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Abstract
MicroRNAs (miRNAs) are implicated in the development of cancers and may serve as potential targets for therapy.
However, the functions and underlying mechanisms of miRNAs in cancers are not well understood. This work aims
to study the role of miR-373-3p in colon cancer cells. We find that the expression of miR-373-3p mimics promotes
and the miR-373-3p inhibitor suppresses aerobic glycolysis and proliferation of colon cancer cells. Mechanistically,
miR-373-3p inhibits the expression of MFN2, a gene that is known to suppress glycolysis, which leads to the
activation of glycolysis and eventually the proliferation of cells. In a nude mouse tumor model, the expression of
miR-373-3p in colon cancer cells promotes tumor growth by enhancing lactate formation, which is inhibited by the
co-expression of MFN2 in the cells. Administration of the miR-373-3p antagomir blunts in vivo tumor growth by
decreasing lactate production. In addition, in human colon cancers, the expression levels of miR-373-3p are in-
creased, while those of MFN2mRNA are decreased, and the increase of miR-373-3p is associated with the decrease
of MFN2 mRNA. Our results reveal a previously unknown function and underlying mechanism of miR-373-3p in the
regulation of glycolysis and proliferation in cancer cells and underscore the potential of targeting miR-373-3p for
colon cancer treatment.
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Introduction
MicroRNAs (miRNAs) are a subclass of small noncoding RNAs
(ncRNAs). They are single-stranded RNA molecules of approxi-
mately 19‒24 nucleotides (nt) that are typically derived from 60- to
110-nt RNA hairpin precursors [1]. miRNAs are transcribed as
primary miRNAs (pri-miRNAs), which are subsequently cleaved
into precursor miRNAs (pre-miRNAs) and further processed into
mature single-stranded ~22-nt miRNAs [2]. The biogenesis of
miRNAs involves a complex protein system that includes the RNase
III enzymes DROSHA and DICER1 [3]. The classic function of
miRNAs is post-transcriptionally repressing expressions of specific
target proteins by either promoting mRNA decay or dampening
translation [1,4]. Recent studies have demonstrated that miRNAs
may also be involved in translational upregulation, epigenetic

regulation, and transcriptional activation [5].
miRNAs are involved in biological processes, including cell

proliferation, differentiation, and apoptosis [1], and are expressed
in distinct spatial and temporal patterns, both during embryonic
and postnatal development and in adult tissues [6]. miRNAs have
regulatory effects on metabolic enzymes, signaling pathways, and
transcription factors involved in glucose and lipid metabolism [7,8].
miRNAs are associated with cancers [9,10] and have been proven to
drive or repress tumorigenesis [11]. In cancer cells, miRNAs were
found to control the Warburg effect, i.e., aerobic glycolysis [12–14].
Dysregulated miRNAs are associated with the clinical pathological
features of many tumors, and they may serve as biomarkers for
diagnosis and prognosis and as therapeutic targets for tumors [15–
17].
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Mitofusin 2 (MFN2) is implicated in cancer development [18].
MFN2 is downregulated in some types of cancer and inhibits cancer
cells [19]. Bioinformatics analysis indicated that MFN2 is a
promising predictive biomarker and therapeutic target for colon
cancer [20]. Ovarian cancer patients with higher MFN2 expression
have better survival than those with lower MFN2 expression [21].
Both breast and lung cancer patients with low MFN2 expression are
associated with poor prognosis as compared to patients with high
MFN2 expression [22]. MFN2 functions to mediate mitochondrial
fusion [23] and suppress glycolysis [24–26].
Colon cancer is the third leading cause of death among various

cancers and one of the leading causes of cancer death. miRNAs have
been shown to be involved in colon cancer development, influen-
cing cancer cell proliferation, apoptosis, metastasis, and angiogen-
esis [27–29]. To date, the role of miRNAs in the regulation of aerobic
glycolysis in colon cancer cells remains largely unclear. Herein, we
show that miR-373-3p targets MFN2 to promote aerobic glycolysis
and proliferation in colon cancer cells. Targeting miR-373-3p
inhibited the proliferation of colon cancer cells in vitro and tumor
growth in vivo. Our results revealed a previously unknown function
and underlying mechanism of miR-373-3p in colon cancer cells. Our
findings also suggest that miR-373-3pmay serve as a target for colon
cancer treatment.

Materials and Methods
Cell culture and reagents
Human colon cancer SW480 and RKO cells were from Type Culture
Collection of the Chinese Academy of Sciences (Shanghai, China)
and maintained in DMEM (Gibco, Grand Island, USA) supplemen-
ted with 10% serum, 100 μg/mL penicillin, and 100 μg/mL
streptomycin. miR-373-3p mimics, miR-373-3p inhibitor, si-MFN2,
and miR-373-3p antagomir were purchased from GenePharma
(Shanghai, China). The sequence are as follows: negative control:
5′-UUCUCCGAACGUGUCACGUTT-3′; miR-373-3p mimics: 5′-GAA
GUGCUUCGAUUUUGGGGUGU-3′; si-MFN2: 5′-CCCUCAACUAU
GACCUAAATT-3′; control microRNA inhibitor: 5′-CAGUACUUUU
GUGUAGUACAA-3′; miR-373-3p inhibitor: 5′-ACACCCCAAAAUC
GAAGCACUUC-3′; control antagomir: 5′-CAGUACUUUUGUGUA
GUACAA-3′; and miR-373-3p antagomir: 5′-GGAAAGCGCCCC
CAUUUUGAGU-3′.

Construction of vectors and lentivirus
The vector encoding MFN2 was constructed from the pcDNA3.1-
3×Flag plasmid (Youbio Biological Technology, Changsha, China).
The possible miR-373-3p binding sequence identified in the 3′UTR
of MFN2 mRNA was cloned and inserted into a psiCHECK-2
luciferase reporter vector (Youbio Biological Technology) for the
construction of the MFN2-3′UTR-WT reporter. The mutated MFN2-
3′UTR-Mut luciferase reporter vector was constructed with a site
mutagenesis kit (Youbio Biological Technology). The lentiviruses
expressing MFN2 and miR-373-3p were constructed using pcSLenti-
EF1-EGFP-P2A-Puro-CMV-MCS-3×FLAG-WPRE and pcSLenti-EF1-
EGFP-F2A-Puro-CMV-MCS-WPRE, respectively. The lentiviruses
expressing MFN2 and miR-373-3p were prepared by OBiO
Technology (Shanghai, China).

Western blot analysis
Western blot analysis was performed in a regular way. Briefly, the
cellular proteins were extracted using lysis buffer and the extracted

proteins were quantitated using a BCA kit (GlpBio, Montclair, USA).
The proteins were separated by 10% SDS-PAGE and transferred to
0.45-μm PVDF membrane. After being blocked with 5% skim milk
at room temperature for 1 h, the membrane was incubated with
primary antibody at 4°C for 12 h, followed by an incubation with
HRP-conjugated secondary antibody (Proteintech, Wuhan, China)
at room temperature for 2 h. The anti-MFN2 antibody was obtained
from Santa Cruz (Dallas, USA). The anti-beta-actin antibody was
obtained from Sigma (St Louis, USA). An enhanced chemilumines-
cence (ECL) kit (Meilunbio, Dalian, China) was used to visualize
the protein bands.

Quantitative real-time PCR (qRT-PCR)
qRT-PCR was performed as previously described [30]. Total RNA
was extracted with TRIzol® (Invitrogen, Carlsbad, USA) and
quantified with a NanoDrop 2000 (Thermo Fisher Scientific,
Waltham, USA). Two micrograms of total RNA was reverse-
transcribed using EasyScript One-Step gDNA Removal and cDNA
Synthesis SuperMix (TransGen Biotech, Beijing, China). qRT-PCR
was performed on an Applied Biosystems Step Two Real Time PCR
System (Applied Biosystems, Foster City, USA). SYBR® Green
Realtime PCR Master Mix (ABclonal, Wuhan, China) was employed
to detect the expression levels of the target genes. The relative RNA
expression levels were analyzed using the 2‒∆∆Ct method. GAPDH
and U6 were used as the internal control genes for mRNA and
miRNA, respectively. The primers used were as follows: MFN2: 5′-
CTCTCGATGCAACTCTATCGTC-3′ (F), 5′-TCCTGTACGTGTCTT
CAAGGAA-3′ (R); GAPDH: 5′-CTGACTTCAACAGCGACACC-3′ (F),
5′-TGCTGTAGCCAAATTCGTTGT-3′ (R); miR-373-3p-stem-loop:
5′-GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGAT
ACGACACACCC-3′; U6-stem-loop: 5′-GTCGTATCCAGTGCGTG
TCGTGGAGTCGGCAATTGCACTGGATACGACAAAAATAT-3′;
miR-373-3p: 5′-GGGGAAGTGCTTCGATTTTG-3′ (F), 5′-CAGTGC
GTGTCGTGGAGT-3′ (R); and U6: 5′-GGGGTGCTCGCTTCGGCAG
CACA-3′ (F), 5′-CAGTGCGTGTCGTGGAGT-3′ (R).

Glucose and lactate assays
The glucose content was measured as previously described [31].
The lactate production was determined as previously described
[32]. Briefly, 1×106 cells were seeded in a 60-mm plate and grown
for 48 h. The culture medium was collected and subjected for
determination of glucose and lactate using a glucose assay kit
(Sigma) and a lactate assay kit (BioVision, San Francisco, USA),
respectively. The glucose and lactate levels were normalized to the
total cellular protein concentration.

Measurement of the pH value of cell culture solution
The pH value of cell culture medium was measured with a pHmeter
[33]. The pH meter measured results in increments of 0.01 pH units,
between 0.00 and 14.00. According to the manufacturer’s instruc-
tions, before analysis, the pH meter needed to be calibrated with a
pH 6.8 buffer solution. Between measurements, the pH sensor and
container were rinsed with deionized water.

Cell proliferation assay
Cell proliferation was determined using a CCK8 kit (TargetMol,
Shanghai, China) as previously described [34]. In brief, cells were
seeded into a 96-well plate at 2500 cells per well. Cell proliferation
was detected at different time points. The absorbance of each well
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was measured at 450 nm with a VICTOR® Nivo™ microplate reader
(PerkinElmer, Waltham, USA).

Nude mouse tumor model
SW480 cells were infected with control, miR-373-3p, MFN2, or miR-
373-3p and MFN2 lentivirus, and the cells with stable expression of
above-mentioned virus were selected. The selected cells at
logarithmic growth phase were harvested and suspended in PBS
at 4ºC. Two hundred microliters of the cell suspension (containing
6×106 cells) were then injected into the left axilla of nude mice with
a 1-mL syringe to establish a subcutaneous mouse tumor model.
Mice were humanely euthanized 45 days after SW480 cell
inoculation, the tumors were harvested and used for subsequent
evaluation.

In the miR-373-3p antagomir treatment experiments, 200 μL of
untreated SW480 cell suspension (containing 6×106 cells) was
injected into the left axilla of nude mice. Tumors that grew to
approximately 50 mm3 in volume were injected with miR-373-3p
antagomir or control antagomir (10 nmol in 50 μL of diethyl
pyrocarbonate-treated water) every 3 days for 4 weeks [35].
After treatment, two groups of nude mice were euthanized.
After subcutaneous removal of the tumor, the weight of the
tumor was measured and photographed. The tumor was stored in
a –80ºC freezer. The tumors were measured with a caliper and
tumor volume was calculated using the following equation:
volume=a×b2/2, where a is the longer dimension, and b is the
shorter one.
The tumor lactate content was determined by using a Lactate

Assay Kit (BioVision, San Francisco, USA). Briefly, the tumor
tissues suspended in saline (g/mL at 1:9 ratio) were mechanically
homogenized in a centrifuge tube in the presence of grinding
beads on ice. The homogenate was centrifuged at 13400 g 4ºC for
10 min. The supernatants were collected for measurement of
lactate content. The supernatants were also used for western blot
analysis.
The specific-c pathogen-free male BALB/c nude mice (5 weeks

old) were purchased from Vital River Laboratory Animal Technol-
ogy (Beijing, China) and maintained under specific pathogen-free
conditions. All procedures were approved by the Ethics Committee
of the Medical College of Qingdao University.

Determination of miR-373-3p and MFN2 in human colon
cancer tissues
Colon cancer tissues paired with adjacent normal colonic tissues
were collected from patients who underwent surgery at the
Affiliated Hospital of Qingdao University from 2018 to 2019 after
informed consent was obtained, and analyzed by qRT-PCR. The
study protocol was approved by the ethical committee of the
Medical College of Qingdao University. Patients’ information is
shown in Table 1.

Bioinformatics analysis
The potential targets of individual miR-373-3p were predicted by
starBase (https://rnasysu.com/encori/agoClipRNA.php?sour-
ce=mRNA) in combination with PITA, RNA22, microT, miRmap,
miRanda, PicTar and TargetScan.

Statistical analysis
Data are presented as the mean±SD. Statistical analyses were

mainly conducted with SPSS 21.0 (IBM, Chicago, USA) and
GraphPad Prism 8.4.0 (GraphPad Software Inc, La Jolla, USA).
The differences between groups were analyzed using Student’s t
test, one-way ANOVA or Chi-square test. Correlations between
groups were assessed with Pearson correlation coefficient. P<0.05
was considered statistically significant.

Results
miR-373-3p promotes aerobic glycolysis and
proliferation in colon cancer cells
Although miR-373-3p is implicated in cancers, whether it influences
aerobic glycolysis in cancer cells remains unknown. To test this, we
examined SW480 and RKO colon cancer cells and found that the
overexpression of miR-373-3p mimics enhanced lactate production
in these cells (Figure 1A). In contrast, the expression of miR-373-3p
inhibitor decreased the production of lactate in these cells (Figure
1B). The expression of miR-373-3p mimics enhanced and that of the
miR-373-3p inhibitor decreased, the consumption rates of glucose in
these cells, respectively (Figure 1C,D). Moreover, the expression of
miR-373-3p mimics enhanced the acidification of the cell culture
medium (Figure 1E), while the expression of the miR-373-3p
inhibitor had the opposite effect (Figure 1F). Together, these data
suggest that miR-373-3p promotes aerobic glycolysis in colon cancer
cells.
miR-373-3p has been shown to have either tumor-promoting

activities [36,37] or anti-tumor effects [34,38,39], depending on the
type of cancer. The role of miR-373-3p in colon cancer cells is not
clear. As miR-373-3p promoted glycolysis in SW480 and RKO cells,
we presumed that it might has tumor-promoting effect on colon
cancer cells. As expected, the expression of miR-373-3p mimics
promoted the proliferation of SW480 and RKO cells (Figure 1G),
while the expression of the miR-373-3p inhibitor had the opposite
effect (Figure 1H). These data indicate that miR-373-3p has tumor-
promoting effects on colon cancer cells.

Table 1. Information of patients with colon cancer

Information Patients (%)

Sex

Male 8 (44)

Female 10 (56)

Age, year

≤60 5 (28)

>60 13 (72)

Tumor site

Colon (R) 5 (28)

Colon (L) 6 (33)

Rectum 6 (33)

Others 1 (6)

Lymph node metastasis

Yes 6 (33)

No 12 (67)

Invasion subtypes

Serosal layer 14 (78)

Deep muscular layer 3 (17)

Submucosa 1 (5)

1500 MiR-373-3p promotes glycolysis through MFN2

Wang et al. Acta Biochim Biophys Sin 2024

https://rnasysu.com/encori/agoClipRNA.php?source=mRNA
https://rnasysu.com/encori/agoClipRNA.php?source=mRNA


Figure 1. miR-373-3p promotes aerobic glycolysis in colon cancer cells (A) Determination of lactate production by SW480 (left) and RKO (right)
cells expressing miR-373-3p mimics. (B) Effect of the miR-373-3p inhibitor on lactate production in SW480 (left) and RKO (right) cells. (C) Effect of
the overexpression of miR-373-3p mimics on glucose consumption in SW480 and RKO cells. (D) Determination of glucose consumption by SW480
(left) and RKO (right) cells expressing the miR-373-3p inhibitor. (E) Effect of overexpression of miR-373-3p mimics on the pH of the culture media of
SW480 and RKO cells. (F) Effect of the miR-373-3p inhibitor on the pH of the culture media of SW480 and RKO cells. (G) Effects of the expression of
miR-373-3p mimics on the proliferation of SW480 cells (left) and RKO cells (right). (H) Effects of the miR-373-3p inhibitor on the proliferation of
SW480 cells (left) and RKO cells (right). *P<0.05, **P<0.01, ***P<0.001.
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MiR-373-3p inhibits the expression of MFN2
Next, we determined the possible mechanism underlying the
regulation of aerobic glycolysis by miR-373-3p. We predicted the
possible targets of miR-373-3p in PITA, RNA22, microT, miRmap,
miRanda, PicTar and TargetScan, and identified the mitofusin 2
(MFN2) gene as a possible target of miR-373-3p. As MFN2 inhibits
glycolysis [24–26], we therefore presumed that miR-373-3p might
modulate aerobic glycolysis by targeting MFN2. We found that
overexpression of miR-373-3p mimics decreased the protein levels
of MFN2 in both SW480 and RKO cells (Figure 2A,B). Treatment
with the miR-373-3p inhibitor increased the protein level of MFN2
(Figure 2C,D). The expression of miR-373-3p mimics decreased
(Figure 2E), and the expression of the miR-373-3p inhibitor
increased the mRNA level of MFN2 (Figure 2F). These data indicate
that miR-373-3p acts as a negative regulator of the expression of
MFN2.

A possible miR-373-3p-binding site in the 3′UTR of MFN2
mRNA
The sequence was cloned and inserted into a luciferase reporter
vector for the construction of the MFN2-3′UTR-WT luciferase
reporter vector (Figure 3A). A mutated MFN2-3′UTR-Mut luciferase
reporter vector was also constructed. The expression of miR-373-3p
mimics inhibited the activity of the MFN2-3′UTR-WT reporter but
not that of the MFN2-3′UTR-Mut reporter in both SW480 and RKO
cells (Figure 3B), providing evidence that miR-373-3p binds to the 3′
UTR of MFN2 mRNA. The expression levels of miR-373-3p were
increased (Figure 3C), and those of MFN2 mRNA were decreased in
colon cancer tissues (Figure 3D). The expression levels of miR-373-
3p were negatively associated with those of MFN2 mRNA (Figure
3E). Together, these data suggest that miR-373-3p targets MFN2
mRNA to inhibit MFN2 expression.

Figure 2. miR-373-3p inhibits the expression of MFN2 (A,B) Expression of miR-373-3p mimics decreased the expression of MFN2 in SW480 (A)
and RKO (B) cells. The left panels are representative images of western blots. The right panels show the relative protein levels of MFN2 (n=3). (C,D)
The miR-373-3p inhibitor increased the expression of MFN2 in SW480 (C) and RKO (D) cells. (E) The mRNA levels ofMFN2 in SW480 and RKO cells
expressing miR-373-3p mimics. (F) MFN2 mRNA levels in SW480 and RKO cells expressing the miR-373-3p inhibitor. *P<0.05, **P<0.01,
***P<0.001.
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MFN2 inhibits aerobic glycolysis and proliferation in
colon cancer cells
Though MFN2 is involved in glycolysis [24–26], it is unknown
whether MFN2modulates glycolysis in colon cancer cells. We found
that overexpression of MFN2 decreased the production of lactate in
SW480 and RKO cells (Figure 4A). In contrast, knockdown of MFN2
enhanced the production of lactate in these cells (Figure 4B).
Overexpression of MFN2 inhibited and knockdown of MFN2
promoted glucose consumption in SW480 and RKO cells (Figure
4C,D). Overexpression of MFN2 inhibited and knockdown of MFN2
promoted acidification of the culture medium of these cells (Figure
4E,F). These data indicate that MFN2 suppresses aerobic glycolysis
in colon cancer cells. In line with these results, overexpression of
MFN2 inhibited and knockdown of MFN2 promoted the prolifera-
tion of SW480 and RKO cells (Figure 4G,H), respectively.

MiR-373-3p promotes aerobic glycolysis through MFN2
To determine whether miR-373-3p regulates aerobic glycolysis
through MFN2, we determined the effects of overexpression of
MFN2 on aerobic glycolysis in SW480 and RKO cells expressing
miR-373-3p mimics. The results showed that the expression of miR-
373-3p mimics promoted lactate production, which was prevented
by the overexpression of MFN2 (Figure 5A). Consistent with these
results, the expression of the miR-373-3p inhibitor suppressed
lactate production in these cells, which was reversed by the
knockdown of MFN2 (Figure 5B).

MiR-373-3p promotes colon cancer cell proliferation
through MFN2
We found that the overexpression of miR-373-3p mimics promoted

the proliferation of SW480 and RKO cells, which was repressed by
the expression of exogenous MFN2 (Figure 5C). Consistent with
these results, the expression of the miR-373-3p inhibitor attenuated
the proliferation of the cells, which was reversed by the knockdown
of MFN2 (Figure 5D).
We next performed an in vivo SW480 tumor growth assay in nude

mice, and the results showed that the expression of miR-373-3p
mimics promoted the growth of SW480 tumors (Figure 5E‒G).
Overexpression of MFN2 had the opposite effect (Figure 5E‒G). The
miR-373-3p-induced increase in SW480 tumor growth was blocked
by coexpressing exogenous MFN2. Western blot analysis results
showed that the expression of miR-373-3p mimics inhibited the
expression of MFN2 in tumors (Figure 5H). We determined the
lactate levels in tumors and found that the expression of miR-373-3p
mimics enhanced the production of lactate (Figure 5I). In contrast,
overexpression of MFN2 inhibited the production of lactate in
tumors. And the miR-373-3p mimics-enhanced lactate production
was inhibited by MFN2 overexpression. Together, these results
suggest that miR-373-3p promotes glycolysis and proliferation in
colon cancer cells through MFN2.

Administration of miR-373-3p antagomir inhibits in vivo
tumor growth
To determine whether miR-373-3p could serve as a target for colon
cancer therapy, mice harboring SW480 tumors were administered
with an miR-373-3p antagomir as described in the Methods section.
The results showed that the administration of the miR-373-3p
antagomir, but not the control antagomir, to the mice significantly
inhibited the growth of the SW480 tumors (Figure 6A‒C). Western
blot analysis of the tumor extracts indicated that miR-373-3p

Figure 3. miR-373-3p binds to the 3′UTR ofMFN2mRNA (A) The schematic diagram shows the predicted miR-373-3p binding sites in the 3′UTR
of the human MFN2 gene and the construction of the MFN2-WT and MFN2-Mut luciferase reporter vectors. (B) Luciferase activity assay in SW480
and RKO cells expressing MFN2-3′UTR-WT with miR-373-3p mimics or MFN2-3′UTR-Mut with miR-373-3p mimics. (C,D) The expression levels of
miR-373-3p (C) and MFN2 mRNA (D) in human colon cancer tissues and adjacent normal colonic tissues (n=18). (E) Correlation analysis of miR-
373-3p levels and MFN2 mRNA levels. **P<0.01, ***P<0.001. ns, not significant.
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Figure 4. MFN2 inhibits glycolysis in colon cancer cells (A,B) Determination of lactate production by SW480 and RKO cells overexpressing
MFN2 (A) or si-MFN2 (B). (C,D) Detection of glucose consumption by SW480 and RKO cells overexpressing MFN2 (C) or si-MFN2 (D). (E,F)
Determination of pH values of the cell culture medium of SW480 cells and RKO cells overexpressing MFN2 (E) or si-MFN2 (F). (G,H) Determination
of the effects of overexpression of MFN2 (G) or knockdown of MFN2 (H) on the proliferation of SW480 and RKO cells. *P<0.05, **P<0.01,
***P<0.001.
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Figure 5. miR-373-3p inhibits colon cancer cell growth through MFN2 (A) Lactate production by SW480 (left) cells and RKO (right) cells
expressing miR-373-3p mimics or miR-373-3p mimics and MFN2. (B) Lactate production by SW480 (left) cells and RKO (right) cells expressing the
miR-373-3p inhibitor or miR-373-3p inhibitor and si-MFN2. (C) Determination of the proliferation of SW480 (left) and RKO (right) cells expressing
miR-373-3p mimics or miR-373-3p mimics and MFN2. (D) Determination of the proliferation of SW480 (left) cells and RKO (right) cells expressing
miR-373-3p inhibitor or miR-373-3p inhibitor and si-MFN2. (E) Images of xenografts of SW480 cells overexpressing miR-373-3p (OE-miR-373-3p),
MFN2 (OE-MFN2), or miR-373-3p and MFN2 (OE-miR-373-3p+OE-MFN2). (F,G) Volumes (F) and weights (G) of xenografts of SW480 cells
expressing miR-373-3p, MFN2, or miR-373-3p and MFN2 (n=5). (H) Protein levels of MFN2 in xenografts. (I) Determination of lactate levels in
xenografts. *P<0.05, **P<0.01, ***P<0.001.
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antagomir treatment increased the protein level of MFN2 (Figure
6D). miR-373-3p antagomir treatment decreased lactate level in
tumors (Figure 6E). These results suggest that miR-373-3p is a
potential target for colon cancer treatment.

Discussion
In this study, we demonstrated that miR-373-3p promotes the
proliferation of colon cancer cells by promoting aerobic glycolysis.
We showed that miR-373-3p modulated aerobic glycolysis in colon
cancer cells by inhibiting the expression of MFN2. Our findings
reveal a previously unknown function of miR-373-3p in the
regulation of aerobic glycolysis and proliferation of cancer cells
(Figure 7).
Tumor cells adapt to characteristic metabolic phenotypes during

cancer initiation and progression. Aerobic glycolysis is a hallmark of
cancer. Unlike normal cells, most cancer cells produce energy by a
high rate of glycolic catabolism to lactate in the cytosol rather
than by oxidation of pyruvate in mitochondria, even in the
presence of oxygen. Many studies have indicated that alterations
in oncogenes and tumor suppressors are responsible for such

metabolic reprogramming in cancer cells [40–42]. The molecular
basis underlying cancer aerobic glycolysis is not well understood.
The regulation of aerobic glycolysis is complex, and multiple factors
are involved [43].
Increasing evidence has shown that miRNAs are involved in the

regulation of aerobic glycolysis in cancers, including colon cancer
[44–47]. Wu et al. [48] showed that miR-326 inhibits glycolysis by
targeting the pyruvate kinase M2 isoform. Qin et al. [49]
demonstrated that miR-4458 inhibits aerobic glycolysis in colon
cancer cells by inhibiting hexokinase 2. Xu et al. [50] reported that
miR-335-3p regulates lung cancer cells glycolysis through TEAD1.
Zhu et al. [51] reported that microRNA-98 suppresses the Warburg
effect by targeting HK2. Chen et al. [52] showed that microRNA-143
inhibits colon cancer cell glycolysis by targeting HK2. All these
studies showed that miRNAs modulate aerobic glycolysis in colon
cancer cells by controlling the expressions of glycolytic enzymes. In
this work, we found that miR-373-3p promotes glycolysis by
inhibiting the expression of MFN2, a protein that triggers a shift
from aerobic glycolysis to mitochondrial oxidative metabolism [26].
MFN2 is a mitochondrial membrane protein that participates in

Figure 6. Administration of miR-373-3p antagomir inhibits in vivo tumor growth (A) Images of xenografts of SW480 cells treated with or
without the miR-373-3p antagomir. (B,C) The volumes (B) and weights (C) of the xenografts (n=5). (D) The protein levels of MFN2 in xenografts. (E)
Determination of lactate production in xenografts. *P<0.05, ***P<0.001.
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mitochondrial fusion and contributes to the maintenance and
operation of the mitochondrial network [53]. Though MFN2 was
shown to have suppressive effects on a few cancers [18–22], there
was publication demonstrating that it might have tumor-promoting
effects. Ahn et al. [54] reported that MFN2 promoted the
progression of cervical cancer. These results suggest that the role
of MFN2 is tumor context-dependent.
A miRNA may have more than one target. miR-373-3p was

demonstrated to target a few genes and to have multiple functions
in cancer cells. For example, it was shown that miR-373-3p targeted
DKK1 mRNA for degradation to promote the metastasis of tongue
squamous cell carcinoma [37]. In prostate cancer, miR-373-3p was
found to target AKT1 mRNA for degradation to inhibit prostate
cancer [55]. These results suggest that miR-373-3p may act as a
promoter or suppressor of cancers in a cell context-dependent
manner. Here, we show that miR-373-3p inhibits the expression of
MFN2 to promote aerobic glycolysis and proliferation in colon
cancer cells. Since overexpression of MFN2 prevents miR-373-3p
from promoting tumor growth, the results suggest that miR-373-3p
promotes colon cancer at least partially through MFN2. MiR-373-3p
was shown to affect the phosphorylation of AKT and ERK [56,57].
Therefore, we cannot exclude the possibility that in colon cancer
cells, miR-373-3p promotes proliferation through AKT and/or ERK
signaling.
Pre-clinical studies have demonstrated that miRNA-based ther-

apeutics, along with various protective coating approaches, can be
used for efficient delivery and anti-tumor activity. In fact, some
miRNA-based cancer therapeutic strategies have shown promising
results even in early-phase human clinical trials [58,59]. In our
work, we found that the administration of the miR-373-3p
antagomir to mice inhibited in vivo tumor growth of colon cancer
cells, with increased expression of MFN2 and decreased production
of lactate. These results suggest that targeting miR-373-3p might be
a potential approach for the treatment of colon cancer.
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