouse livers. Biochem J. 1976 Nov 15;160(2):409–412. doi: 10.1042/bj1600409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Halban P. A., Offord R. E. The preparation of a semisynthetic tritiated insulin with a specific radioactivity of up to 20 Curies per millimole. Biochem J. 1975 Nov;151(2):219–225. doi: 10.1042/bj1510219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Le Cam A., Freychet P., Lenoir P. Degradation of insulin by isolated rat liver cells. Diabetes. 1975 Jun;24(6):566–573. doi: 10.2337/diab.24.6.566. [DOI] [PubMed] [Google Scholar]
  7. MIRSKY I. A. Insulinase, insulinase-inhibitors, and diabetes mellitus. Recent Prog Horm Res. 1957;13:429–471. [PubMed] [Google Scholar]
  8. TOMIZAWA H. H., HALSEY Y. D. Isolation of an insulin-degrading enzyme from beef liver. J Biol Chem. 1959 Feb;234(2):307–310. [PubMed] [Google Scholar]
  9. Varandani P. T. Insulin degradation. VII. Sequential degradation of insulin by rat liver homogenates at physiologic concentrations of insulin and in the absence of exogenous glutathione. Biochim Biophys Acta. 1973 Sep 14;320(2):249–257. doi: 10.1016/0304-4165(73)90305-x. [DOI] [PubMed] [Google Scholar]
  10. Varandani P. T., Nafz M. A. Insulin degradation. XVI. Evidence for the sequential degradative pathway in isolated liver cells. Diabetes. 1976 Mar;25(3):173–179. doi: 10.2337/diab.25.3.173. [DOI] [PubMed] [Google Scholar]
  11. Waley S. G. Naturally occurring peptides. Adv Protein Chem. 1966;21:1–112. doi: 10.1016/s0065-3233(08)60127-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES