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a b s t r a c t

This study aimed to compare the effects of dietary methionine (Met) and 2-hydroxy-4-(methylthio)-
butanoate (HMTBA) on the eggshell quality of broiler breeder hens and elucidate the mechanism of Met
in improving eggshell quality from the perspectives of eggshell microstructure and shell gland physio-
logical function. A total of 720 WOD188 broiler breeder hens at 40 weeks old were assigned to 3 groups,
with 8 replicates per group and 30 birds per replicate. Over 7 weeks, birds were fed a basal diet or the
same diet supplemented with 0.15% Met or 0.17% HMTBA. Our findings revealed significant improve-
ments in the Met group for egg shape index, shell thickness, breaking strength, and fracture toughness
(P < 0.05), whereas the HMTBA group showed no significant improvements (P > 0.05). Met supple-
mentation increased calcium and phosphorus levels in both serum and shell gland tissue (P < 0.05), and
enhanced Ca2þ ATPase activity in shell gland tissue (P < 0.05). Histomorphological changes cluded
enhanced mucosal fold dimensions and increased epithelial height in the shell gland (P < 0.05). Met also
improved eggshell ultrastructure, resulting in a thicker effective layer and broader mammillae with
fewer type B structures (P < 0.05). The mRNA levels for genes regulating eggshell ultrastructure, such as
ovocleidin-116 (OC-116), calbindin 1 (CALB1), and integral membrane protein 2C (ITM2C), were signifi-
cantly upregulated in the Met group (P < 0.05). Transcriptome analysis identified 248 differentially
upregulated genes in the Met group, primarily linked to the non-canonical Wnt/Ca2þ signaling pathway,
crucial for calcium ion transport and cellular proliferation. This research highlights that Met supple-
mentation improves eggshell quality by enhancing calcium transport and cellular proliferation in uterine
function, particularly through the modulation of Wnt family member 11 (WNT11) and CALB1, influencing
calcium deposition and ultrastructural development.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Eggshells, vital bioceramics, not only protect embryos from
physical and microbial harm but also support their growth through
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gas exchange and calcium provision, with quality notably dimin-
ishing towards the end of a hen's laying cycle (Feng et al., 2021).
Furthermore, broiler breeders commonly face an early decrease in
egg production rates, typically commencing prior to 41 weeks of
age, which results in considerable economic losses. The primary
cause of eggshell breakage is the aging of laying hens, likely linked
to a decrease in the proliferative capacity and ion transport capa-
bility of the shell gland epithelial cells (Feng et al., 2023). The
biomineralization of eggshells is a sophisticated process that entails
the incorporation of calcium and bicarbonate ions into the uterine
fluid, supplemented by an organic matrix. The precise coordination
of these elements is vital for establishing the eggshell's ultra-
structure and mechanical strength (Guru and Dash, 2014). The
mechanical properties and overall quality of an eggshell are pro-
foundly impacted by its ultrastructure, including the inner and
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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outer membranes, mammillary layers, palisade layers, vertical
crystal layer, and the cuticle. This structure is particularly affected
by the aging of the shell gland in broiler breeders, especially in the
late stages of laying, where alterations in the shell gland predom-
inantly impact eggshell quality by modifying its structural com-
ponents (Gloux et al., 2020).

Calcium ions are transported across the shell gland mucosal
epithelium in a three-stage process involving entry from blood,
intracellular transport and storage, and secretion into the uterine
cavity (Kaur et al., 2013). This transport is facilitated by transient
receptor potential channels and plasma membrane Ca2þ-ATPase,
which is ATP-dependent (Wongdee et al., 2021). The process is
energy-intensive, and its efficiency declines with age due to
reduced activity in energy pathways like mitogen-activated protein
kinase (MAPK) and mammalian target of rapamycin (mTOR)
signaling (Hao et al., 2021). Comparative transcriptome analysis in
laying hens shows a significant difference in the MAPK pathway,
correlating with variations in eggshell ultrastructure (Cheng et al.,
2023). Calbindin 1 (CALB1) plays a critical role in intracellular cal-
cium transport (Lu et al., 2023), and calcium pumps (Ca2þ-ATPa-
se2A2/Ca2þ-ATPase2A3) and inositol 1,4,5-trisphosphate receptor
(ITPR) channels are notably upregulated in high egg-producing
chickens, indicating their importance in calcium handling
(Jonchere et al., 2012).

Aging in shell gland mucosal epithelium is characterized by
reduced Wnt/b-catenin signaling pathway activity, crucial for cell
proliferation and differentiation (Ma et al., 2021). This decline is
linked to bone health issues in adult mice and humans, and the
non-canonical Wnt/Ca2þ pathway plays a role in balancing cell
proliferation with Ca2þ regulation (Fu et al., 2019). High-egg-
producing chickens exhibit enhanced Wnt signaling in their uter-
ine section, suggesting its importance in eggshell formation (Yang
et al., 2023). Aging impacts the eggshell's palisade layer, where
calcium deposition is most active, potentially causing structural
defects due to Ca2þ supply deficiency, though more research is
needed to confirm this.

Dietary intervention, especially methionine (Met) supplemen-
tation, is an emerging strategy to mitigate uterine aging and
improve eggshell quality in late-phase laying broiler breeders (Xiao
et al., 2017). Methionine, which is crucial for laying hens, enhances
egg production and shell quality by increasing serum Ca2þ and
lengthening shell gland villi (Liu et al., 2017). This improvement
may be due to Met's nourishment of shell gland epithelial cells and
activation of the Wnt/b-catenin pathway, providing necessary
components to the Wnt Frizzled receptor (FZD) (Nabhan et al.,
2023). Methionine's metabolic by-products contribute to
cysteine-rich eggshell membrane protein (CREMP), which is vital
for eggshell membrane elasticity (Du et al., 2015). While Met ap-
pears to thicken the eggshell and improve its ultrastructure, its
exact role in restoring biomineralization in aging shell glands re-
quires further study. This research aims to investigate Met's impact
on shell gland function, eggshell quality, and ultrastructure regu-
lation to understand the decline in eggshell quality due to aging
and lay a foundation for future strategies to enhance eggshell
quality in late-phase broiler breeders.
2. Materials and methods

2.1. Animal ethics statement

In this study, the experimental protocols involving animals were
authorized by the Animal Care and Use Committee of China Agri-
cultural University (Approval No.: AW01703202-1-6). All animal
experiments were conducted in compliance with the “Animal
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Research: Reporting of In Vivo Experiments” (ARRIVE) guidelines
(https://arriveguidelines.org).

2.2. Experiment design

A total of 720 WOD 188 white feather broiler breeders at 40 wk
old were randomly divided into 3 groups with 8 replicates of 30
birds each. Birds received the basal diet (CON), a basal diet sup-
plemented with 0.15% Met, or a basal diet with an equimolar
replacement of Met by 0.17% 2-hydroxy-4-(methylthio)-butanoate
(HMTBA). The study spanned a duration of 7 wk. The HMTBA
supplement was graciously supplied by Adisseo (#BQ4891, purity
�88%, Rhône-Alpes, Commentry, France). We initially conducted a
comparative analysis of production indices such as eggshell thick-
ness and eggshell strength between the Met and HMTBA groups to
determine the effective additive treatment group. Subsequently, we
proceeded to explore the underlying mechanisms. Birds were
housed in pairs in cages and all maintained good health throughout
the trial, with nomedical intervention required. Twoweeks prior to
the commencement of the experiment, a pre-feeding trial was
conducted to ensure that the broiler breeders were adequately
acclimatized to their respective diets. From the first day of the
experiment, birds were fed according to their designated groups, a
practice that was maintained until the conclusion of the trial. The
basal diet (Table S1) was formulated following the nutritional
guidelines for Arbor Acres Plus Parent Fast Feathering Stock 2021 in
Meat Chicken Science and Technology Backyard Program in
Dongchengfang Town, Zhuozhou City, Hebei Province, China.

Crude protein, gross energy and calcium in diets were deter-
mined according to GB/T6432e2018 (China National Standard
2018a), the method of 9831 (ISO, 1998), and GB/T 6436e2018
(China National Standard, 2018b), respectively. Met and Cys in diets
were determined according to GB/T 15399e2018 (China National
Standard 2018c). Lys, Trp, and Thr in diets were determined ac-
cording to GB/T 18246e2019 (China National Standard 2019). The
birds were on a restricted feeding regime of 167 g per day and
accommodated in 3-tier cages. The environmental temperature
within the room was kept at approximate 24 �C, alongside a daily
lighting regimen of 16 h.

2.3. Sample collection

For the study, 64 egg samples (8 per replicate) were collected at
the end of the 3rd and 7th weeks. Following the observation of
dietary Met's superiority over HMTBA in enhancing eggshell qual-
ity, 8 birds (one from each replicate) from both the CON and Met
groups were selected and humanely euthanized according to ani-
mal welfare guidelines. From these birds, blood samples were taken
for serum separation via centrifugation at 3000 � g for 10 min at
4 �C, and the serum was then stored at �80 �C for future analysis.
Following this, approximately 1 cm of shell gland (uterine) tissue
was collected, immediately frozen in liquid nitrogen, and stored
at�80 �C for RNA analysis. Furthermore, a 1-cm tissue sample from
the shell gland was preserved in 4% formaldehyde for the purpose
of histomorphological analysis.

2.4. Physical and mechanical properties of eggshells

Egg shape index, calculated as the length-to-width ratio of an
egg, was measured using an egg shape index meter (FHK Company,
Japan). The thickness of the eggshell at the blunt end, middle, and
sharp end was determined using an ultrasonic thickness gauge
(KDE-1061, Robotmation Co., Japan). The average value of these
threemeasurements was used as the phenotypic value for this trait.
Eggshell strength was measured with an eggshell strength tester
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(EFG-0502, Robotmation Co., Japan). The fracture toughness was
calculated following the methodology described in previous
research (Feng et al., 2023). Following the removal of contents and
washing, the dried eggshell weights were recorded on an electronic
balance. Subsequently, the proportion of the eggshell, defined as
the ratio of the eggshell weight to the total egg weight, was
calculated. Data analysis was performed using samples from 64
chickens per group (n ¼ 64).

2.5. Biochemical indicators of serum and uterine tissue

Approximately 300 mg of uterine tissue was collected and ho-
mogenized in physiological saline at a 1:10 ratio. The supernatant
obtained from this extraction was used for the determination of
protein concentration using the BCA Protein Quantification Kit
(Vazyme Biotech, Nanjing, China). The levels of calcium, phos-
phorus, and Ca2þ ATPase in the serum and uterus were measured
according to the instructions provided with the assay kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China). Readings were
taken using a spectrophotometer (model 550 Microplate Reader,
Bio-Rad Pacific Ltd., Hong Kong, China). Data analysis was carried
out on samples from 6 chickens per group (n ¼ 8).

2.6. Uterine histomorphology

Uterine tissue samples were fixed in 4% paraformaldehyde for
24 h and embedded in paraffin. Sections of 5 mm thickness were
prepared using a Leica RM2235 microtome (Leica Biosystems Inc.,
Buffalo Grove, IL, USA) and stained with hematoxylin and eosin
(H&E) for morphological analysis. Images were captured using an
microscope (Olympus Optical Co., Ltd., Beijing, China), with mea-
surements conducted via Image J 1.54 software (Gao et al., 2024).
Parameters measured included villus length, mucosal fold height
and width, and epithelial cell height under 400� magnification,
from 6 chickens per group (n ¼ 6).

2.7. Immunohistochemistry

Immunohistochemical analysis was performed on deparaffi-
nized and hydrated uterine sections, which underwent heat-
induced antigen retrieval and peroxidase activity blocking. Sec-
tions were incubated with 5% bovine serum albumin, followed by
overnight incubation at 4 �C withWNT family member 11 (WNT11)
antibody (ImmunoWay Biotechnology, USA), with normal goat
serum serving as the negative control. WNT11 immunoreactivity
was detected using the Goat Anti-Rabbit immunoglobulin G (Alexa
Fluor 488) kit (Wuhan Servicebio Biological Technology, China),
visualized with 0.05% diaminobenzidine (DAB) in phosphate-
buffered saline (PBS), and counterstained with hematoxylin. Im-
aging was done with a microscope (Olympus Optical Co., Ltd.,
Japan), with data analyzed from 6 chickens per group (n ¼ 6).

2.8. Eggshell ultrastructure

Shell fragments from the equatorial region of each egg were
carefully extracted with tweezers, maintaining a smooth fracture
surface for ultrastructural analysis. The external surface and cross-
sectional views of these fragments were analyzed using a scanning
electron microscope (FEI Quanta 600, Thermo Fisher Scientific Ltd.,
USA). Following the preparation methods outlined in the refer-
enced literature, various parameters (Jiang et al., 2021), including
the effective layer thickness, mammillary layer thickness,
mammillary width, and mammillary density, were measured using
Image J 1.54 software. For scanning electron microscopy, eight
58
eggshell samples from each replicate were randomly selected for
analysis (n ¼ 8).

2.9. RNA isolation and quantitative real-time PCR (qPCR)

Uterine samples were promptly placed in RNase-free centrifuge
tubes and frozen in liquid nitrogen. Total RNA was isolated from
100 mg of tissue using 1 mL TRIzol Reagent (Invitrogen Life Tech-
nologies, USA), following the protocol of a referenced study. RNA
transcription was performed using the PrimeScript RT reagent Kit
with gDNA Eraser (TaKaRa, Dalian, China), in strict accordance with
the instructions provided by the manufacturer (Gao et al., 2023b).
qPCR for gene expression analysis utilized primers as shown in
Table S2 and the SYBR Premix Ex Taq (TaKaRa, Dalian, China) was
utilized on an Applied Biosystems 7500 Fast Real-Time PCR System
(Foster City, CA, USA), employing a reaction volume of 20 mL.

2.10. RNA-sequencing transcriptome analysis

Total RNA from uterine samples of 6 broiler breeders per group
was isolated using TRIzol Reagent, followed by DNase I treatment to
remove genomic DNA. For transcriptome library preparation, 1 mg
RNA per sample was processed using the TruSeq RNA Sample
Preparation Kit (Illumina, San Diego, CA, USA) and sequenced on
the Illumina Novaseq 6000 platform (LC Bio Technology Co., Ltd,
Hangzhou, China). This process included mRNA purification, frag-
mentation, cDNA synthesis, end processing, adaptor ligation, and
PCR amplification. PCR products were purified utilizing the AMPure
XP system (Beckman Coulter, Beverly, USA), and the quality of the
libraries was evaluated using the Agilent Bioanalyzer 2100 (Agilent
Technologies, CA, USA). Clean reads were obtained by removing
low-quality reads, adapters, and poly-N sequences. The quality of
the datawas assessed based on Q20, Q30, GC content, and sequence
duplication rates. The analysis methods for the transcriptome
specifically referenced the previous protocol (Lv et al., 2024). These
reads were then mapped to the Gallus gallus 5.0 reference genome
employing Hisat2, with functional annotations conducted using
databases such as KEGG. Gene expression was quantified by frag-
ments per klilobase of transcript per million mapped reads (FPKM),
and differential expression was analyzed using DESeq2, adjusting
P-values by Benjamini and Hochberg's method. Differentially
expressed genes (DEGs) with fold change > 1.5 and false discovery
rate < 0.05 were analyzed via KEGG using the Wallenius non-
central hyper-geometric distribution in R. The visualization of re-
sults, including the volcano plot, gene set enrichment analysis
(GSEA), and heatmap, was executed using R and the OmicStudio
platform.

2.11. Data analysis

Data analysis was conducted using one-way ANOVA, and Dun-
can's multiple comparison tests were utilized. Significant differ-
ences between groups were determined using unpaired t-tests
(two-tailed) with SPSS version 26.0 (SPSS Inc., Chicago, IL, USA).
Data are presented as mean values accompanied by their pooled
standard error of the mean (SEM), and significance was established
at P < 0.05.

3. Results

3.1. Dietary Met addition regulated eggshell mechanical properties
in broiler breeders

To assess the changes in eggshell quality of late-phase broiler
breeder hens, we initially compared the eggshell quality indicators



Table 1
Effects of dietary Met and HMTBA supplementation on production performance in
laying hens.1

Item Diets2

CON Met HMTBA SEM P-value

Egg production rate, %
wk 1e3 72.74a,b 71.08b 73.41a 0.388 0.034
wk 4e7 66.58b 68.96a 68.52a 0.402 0.029
wk 1e7 69.22 69.82 70.61 0.314 0.198
Average egg weight, g
wk 1e3 63.83 63.65 63.65 0.059 0.312
wk 4e7 64.38 64.30 63.96 0.089 0.121
wk 1e7 64.14 63.98 63.83 0.057 0.079
Feed conversion ratio, g/g
wk 1e3 3.60b 3.69a 3.58b 0.018 0.021
wk 4e7 3.90a 3.77b 3.81a,b 0.022 0.041
wk 1e7 3.76 3.74 3.71 0.022 0.361

HMTBA ¼ 2-hydroxy-4-(methylthio)-butanoate.
Values are presented as mean and SEM, n ¼ 64.
a,b Different letters represent statistically significant differences among the groups, P
< 0.05.

1 A strict restricted feeding method was employed, with a daily feed intake of 167
g/day.

2 CON, the breeder hens fed with a normal diet; Met, the breeder hens fed a basal
diet supplemented with Met 0.15%; HMTBA, the breeder hens fed a basal diet
supplemented with 0.17% 2-hydroxy-4-(methylthio)-butanoate.
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of the CON group at 43 and 47 weeks (Table S3). Our findings
indicated no significant differences (P > 0.05) in shell weight, egg
shape index, and shell thickness between these two time points.
However, a significant decrease in breaking strength and fracture
toughness was observed in the eggshells at 47 weeks compared to
those at 43 weeks (P ¼ 0.005, P ¼ 0.001).

Under conditions of strictly controlled feeding (167 g/day), the
Met group exhibited a significant reduction in egg production
during weeks 1 to 3 compared to the CON group (P ¼ 0.034,
Table 1). However, during weeks 4 to 7, the Met group showed a
significant increase in egg production (P ¼ 0.029). The average egg
weight did not undergo significant changes throughout the feeding
period (P > 0.05).

At 47 weeks, eggshell weight remained unaffected by Met
treatment (P ¼ 0.514, Table 2). Relative to the CON group, dietary
inclusion of Met resulted in a notable increase in eggshell thickness
and breaking strength (P ¼ 0.001 and P ¼ 0.007). Additionally, the
egg shape index was significantly higher in the Met group than in
the CON group at 47 weeks (P ¼ 0.001). In contrast, supplementing
the diet with HMTBA did not yield significant changes (P > 0.05) in
eggshell weight, egg shape index, shell thickness, breaking
strength, and fracture toughness at 47 weeks when compared to
the CON group. In summary, HMTBA did not significantly improve
Table 2
Effects of dietary Met and HMTBA supplementation on mechanical properties of
eggshell.

Item Diets1

CON Met HMTBA SEM P-value

Egg shape index 1.28b 1.31a 1.29b 0.002 0.001
Shell weight, g 6.65 6.74 6.73 0.034 0.514
Shell thickness, mm 0.29b 0.30a 0.29b 0.001 0.001
Breaking strength, kg/cm2 3.29b 3.58a 3.35b 0.039 0.007
Fracture toughness, N/mm3/2 341.7b 379.1a 359.1b 4.19 0.001

HMTBA ¼ 2-hydroxy-4-(methylthio)-butanoate.
Values are presented as mean and SEM, n ¼ 64.
a,b Different letters represent statistically significant differences among the groups, P
< 0.05.

1 CON, the breeder hens fed with a normal diet; Met, the breeder hens fed a basal
diet supplemented with Met 0.15%; HMTBA, the breeder hens fed a basal diet
supplemented with 0.17% 2-hydroxy-4-(methylthio)-butanoate.
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eggshell quality. Therefore, we chose the Met group as the subject
for our subsequent exploration of the underlying mechanisms.

3.2. Dietary Met addition altered serum and uterine chemical
composition, improving uterine morphology

Investigating the foundation for eggshell synthesis, we observed
that the levels of calcium and phosphorus in serum were signifi-
cantly higher in the Met group compared to the CON group
(P < 0.05, Fig.1A and B). Similarly, in theMet group, the calcium and
phosphorus contents, as well as the activity of the Ca2þ ATP enzyme
in uterine tissues, were significantly elevated compared to the
control group (P < 0.05, Fig. 1C). While the inclusion of Met in the
diet did not result in a significant increase in the length of uterine
villi (P > 0.05, Fig. 2C), it did lead to a significant increase in both the
width and height of mucosal folds in the shell gland (P < 0.05,
Fig. 2C). Additionally, a notable increase in the epithelial height of
the shell gland mucosal epithelial cells was observed with dietary
Met supplementation (P < 0.01, Fig. 2C).

3.3. Dietary Met addition modulated ultrastructure characteristics
of eggshell

To further explore the specific factors influencing eggshell me-
chanical properties, scanning electron microscopy was used to
analyze the eggshell ultrastructure. The density of mammillary
knobs was unaffected by dietary Met supplementation (P > 0.05,
Fig. 3B and C). However, Met supplementation resulted in a sig-
nificant increase in effective thickness, mammillary thickness, total
thickness, and the ratio of the effective layer of the eggshell
(P < 0.01, Fig. 3C). Additionally, a significant expansion in the width
of mammillary knobs was observed with the increased addition of
Met by the end of the 7-week period (P < 0.01, Fig. 3C). Regarding
the ultrastructural variations in the mammillary layer, the addition
of Met led to a significant reduction in the occurrence of type B
mammillae (P < 0.01, Fig. 3C).

3.4. Dietary Met addition upregulated biomarker genes in the shell
gland related to eggshell biomineralization

The calcification of the eggshell is a complex process influenced
by the regulation of multiple genes. In the group supplemented
with dietary Met, we observed elevated mRNA levels of several key
genes involved in this process. These included ovocleidin-116 (OC-
116), osteopontin 3 (OPN3), WNK lysine deficient protein kinase 1
(WNK1), calbindin 1 (CALB1), and integral membrane protein 2C
(ITM2C), which all showed significant upregulation (P < 0.01,
Fig. 4B).

3.5. Dietary Met addition altered the transcriptome of the shell
gland region

A total of 739,940,606 clean reads, amounting to 80.99 Gb of
clean data, were divided into 2 groups. Each sample produced over
46 million clean reads (Table S4). Around 5699 � 108 reads, ac-
counting for more than 94% of the total raw reads, were uniquely
aligned to the Gallus gallus genome. The RNA sequencing results
were validated by achieving that over 95.5% of bases had a quality
score of � Q30, and the GC content of the libraries was close to the
anticipated 50%. These findings underscore the reliability of our
RNA sequencing data. We detected a total of 354 DEGs in the uterus
when comparing the CON and Met groups (Fig. 6A). Of these, 248
were significantly upregulated, and 106 were downregulated in the
Met group compared to the CON group. Further analysis using the
k-means algorithm categorized the DEGs into 6 distinct clustering



Fig. 1. Impact of additional dietary Met on calcium and phosphorus content in the serum and uterine tissue of broiler breeders. (A) Calcium and phosphorus levels in serum. (B)
Calcium and phosphorus levels in uterus. (C) Ca2þ ATPase enzyme activity in uterus. Single asterisks indicate significant differences between groups (P < 0.05).
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patterns. Notably, 170 DEGs in clusters 1 and 4 showed typical up-
regulation in the CON group (Fig. S1). These genes were predomi-
nantly associated with pathways such as Phagosome, NOD-like
receptor signaling, Autophagy, and Adipocytokine signaling, as
revealed by KEGG enrichment analysis (Fig. 5C). The upregulation
of genes like macrophage receptor with collagenous structure
(MARCO) and Toll-like receptor 2 (TLR2) suggests inflammation
associated with uterine aging. Additionally, the increased expres-
sion of autophagy related 16 like 2 (ATG16L2), autophagy related 3
(ATG3), and mitochondrial calcium uniporter (MCU) highlights the
link between uterine aging, autophagy onset, and reduced energy
utilization (Table S5).

In contrast, genes in clusters 2, 3, 5, and 6 were significantly
upregulated in the Met group. Top KEGG pathways enriched in
these clusters included the MAPK, calcium, Wnt, and mTOR
signaling pathways, with 12, 8, 5, and 5 DEGs, respectively, in the
A

B

CON Met

CON Met

40
x

40
0x

Fig. 2. Regulatory effects of dietary Met on the morphology of shell gland tissue in broiler b
was conducted under 40� magnification during the late laying period, revealing notabl
magnification, providing a closer look at the cellular structure. (C) Quantitative measurement
length was determined from the apex of the villus to the top of the lamina propria. The he
epithelium to the fold's peak. The width of the mucosal folds was assessed at their broadest
the outermost layer under 400� magnification (n ¼ 6, with 5 measured values for each sa
double asterisks indicate highly significant differences (P < 0.01).
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environmental information processing category (Fig. 6B). Signifi-
cant enrichments in the metabolism category were observed in
pathways like metabolic pathway and cysteine and Met meta-
bolism (P < 0.01). Gene set enrichment analysis (GSEA) based on
Reactome enrichment further validated these results, with GSEA
plots demonstrating positive enrichment of gene signatures asso-
ciated with these KEGG-identified functional pathways (Fig. 6C).
The MAPK signaling pathway was enriched with genes such as
epiregulin (EREG), amphiregulin (AREG), fms-related tyrosine ki-
nase 1 (FLT1), EPH receptor A2 (EPHA2); the calcium signaling
pathway with ATPase sarcoplasmic/endoplasmic reticulum Ca2þ

transporting 3 (ATP2A3), calcium/calmodulin-dependent protein
kinase 1D (CAMK1D), ATPase plasma membrane Ca2þ transporting
2 (ATP2B2); the Wnt signaling pathway with WNT11, WNT7A; and
the mTOR pathway with Frizzled receptor 1 (FZD1), serum/gluco-
corticoid regulated kinase 1 (SGK1) (Fig. 6D).
C

3,000

2,500

2,000

1,500

1,000
CON Met CON Met

CON Met CON Met

*

*

Villus length Height of mucosal folds

Epithelial height Width of mucosal folds

reeders. (A) Morphological examination of the shell gland in both CON and Met groups
e differences. (B) A detailed morphological observation was performed under 400�
s included villus length, mucosal fold height and width, and epithelial cell height. Villus
ight of the mucosal folds was measured as the vertical distance from the base of the
point using a vertical measurement. The height of the epithelial cells was evaluated at
mple). Single asterisks indicate significant differences between groups (P < 0.05), and
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Effective thickness Mammillary thickness

Total thickness Ratio of effective layer

Mammillary knob density Width of mammillary knobs Type B mammillary knob

Fig. 3. Influence of additional dietary Met on eggshell ultrastructure. (A) Ultrastructural comparison between the control group and the Met group. (B) Observations of ultra-
structural mammillary projections in both groups. (C) Measurements include effective thickness (ET), mammillary thickness (MT), total thickness (TT), ratio of effective layer,
mammillary knob density, width of mammillary knobs (MW), and type B mammillary knob (Type B). These data are expressed as mean ± SEM for a sample size of n ¼ 8. Double
asterisks indicate highly significant differences (P < 0.01).
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3.6. Dietary Met addition activates the Wnt/Ca2þ signaling
pathway

Following the KEGG enrichment results, we identified 9 DEGs
with significant roles in their respective pathways, using the cri-
terion of |log2 fold change| > 1. These genes wereWNT11, FZD1, and
CAMK1D in the Wnt signaling pathway; ATP2B2, vascular endo-
thelial growth factor A (VEGFA), and FGF1 (fibroblast growth factor
1) in the calcium signaling pathway; and EREG, AREG, VEGFA, FGF1,
and solute carrier family 26 member 9 (SLC26A9) in the MAPK
signaling pathway (Fig. 7A). To corroborate the transcriptome data,
qPCR was performed on selected genes. The relative RNA expres-
sion levels observed were in agreement with the results of the
transcriptome analysis, thereby validating their significance
(Fig. 7B). WNT11, a pivotal gene in the non-canonical Wnt/Ca2þ

signaling pathway, showed a significant upregulation in mRNA
expression in the shell gland of the Met group (P < 0.01, Fig. 8C).
Immunofluorescence analysis of the shell gland tissue indicated a
significantly higher average positive staining area percentage for
WNT11 in the Met group compared to the CON group (P < 0.01,
Fig. 8A and B). Lastly, we performed a correlation analysis and a
protein-protein interaction network analysis between the marker
genes associated with eggshell formation and the upregulated
genes from the transcriptome (Fig. 9A). This analysis revealed a
significant positive correlation between each pair of genes, with the
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exception of the phosphoserine aminotransferase 1 (PSAT1) gene
(P < 0.01, Fig. 9B).

4. Discussion

The inadequate quality of eggshells in broiler breeder chickens,
a known factor leading to internal contamination of hatching eggs,
may adversely affect hatchability (Noetzold et al., 2020). Eggshells
need to possess optimal hardness to protect developing embryos
from external environmental harm (Damaziak et al., 2023). Our
study underscores the significance of improving eggshell quality
through nutritional planning in broiler breeders. Uterine aging has
been identified as a key factor in the deterioration of eggshell
quality in laying hens (Feng et al., 2020). Previous research in-
dicates that dietary Met supplementation can enhance eggshell
quality, mainly characterized by increased shell thickness and
heightened antioxidant levels in serum (Liu et al., 2022). However,
the effectiveness of Met in broiler breeders and its influence on
eggshell formation and quality still need to be fully understood. In
this study, we first evaluated the effects of Met and its hydroxy
analogue on improving eggshell quality, selecting Met as the su-
perior nutritional additive for regulating eggshell quality. We found
that Met supplementation in broiler breeder chickens' diets en-
hances ion transport, as evidenced by increased calcium and
phosphorus concentrations in serum and shell gland tissue. This



Fig. 4. Regulatory effects of additional dietary Met on mRNA expression related to biomineralization in the shell gland of broiler breeders in the late laying period. (A) Genes
associated with various aspects of biomineralization, with light red indicating significant upregulation and dark red indicating a trend towards upregulation (P < 0.1). (B) Biomarker
genes related to eggshell biomineralization. OC-116 ¼ ovocleidin-116; KCNJ3 ¼ potassium inwardly rectifying channel subfamily J member 3; CALB1 ¼ calbindin 1; RARRES1 ¼
retinoic acid receptor responder 1; ITM2C ¼ integral membrane protein 2C; WNK1 ¼ WNK lysine deficient protein kinase 1; ABCC9 ¼ ATP binding cassette subfamily C member 9.
These data are expressed as mean ± SEM for a sample size of n ¼ 6. Double asterisks indicate highly significant differences (P < 0.01).
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supplementation appears to counteract functional deficiencies in
eggshell biomineralization, positively affecting both the ultra-
structure and strength of eggshells.

The aging process of the uterus is linked to a reduction in the
proliferation and energy supply of epithelial cells, leading to a
thinning of the uterine lining (Park and Sohn, 2018), and we
observed that 47-week-old chickens showed notable decreases in
eggshell weight and thickness compared to 43-week-old chickens.
A key aspect of uterine aging is the diminished capacity for calcium
ion transport, critical for eggshell calcification. This element is
pivotal in the eggshell calcification process and is intimately asso-
ciated with the calcium content in the uterus and the expression of
the uterine calcium transport protein CALB1 (Shet et al., 2018). Our
findings reveal that Met supplementation in late-laying broilers
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significantly increases calcium ion content in serum and uterine
tissues, with an upregulation of the calcium transport protein
CALB1. This indicates enhanced calcium transport, essential for
eggshell formation. The calcium ion content in serum and shell
gland tissue serves as a direct indicator reflecting the transport of
calcium ions (Ren et al., 2019). Contrastingly, HMTBA did not
significantly improve eggshell quality. This may be due to its
orientation towards the transsulfuration pathway, leading to anti-
oxidant metabolite production rather than direct eggshell quality
enhancement (Nie et al., 2007). The lack of effect on eggshell
quality might also stem from breed-specific metabolic pathways, as
broilers have more advanced liver and intestinal development than
laying hens, potentially altering HMTBA metabolism (Han et al.,
2020). Furthermore, oxidative stress may not be the primary



Fig. 5. RNA-seq analysis and validation in CON and Met group broiler breeders (n ¼ 6). (A) Heatmap of the different gene clustering. (B) Top 10 significantly enriched KEGG.
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cause of uterine aging in late-stage broiler breeders. Breed differ-
ences could also play a role, as broilers typically exhibit more
advanced liver and intestinal development than laying hens.
Consequently, the dosage of HMTBA used in our study might have
been predominantly metabolized and absorbed in the liver and
intestines, failing to affect the shell glands significantly. Future
studies should investigate the use of increased HMTBA dosages to
assess its potential effects on eggshell quality in broiler breeders.

In the late laying period, laying hens undergo notable alterations
in uterine morphology, characterized by a substantial reduction in
the length and height of villi and the area of mucosal folds. These
morphological changes can markedly impact the efficiency of ion
transport from the epithelial cells of the shell gland during eggshell
formation, as well as affect secretion pathways to the extracellular
space. A notable manifestation of these alterations is the observed
reduction in calcium and phosphorus content in eggshell and
serum (Attia et al., 2020). Our research has demonstrated that di-
etary Met supplementation beneficially affects eggshell quality,
notably enhancing the phosphorus levels in the serum and uterus
of broiler breeder chickens. Furthermore, it led to an improvement
in the shell gland epithelial cells and augmented the dimensions
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(width and height) of wrinkles, likely aiding in the efficient trans-
port of calcium throughout the eggshell calcification process. The
marked elevation in Ca2þ ATPase activity within the shell gland
tissue offers a plausible rationale for these enhancements.
Furthermore, the eggshell membrane safeguards eggshell quality
by forming a protective layer that prevents external contaminants
from entering the egg (Kulshreshtha et al., 2022). The elasticity of
the eggshell membrane, which is highly dependent on CREMP,
suggests its critical protective function (Du et al., 2015). The role of
Met in one-carbon metabolism, leading to cysteine formation, may
enhance overall eggshell quality. The study highlights Met's po-
tential in improving not just the mechanical attributes of the
eggshell but also in fortifying its protective mechanisms.

The ultrastructure of eggshells, formed in the distal oviduct
uterus (shell gland), is pivotal in determining their mechanical
properties (Guru and Dash, 2014). Factors such as the size, shape,
and orientation of the crystals in the eggshell calcification layer, the
gap size between mammillary bodies and palisade layer crystals,
and the relative thickness of the mammillary layer compared to the
palisade layer are all crucial determinants of eggshell quality (Feng
et al., 2020). Consistent with prior research, our study observed



Fig. 6. RNA-Seq analysis and validation in broiler breeders of the CON and Met groups (n ¼ 6). (A) Differentially expressed genes (DEGs) with a log2|fold change| > 1.5 at a false
discovery rate (FDR) < 0.05. (B) KEGG pathway analysis of DEGs in the uterus of the Met group relative to the CON group. Genes differentially expressed in the Met group compared
to the CON group were significantly enriched (P < 0.05). (C) Gene set enrichment analysis (GSEA) based on the Reactome enrichment of DEGs. (D) DEGs in the KEGG pathways of the
top 5. Single asterisks indicate significant differences between groups (P < 0.05), and double asterisks indicate highly significant differences (P < 0.01). Triple asterisks indicate
extremely significant differences (P < 0.001). NR4A1 ¼ nuclear receptor subfamily 4 group A member 1; EREG ¼ epiregulin; DUSP ¼ dual specificity phosphatase; AREG ¼
amphiregulin; FLT1 ¼ fms related tyrosine kinase 1; EPHA2 ¼ eph receptor A2; FOS ¼ fos proto-oncogene, ap-1 transcription factor subunit; ATP2A3 ¼ ATPase sarcoplasmic/
endoplasmic reticulum Ca2þ transporting 3; OXTR ¼ oxytocin receptor; CAMK1D ¼ calcium/calmodulin dependent protein kinase ID; VEGFA ¼ vascular endothelial growth factor A;
FGF1 ¼ fibroblast growth factor 1; ATP2B2 ¼ ATPase plasma membrane Ca2þ transporting 2; WNT ¼ Wnt family member; DAAM1 ¼ dishevelled associated activator of
morphogenesis 1; GPC4 ¼ glypican 4 ¼ GPC4; SGK1 ¼ serum/glucocorticoid regulated kinase 1; ULK1 ¼ unc-51 like autophagy activating kinase 1; FZD1 ¼ frizzled class receptor 1;
SRM ¼ spermidine synthase; PSAT1 ¼ phosphoserine aminotransferase 1.
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significant alterations in eggshell ultrastructure during the late
laying period in broiler breeder chickens, a process influenced by
uterine aging (Feng et al., 2023). These changes included reduced
thickness and increased width of the mammillary layer, diminished
effectiveness of the layers, and delayed fusion of mammillary caps,
notably marked by an increase in type B mammillae. The delayed
fusion of mammillae, indicative of a less dense and looser structure,
increases the eggshell's susceptibility to rupture. Type B mammil-
lae, with their smaller caps than typical mammillae, lead to a more
relaxed structure and reduced fracture resistance (Samiullah et al.,
2013). Our findings suggest that dietary Met supplementation can
mitigate the early fusion of mammillae. This enhancement in the
binding capacity between mammillary knobs potentially hinders
crack propagation from force points, thereby improving the egg-
shell's mechanical properties. The effective layer, which includes
the palisade layer, vertical crystal layer, and cuticle, constitutes a
crucial ultrastructural element that dictates the strength of the
eggshell (Jiang et al., 2021). As laying hens age, there is a notable
thinning in this effective layer of the eggshell ultrastructure (Feng
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et al., 2020). This study demonstrates that additional Met supple-
mentation can counter this thinning. An increase in the thickness of
the effective layer contributes to enhanced eggshell strength,
reducing the likelihood of fractures and thereby improving the
overall mechanical properties of the eggshell.

Eggshell ultrastructure formation involves a complex interac-
tion between minerals, organic substances, and a gene network in
uterine epithelial cells (Duan et al., 2016). Dysregulated gene
expression in the uterus during late laying is linked to declines in
eggshell quality. Key genes like ABCC9, KCNJ3, and WNK1, which
govern ion transport, correlate with eggshell thickness (Duan et al.,
2016; Feng et al., 2020). ABCC9 regulates cell membrane potential
via ATP concentration sensitivity, while KCNJ and WNK1 manage
potassium ion utilization (Gao et al., 2023a; Hardege et al., 2018).
Our research shows that dietary Met supplementation boosts
eggshell thickness by influencing these genes. ITM2C, RARRES1, and
OC-116, involved in protein regulation and biomineralization, are
also upregulated by Met, enhancing mammillary thickness and
antimicrobial activities (Duan et al., 2016; Poyatos Pertinez et al.,



Fig. 7. RT-qPCR validation of differentially expressed genes (DEGs). (A) Fold change analysis of transcriptome results for DEGs in the Met group compared to the CON group. (B)
Relative mRNA expression of selected genes. FZD1 ¼ Frizzled receptor 1; CAMK1D ¼ calcium/calmodulin-dependent protein kinase 1D; ATP2B2 ¼ ATPase plasma membrane Ca2þ

transporting 2; EREG ¼ epiregulin; AREG ¼ amphiregulin; VEGFA ¼ vascular endothelial growth factor A; FGF1 ¼ fibroblast growth factor 1; SLC26A9 ¼ solute carrier family 26
member 9. These data are expressed as mean ± SEM for a sample size of n ¼ 6. Double asterisks indicate highly significant differences (P < 0.01).
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2020). This complex regulatory mechanism likely aids the reas-
sembly of mineral elements, contributing to the optimization of
eggshell structure and strength. Past research has indicated that
dietary supplementation with Met enhances intestinal health in
laying hens (Gong et al., 2023), which could be a contributing factor
to enhanced eggshell thickness, strength, and toughness. The
observed increase in eggshell thickness may be linked to enhanced
calcium and phosphorus absorption, given the heightened activity
in calcium metabolism during the laying period. Significant in-
creases in CALB1 and OPN mRNA levels in Met-supplemented
broiler breeders were observed. These proteins are vital for cal-
cium ion transport and eggshell calcification, impacting eggshell
strength (Shet et al., 2018). Our findings suggest that dietary Met
can mitigate uterine aging effects, promoting efficient calcium
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transport and deposition, which is crucial for eggshell formation.
However, the specific mechanisms of Met's influence on these
processes require further exploration.

In this study, RNA sequencing was used to investigate how
dietary Met affects the transcriptome of the shell gland, focusing
on the regulation of epithelial cells essential for eggshell bio-
mineralization. We identified key cell clusters and genes
responsible for secreting biomineralization precursors. Notably,
genes like ATP2B1 and ATP2B2 were found to be crucial in cal-
cium ion transport for eggshell formation (Gloux et al., 2019).
Our analysis identified eight DEGs associated with the Calcium
signaling pathway, crucial for the transport of calcium ions into
the epithelial cells of the shell gland, their subsequent secretion
into the uterine fluid, and the formation of the eggshell. CAMK1D,



Fig. 8. Regulatory effects of dietary Met on epithelial cell proliferation in the shell gland of broiler breeders in the late laying period. (A) Immunofluorescence identification of Wnt
family member 11 (WNT11) expression in the shell gland epithelial cells of the CON and Met groups. (B) Comparative analysis of the average positive staining area percentage for
WNT11. (C) Relative mRNA expression of WNT11. These data are expressed as mean ± SEM for a sample size of n ¼ 6. Double asterisks indicate highly significant differences (P <
0.01).
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influenced by intracellular calcium levels, modulates cell func-
tion and affects protein phosphorylation, interacting with CALB
proteins to facilitate transport and promote cell proliferation
(Zhou et al., 2019b). ATP2A3, a calcium pump on the endoplasmic
reticulum membrane, maintains intracellular calcium concen-
tration by transporting ions to storage sites (Li et al., 2023), while
ATP2B2, a plasma membrane calcium pump, expels calcium ions
to the extracellular space, vital for eggshell mineralization
(Zhang et al., 2019). Additionally, bicarbonate is transported from
uterine epithelial cells to the uterine fluid through passive
transport, mediated by SLC26A9 (Nii et al., 2018). Our findings
highlight that Met supplementation augments calcium utiliza-
tion, enhancing these calcium transport pathways. The ATP-
dependent operation of these pumps is further supported by
the upregulated MAPK signaling pathway in the Met-
supplemented group. DEGs like VEGFA and FGF1, significant in
the calcium signaling pathway, bind to MAPK pathway receptors,
indirectly regulating calcium release and modulation. EREG and
AREG, associated with the EGFR, influence cell proliferation and
growth by activating the RAS/RAF/MEK/ERK signaling pathway
(Zhou et al., 2019a).

In our study, we observed a notable enrichment of the Wnt
signaling pathway in the Met-supplemented group, a pathway
known for its close association with cell proliferation (Zhou et al.,
2019c). Notably, we identified significant differences in genes
within the Wnt family, including WNT7A and WNT11, which are
integral to the non-canonical Wnt/Ca2þ signaling pathway. This
pathway differs from the canonical Wnt pathway primarily in
regulating intracellular calcium ion concentration, which
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facilitates the release of these ions (Krishnamurthy and Kurzrock,
2018). Notably, the binding of WNT11 to the FZD1 receptor acti-
vates this pathway. In the Met group, we detected a significant
upregulation of FZD1 expression. The extracellular N-terminal of
the FZD1 receptor, containing a cysteine-rich domain, is believed
to be influenced by cysteine supplementation, which Met can
provide, thereby promoting its synthesis and expression (Nabhan
et al., 2023). Immunofluorescence analysis revealed a marked
increase in the Wnt11-positive area in the shell gland epithelial
cells of the Met group, underscoring the activation of the Wnt/
Ca2þ signaling pathway under Met supplementation. However, it
is important to note that current research only covers the rela-
tionship between the Wnt/Ca2þ signaling pathway and the MAPK
pathway. We constructed an interaction network of DEGs
through STING and correlation analysis methods. These genes,
associated with eggshell biomineralization and ultrastructure
formation, exhibited a close and significantly positive correlation.
In summary, dietary Met supplementation may activate the Wnt/
Ca2þ signaling pathway, mainly through the interaction between
WNT11 and FZD1 receptors. This activation triggers the release of
intracellular calcium ions. The study finds that changes in cal-
cium ion levels interact with the CAMKII kinase, influencing the
MAPK pathway, which is essential in calcium regulation. This
leads to enhanced shell gland cell proliferation, improved cal-
cium transport, and upregulated genes like OPN, WNK1, and OC-
116. These effects improve the aging uterine shell gland's struc-
ture and increase tissue calcium-phosphorus levels, resulting in
eggshells with greater thickness and improved mechanical
properties.



Fig. 9. Interaction relationships between biomarkers related to eggshell biomineralization and selected differentially expressed genes (DEGs). (A) Interaction network between
biomarkers and selected DEGs, where the lines represent existing interaction relationships. The greater the number of lines, the stronger and more numerous the interactions
between the genes. (B) Correlation analysis between biomarkers and selected DEGs. The intensity of the color indicates the strength of the correlation, n ¼ 6. FZD1 ¼ Frizzled
receptor 1; CAMK1D ¼ calcium/calmodulin-dependent protein kinase 1D; ATP2B2 ¼ ATPase plasma membrane Ca2þ transporting 2; EREG ¼ epiregulin; AREG ¼ amphiregulin;
VEGFA ¼ vascular endothelial growth factor A; FGF1 ¼ fibroblast growth factor 1; ABCC9 ¼ ATP binding cassette subfamily C member 9; SLC26A9 ¼ solute carrier family 26 member
9; OC-116 ¼ ovocleidin-116; OPN3 ¼ osteopontin 3; WNK1 ¼ WNK lysine deficient protein kinase 1; CALB1 ¼ calbindin 1; ITM2C ¼ integral membrane protein 2C; MEPE ¼ matrix
extracellular phosphoglycoprotein; KCNJ3 ¼ ATP-Sensitive inward rectifier potassium channel 3; RARRES1 ¼ retinoic acid receptor responder 1; WNT11 ¼ wnt family member 11;
PSTA1 ¼ prostate specific transcript 1; EPHA2 ¼ EPH receptor A2; ULK1 ¼ Unc-51 like autophagy activating kinase 1; NR4A1 ¼ nuclear receptor subfamily 4 group a member 1;
DUSP8 ¼ dual specificity phosphatase 8; OXTR ¼ oxytocin receptor; DAAM1 ¼ dishevelled associated activator of morphogenesis 1; FOS ¼ Fos proto-oncogene, AP-1 transcription
factor subunit; SGK1 ¼ serum/glucocorticoid regulated kinase 1.
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5. Conclusion

In conclusion, dietary Met supplementation for broiler breeders
in late-phase laying is more effective than HMTBA in improving
eggshell quality. Dietary Met significantly improves uterine
morphology, leading to a thicker effective layer in the ultrastructure
of the eggshell. Methionine is crucial in improving uterine function
and biomineralization of eggshells, particularly enhancing cell
proliferation and calcium transport. This effect is largely mediated
through the Wnt/Ca2þ signaling pathway, which is essential for
calcium deposition and the development of the eggshell ultra-
structure. Our findings highlight the potential of Met to counteract
the age-related decline in uterine function and eggshell quality.
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