
T E C H N I C A L R E L E A S E

NeuroVar: an open-source tool for
the visualization of gene
expression and variation data for
biomarkers of neurological
diseases

Submitted: 17 August 2024
Accepted: 20 November 2024
Published: 25 November 2024

* Corresponding author. E-mail:
benaribi.hiba@gmail.com

Published by GigaScience Press.

Preprint submitted at https:
//doi.org/10.1101/2024.08.21.609056

Included in the series: African
Society for Bioinformatics and
Computational Biology (ASBCB)
Omicscodeathon (https://doi.org/10.
46471/GIGABYTE_SERIES_0007)

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is
properly cited.

Gigabyte, 2024, 1–12

Hiba Ben Aribi1,*, Najla Abassi2 and Olaitan I. Awe3,4

1 Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
2 Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El

Manar, 1002, Tunis, Tunisia
3 Department of Computer Science, Faculty of Science, University of Ibadan, 200132, Ibadan, Oyo State,

Nigeria
4 African Society for Bioinformatics and Computational Biology, Cape Town, South Africa

ABSTRACT
The expanding availability of large-scale genomic data and the growing interest in uncovering
gene-disease associations call for efficient tools to visualize and evaluate gene expression and
genetic variation data. Here, we developed a comprehensive pipeline that was implemented
as an interactive Shiny application and a standalone desktop application. NeuroVar is a tool
for visualizing genetic variation (single nucleotide polymorphisms and insertions/deletions)
and gene expression profiles of biomarkers of neurological diseases. Data collection involved
filtering biomarkers related to multiple neurological diseases from the ClinGen database.
NeuroVar provides a user-friendly graphical user interface to visualize genomic data and is freely
accessible on the project’s GitHub repository (https://github.com/omicscodeathon/neurovar).

Subjects Software and Workflows, Bioinformatics, Genetics

STATEMENT OF NEED
Disease biomarkers are genes or molecules that indicate the presence or severity of a
disease. Their identification provides important insights into disease etiology and can
facilitate the development of new treatments and therapies [1]. Integrating multi-omics
data, such as gene expression and genetic variations, has emerged as a powerful approach
for biomarker discovery.

Several genomics studies have discovered multiple genetic variations linked to
numerous neurological conditions that are complex diseases with a significant level of
heterogeneity, such as Alzheimer’s disease [2] and Parkinson’s disease [3]. Some studies
have also used genetic variants to detect the presence of human disorders [4].

The discovered biomarkers are extensively documented in various scientific
publications and are accessible through databases like the Clinical Genome (ClinGen)
database. ClinGen stores a vast amount of genomic data, including a comprehensive dataset
of biomarkers associated with multiple diseases, such as various neurological disorders [5].

Multiple computational tools have been developed in recent years to analyze genomic
data, including gene expression data analysis [6, 7], identification of potential inhibitors for

Gigabyte, 2024, DOI: 10.46471/gigabyte.143 1/12

mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
mailto:benaribi.hiba@gmail.com
https://doi.org/10.1101/2024.08.21.609056
https://doi.org/10.1101/2024.08.21.609056
https://doi.org/10.46471/GIGABYTE_SERIES_0007
https://doi.org/10.46471/GIGABYTE_SERIES_0007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/omicscodeathon/neurovar
https://github.com/omicscodeathon/neurovar
https://doi.org/10.46471/gigabyte.143


H. B. Aribi et al.

therapeutic targets [8], and comparative analysis of molecular and genetic evolution [9].
However, there is still a need for a specialized tool that focuses on filtering critical disease
biomarkers, as this will help in studies that work on finding genes that are involved in
diseases using transcriptomic data generated from sequencing experiments [10–13]. Such a
tool would help users identify phenotypic subtypes of diseases in their patients, thereby
facilitating more accurate diagnoses and personalized treatment plans.

In this study, we developed a novel tool named “NeuroVar” to analyze biomarker data
for neurological diseases specifically, including gene expression profiles and genetic
variations such as single nucleotide polymorphisms (SNPs) and nucleotide insertion and/or
deletion (Indels).

IMPLEMENTATION
Data collection
The ClinGen database [5] provides a dataset of biomarkers of multiple diseases from which
we filtered data of all the available neurological syndromes (eleven) and non-neurological
diseases with neurological manifestations (seven).

Software development
Two versions of the tool were developed: an R shiny and a desktop application.

The shiny application was developed using multiple R packages, including Shiny
(RRID:SCR_001626) [14] and shinydashboard [15]. Other R packages are used for data
manipulation, including dplyr (RRID:SCR_016708) [16], readr [17], tidyverse
(RRID:SCR_019186) [18], purrr (RRID:SCR_021267) [19], vcfR (RRID:SCR_023453) [20],
bslib [21], stringr (RRID:SCR_022813) [22], data.table [23], fs [24], DT [25], sqldf [26], and
ggplot2 (RRID:SCR_014601) [27].

For the stand-alone desktop application, the wxPython framework [28] was used to build
a similar GUI. A variety of Python libraries were employed, including Pandas
(RRID:SCR_018214) [29], MatPlotLib (RRID:SCR_008624) [30], and NumPy
(RRID:SCR_008633) [31]. After testing, the application was packaged as an installer using
cx_Freeze [32]. Finally, it was distributed as a zip file to be downloaded.

Pipeline validation and case study
To validate the pipeline, a case study was performed on the public dataset SRP149638 [33]
available on the SRA database [34]. The dataset corresponds to RNA sequencing data from
the peripheral blood mononuclear cells from healthy donors and Amyotrophic Lateral
Sclerosis (ALS) patients. The ALS patients involved in the study have mutations in the FUS,
TARDBP, SOD1, and VCP genes.

The file’s preprocessing, genetic expression analysis, and variant calling were performed
using the Exvar R package [35]. The Exvar package uses the rfastp package [36] and the
gmapR package [37] for preprocessing fastq files, the GenomicAlignments package
(RRID:SCR_024236) [38], and the DESeq2 packages (RRID:SCR_015687) [39] for gene
expression data analysis, as well as the VariantTools [40] and VariantAnnotation
(RRID:SCR_000074) [41] packages for variant calling.
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RESULTS
Supported disease
NeuroVar integrates biomarkers of multiple neurological diseases, including epilepsy, ALS,
intellectual disability, autism spectrum disorder, brain malformation syndrome, syndromic
disorders, cerebral palsy, RASopathy, aminoacidopathy, craniofacial malformations,
Parkinson’s disease, and PHARC syndrome. It also integrates seven non-neurological
diseases with neurological manifestations: peroxisomal disorders, hereditary cancer,
mitochondrial disease, retina-related disorders, general gene curation, hearing loss, and
fatty acid oxidation disorders. Each disease syndrome includes multiple disease types; for
example, sixteen types of ALS disorder are integrated.

Operation and implementation
The desktop and Shiny applications have the same user interface; however, the
implementation is different.

The Shiny application is platform-independent, while the desktop application is
optimized for the Windows operating system. The necessary library requirements for the
tool are automatically installed in both versions. The amount of RAM used depends on the
servers or the machine being used, and the only prerequisites for using the tool are having
R installed for the shiny application and having Python installed for the desktop application.

The tool is compatible with RNA sequencing data. The input data files should be in CSV
format for gene expression data and VCF (Variant Call Format) format for genetic variants
data. Guidance of the files’ organization is available in the tool’s Github repository in detail
(path: omicscodeathon/neurovar/demonstration_data).

Detailed guidelines for installing and using both versions of the application are provided
in the project’s GitHub repository.

The application’s usage
The application dashboard includes three pages. The first page, named “Biomarker”,
provides data on the disease’s biomarkers. Initially, the user should select the target disease
syndrome and the specific disease subtypes from the provided list (Figure 1).

Next, a list of biomarkers is provided with additional data, including the gene’s mode of
inheritance, description, type, and transcripts. Also, a link for the official online report
validating the gene’s association with the disease is provided (Figure 2).

The second page, named “Expression”, is used to visualize the biomarkers expression
profile. After importing a CSV file and identifying the key columns, the log2FC value and
adjusted p-value are requested to define the differential expression profile. By default, the
adjusted p-value is set to less than 0.01, and the logFC value is set to less or more than 2
(Figure 3).

As a result, the expression profiles of the target disease biomarkers (previously selected)
are summarized in a table and represented in a volcano plot (Figure 4).

The third page, named “Variants”, allows the visualization of SNPs and Indels data. The
user is requested to define the path to the directory containing the VCF files. The files are
expected to be divided into two folders, named “controls” and “patients”, containing the
VCF files of the controls and patients, respectively. The user needs to define the variant type
as SNPs or Indels (Figure 5).
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Figure 1. The layout of the “Biomarker” page. The user is requested to define the target disease, disease type, and
gene of interest.

Figure 2. The output of the “Biomarker” page. The output includes two tables detailing key information about
the selected gene.

The VCF files are processed and annotated, and then the variants in the target disease
biomarkers are filtered and resumed in a table comparing the reference genome, the
control group, and the patients’ group (Figures 6 and 7).
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Figure 3. The layout of the “Expression” page. The user is requested to upload the data file and select the p-value
and the log-FC value required to construct the differential expression profile.

Case study results
To validate the pipeline, we conducted a case study using the public dataset that provides
RNA sequencing data of ALS patients who were declared to carry mutations in the FUS,
TARDBP, SOD1, and VCP genes [33].

Initially, we used NeuroVar to explore the roles of the genes FUS, TARDBP, SOD1, and VCP
in ALS. Our findings confirmed that FUS, TARDBP, and SOD1 are recognized ALS
biomarkers, while VCP is not. ALS has 26 subtypes, with FUS being a biomarker for type 6,
SOD1 for type 1, and TARDBP for type 10, suggesting that the patients in the study may
represent a mixture of these ALS subtypes.

Next, we investigated whether mutations in these genes impacted their expression
profiles. Using an adjusted p-value threshold of 0.05 and a log fold change (logFC) cutoff of 2,
we found that out of 21 known ALS biomarkers, only one gene—TUBA4A—was
differentially expressed. Notably, none of the four genes (FUS, TARDBP, SOD1, and VCP)
showed differential expression.

Finally, we examined the types of mutations present in these genes. We detected 23 SNPs
across seven biomarkers: DAO (all ALS types), FIG4 (ALS type 11), ERBB4 (ALS type 19),
TUBA4A (ALS type 22), KIF5A (ALS type 25), C9orf72 (ALS type 1), and TBK1 (ALS type 4). No
indels were detected in any of the biomarkers. Interestingly, the biomarkers FUS, TARDBP,
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Figure 4. The output of the “Expression” page. As output, a summary of the genes’ expression profiles is displayed
in a table and a volcano plot.

Figure 5. The layout of the “Variant” page. The user is prompted to specify the path to the data-containing folder
and the data type.

and SOD1 exhibited neither SNPs nor Indels, suggesting that the mutations in these genes
may be due to other types of genomic changes.

A demonstration video describing how to visualize the demonstration data using
neurovar is available on GitHub (Figure 8).

DISCUSSION AND CONCLUSION
NeuroVar is a novel tool for visualizing genetic variation and gene expression data related
to neurological diseases. The tool is designed to visualize genetic variation and gene
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Figure 6. The output of the “Variant” page. Table summarizing the SNPs in the target disease’s biomarkers.

Figure 7. The output of the “Variant” page. Table summarizing the INDELs in the target disease’s biomarkers.

expression data, with a particular emphasis on neurological disorders. This specialization
makes it an invaluable resource for researchers and clinicians focused on these conditions.
It offers features to filter biomarkers by specific diseases, which aids in confirming
gene-disease associations and prioritizing genes for further investigation.

The tool supports eleven neurological syndromes and seven non-neurological diseases
with neurological manifestations. While the supported diseases list is currently limited to
data from the ClinGen database, it will be frequently updated, and data sources will be
expanded to include other databases in the future.

NeuroVar is available as a desktop application and as a Shiny application. Both versions
are user-friendly and do not require computational skills to operate them. Additionally, all
necessary dependencies are automatically installed with the tools. This dual accessibility of
NeuroVar caters to users with varying preferences and technical backgrounds, which
makes it more accessible and easier to use than other visualization tools of genetic variant
data, such as the command line tool VIVA [42] to analyze VCF files and the “Transcriptomics
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Figure 8. Video demonstration of the NeuroVar Shiny Application [44]. https://youtu.be/cYZ8WOvabJs?si=W7v3AZ_pAsXt7ZsI.

oSPARC” web tool for gene expression data visualization hosted on the o2S2PARC platform
(RRID:SCR_018997) [6].

In addition to its user-friendly design, NeuroVar streamlines the research workflow by
eliminating the need for multiple filtering steps across different platforms. By integrating
essential functions within a single interface, it allows users to conduct comprehensive
analyses without leaving the application, thereby enhancing efficiency and reducing errors.
The inclusion of a quick-access library on the first page further aids in referencing
important data, making it easier to revisit and validate findings. This centralization of tasks,
coupled with a focus on neurological diseases and extensive biomarker information, makes
NeuroVar a highly useful tool for advancing research in the field.

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
• Project name: NeuroVar
• Project home page: https://github.com/omicscodeathon/neurovar
• Operating system: Platform independent
• Programming language: Python and R
• Other requirements: None
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• License: Artistic license 2.0
• RRID: SCR_025640
• DOI for the Project’s GitHub Repository: https://doi.org/10.5281/zenodo.13375646
• DOI for the Shiny application: https://doi.org/10.5281/zenodo.13375493
• DOI for the desktop application: https://doi.org/10.5281/zenodo.13375579
• DOI for the data: https://doi.org/10.5281/zenodo.13375591.

DATA AVAILABILITY
The following resources can be accessed in the project’s GitHub repository,
https://github.com/omicscodeathon/neurovar:

• The open-source code for both the Shiny application and the desktop application.
• An installation guide.
• A video demonstration.
• The processed case study data is available as demonstration data in Zenodo [43].

Data came from ClinVar, and the presented case study was performed on the public
dataset SRP149638 from the SRA database.

The open source code of the Shiny application and the desktop application are available
in the project’s GitHub Repository: https://github.com/omicscodeathon/neurovar.

Installation Guide, demonstration data, and video demonstration (Figure 8) are also
available in the project’s GitHub Repository: https://github.com/omicscodeathon/neurovar.

Snapshots of the project code [45], shiny application code [46], and desktop application
code [47] are all in Zenodo.

ABBREVIATIONS
ALS: Amyotrophic Lateral Sclerosis; Indel: insertion and/or deletion; logFC: log fold change;
SNP: single nucleotide polymorphism; VCF: Variant Call Format.
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