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Abstract.
BACKGROUND: Osteoarthritis (OA) and osteoporosis (OS) are the most common orthopedic diseases.
OBJECTIVE: To identify important genes as biomarkers for the pathogenesis of OA and OS.
METHODS: Microarray data for OA and OS were downloaded from the Gene Expression Omnibus database. Differentially
expressed genes (DEGs) between the OA and healthy control groups and between the OS and healthy control groups were
identified using the Limma software package. Overlapping hub DEGs were selected using MCC, MNC, DEGREE, and EPC.
Weighted gene co-expression network analysis (WGCNA) was used to mine OA- and OS-related modules. Shared hub DEGs
were identified, human microRNA disease database was used to screen microRNAs associated with OA and OS, and an
miRNA-target gene network was constructed. Finally, the expression of shared hub DEGs was evaluated.
RESULTS: A total of 104 overlapping DEGs were identified in both the OA and OS groups, which were mainly related to
inflammatory biological processes, such as the Akt and TNF signaling pathways Forty-six hub DEGs were identified using MCC,
MNC, DEGREE, and EPC modules using different algorithms. Seven modules with 392 genes that highly correlated with disease
were identified in the WGCNA. Furthermore, 10 shared hub DEGs were identified between the OA and OS groups, including
OGN, FAP, COL6A3, THBS4, IGFBP2, LRRC15, DDR2, RND3, EFNB2, and CD48. A network consisting of 8 shared hub DEGs
and 55 miRNAs was constructed. Furthermore, CD48 was significantly upregulated in the OA and OS groups, whereas EFNB2,
DR2, COL6A3, and RND3 were significantly downregulated in OA and OS. Other hub DEGs were significantly upregulated in
OA and downregulated in OS.
CONCLUSIONS: The ten genes may be promising biomarkers for modulating the development of both OA and OS.
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1. Introduction

Osteoarthritis (OA) and osteoporosis (OS) are the most common skeletal disorders associated with
aging. OA, a prevalent degenerative joint disorder, manifests as joint pain, stiffness, and restricted mobil-
ity [1]. It stands as a leading contributor to global disability, impacting over half a billion individuals [2].
Recent years have witnessed some progress in the treatment of OA, yet these treatments invariably lead
to complications such as fractures during and after surgery, loss of correction, and nonunion [3]. OS, a
systemic skeletal disease frequently occurring in the population, is associated with aging and is typified
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by reduced bone strength, degradation of bone tissue microstructure, and an increased likelihood of
fractures [4]. More than 8. 9 million bone fractures occur annually, and the morbidity continues to rise [5].
The primary strategies for OS prevention and treatment involve essential bone health supplementation and
pharmacological interventions, both of which incur substantial costs, thereby exacerbating the economic
strain on families and society at large due to OS and related fractures [6,7]. Although OA and OS are the
two most common skeletal disorders, the relationship between them remains controversial.

The genetic backgrounds of OA and OS are complex, and genetic variants have been demonstrated
to be responsible for a small proportion of bone diseases Recently, the role of epigenetics in OA and
OS has attracted considerable attention [8]. Visconti et al. showed that DNA methylation, one of the
most important epigenetic mechanisms for modulating gene expression, is strongly associated with the
pathogenesis of aging-related bone diseases, including OA and OS [9]. Pertusa et al. reported that miR-
122-5p, miR-125b-5p, and miR-21-5p are valuable biomarkers for modulating bone pathologies [10].
Osteopontin, a vital molecule in bone homeostasis, is associated with OA and OS progression [11].
Although some biomarkers associated with OA and OS development have been identified, more molecules
or pathological factors need to be explored to improve the treatment strategies for OA and OS.

Thus, four profiles, each of OA and OS, were used to explore the molecules involved in both OA and
OS. Differentially expressed genes (DEGs) in OA vs. healthy controls and OS vs. healthy controls were
screened using the limma package. The overlapping genes of hub DEGs were selected using MCC, MNC,
DEGREE, and EPC, and genes involved in the modules were selected as important genes in OA and OS,
and their expression levels were also displayed. Finally, ten genes were identified as promising candidates
for OA and OS development.

2. Materials and methods

2.1. Gene expression omnibus (GEO) datasets

OA and OS expression profiles of were downloaded from the NCBI GEO database [12] (http://www.
ncbi.nlm.nih.gov/geo/). Four OA profiles were downloaded: GSE55457 [13], GSE55235 [13],
GSE12021 [14], and GSE82107 [15]. GSE55457 and GSE55235 included 20 synovial tissue sam-
ples from 10 OA patients and 10 healthy controls, respectively Ten OA synovial tissue samples and nine
synovial tissue samples from healthy controls were included in GSE12021. GSE82107 included 10 OA
synovial tissue samples and seven synovial tissue samples from healthy controls. The detection platform
for GSE55457, GSE55235, and GSE12021 was the [HG-U133A] Affymetrix Human Genome U133A
Array, and the detection platform for GSE82107 was the [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2. 0 Array.

Four OS profiles were downloaded: GSE56814 [16,17,18], GSE62402, GSE7158, and GSE13850.
A total of 73 blood samples from 31 OS patients and 42 healthy controls were included in GSE56814,
and 10 blood samples from five OS patients and five healthy controls were included in GSE62402. Both
profiles were sequenced using the [HuEx-1_0-st] Affymetrix Human Exon 1. 0 ST Array. A total of 26
blood samples from 12 OS patients and 14 healthy controls were included in GSE7158, based on the
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2. 0 Array Forty blood samples from 20 OS
patients and 20 healthy controls were included in GSE13850, based on the [HG-U133A] Affymetrix
Human Genome U133A Array.

GSE55457, GSE55235, and GSE12021 were used as training datasets for OA, and GSE56814,
GSE62402, and GSE7158 were used as training datasets for OS. SVA (http://www.bioconductor.org/
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packages/release/bioc/html/sva.html, version 3.38.0) in the R4.3.1 language package [19] was used to
remove batch effects from the OA and OS training datasets. GSE82107 and GSE13850 were used as
validation datasets.

2.2. Screening of DEGs

DEGs between the OA and healthy control groups and the OS and healthy control groups were screened
using the limma package (version 3.34.7) of R4.3.1 in the OA and OS training datasets, respectively [20].
FDR values less than 0. 05 and |Log2FC| >0. 263 were defined as the screening threshold. The pheatmap
package of R4.3.1 [21] was used to perform bidirectional hierarchical clustering based on the expression
values of DEGs in the OA and OS groups and it was visualized using heatmaps.

Overlapping DEGs between the OS and OA groups were retained as significant DEGs related to both
diseases. DAVID (version 6.8) [22,23,24] was used to annotate the GO function and Kyoto Encyclopedia
of Genes and Genomes (KEGG) signaling pathway enrichment analysis, and a p-value less than 0.05 was
selected as the threshold for enrichment significance.

2.3. Construction of PPI network and selection of hub DEGs

The interaction relationships between the protein products of overlapping DEGs were constructed
using STRING (version 11.0) [25] and visualized using Cytoscape (version 3.9.0) [26]. Subsequently,
hub DEGs were selected based on four topology analysis algorithms, MCC, MNC, DEGREE, and EPC,
using the cytoHubba module recognition plugin (version 0.1) [27] in Cytoscape 3.9.0. The important
genes screened by each of the four algorithms were compared and the overlapping parts were retained as
hub DEGs.

2.4. Selection of modules associated with disease status using weighted gene co-expression network
analysis (WGCNA) algorithm

WGCNA [28] is a bioinformatics algorithm used for constructing co-expression networks that are used
to identify modules associated with diseases and screen important pathogenic mechanisms or potential
therapeutic targets. Based on the expression levels of all genes in the merged OA- and OS-related dataset
samples, we used the WGCNA package (version 1.61) [29] in R4.3.1 to screen modules significantly
correlated with the disease status of the sample.

The threshold for module-partitioning screening was set as follows: the module set should contain at
least 200 genes and cutHeight was set to 0.995. Subsequently, disease-related modules were selected
from the OA- and OS-related datasets and the gene sets of each module were compared. The overlapping
parts were selected as genes significantly associated with both the diseases, and hub DEGs were identified
in the interaction network to obtain the shared hub DEGs related to both diseases.

2.5. Construction of miRNA regulation network

miRNAs related to all diseases were downloaded from the human microRNA disease database (HMDD)
(version 3.2) [30], and miRNAs related to both OA and OS were selected for further analysis. Genes
targeted by the selected miRNAs were screened using miRWalk 3.0 [31]. The intersection of targeted
genes and shared hub DEGs was retained, and an miRNA-targeted gene network was constructed and
visualized using Cytoscape (version 3.9.0) [26].



4434 Z. Wang et al. / Identification of potential pathogenic genes related to OS and OA

2.6. Analysis of expression levels of hub DEGs in training and validation datasets

The expression levels of hub DEGs in the combined OA and OS training datasets were selected. The
expression levels of hub DEGs in the validation datasets (GSE82107 and GSE13850) were also extracted.

3. Results

3.1. A total of 104 overlapping DEGs in OS and OA were identified

Three profiles of OA, GSE55457, GSE55235, and GSE12021 were combined as a training dataset, and
the batch effect was removed using SVA. Similarly, the three OS profiles (GSE56814, GSE62402, and
GSE7158) are used as a training dataset and SVA was used to remove the batch effect. After SVA, the
samples in the OA and OS combined training datasets showed similar levels (Fig. 1A and B).

A total of 578 and 287 DEGs were identified between the OA and healthy control groups and the OS
and healthy control groups, respectively. The volcano map and bidirectional hierarchical clustering of
DEGs in the OA and OS groups are shown in Fig. 2A and B, respectively. The results showed that the
levels of upregulated DEGs differed from those of downregulated DEGs. A total of 104 overlapping
DEGs were identified between the OA and OS groups (Fig. 2C).

Functional analysis of these 104 overlapping genes revealed that they were significantly enriched in 84
GO items, including 58 biological processes such as signal transduction and inflammation, 13 cellular
components such as extracellular space and extracellular exosomes, and 13 molecular functions such
as protein binding and integrin binding (Fig. 2D). Moreover, 16 KEGG pathways were enriched in the
overlapping genes, including the Akt signaling pathway, TNF signaling pathway, and rheumatoid arthritis
(Fig. 2E).

3.2. A total of 46 hub DEGs were screened in the OA and OS groups

Using the STRING database, interactions among the proteins encoded by 104 overlapping DEGs were
identified and interactions with scores higher than 0.4 were selected A total of 984 pairs of interactions
were obtained and a PPI network was constructed based on these pairs (Fig. 3A). Hub DEGs in both
the OA and OS groups were screened using four topology analysis algorithms: MCC, MNC, DEGREE,
and EPC. The top 50 genes in the four topology analysis algorithms were selected, and 46 overlapping
genes were identified as hub DEGs in the OA and OS groups, including PFKFB3, MMP14, HSP90AB1,
LRRC15, DDR2, EGR1, FOS, BTG2, CD48, and HSPA5 (Fig. 3B).

3.3. Ten genes were selected as valuable genes in the OA and OS groups

When the power was 7 or 18, the signed R2 was 0.9. The mean connectivity was 1, which is consistent
with the nature of small-world networks (Fig. 4A and B). The coefficient of dissimilarity between gene
points was then calculated, and a systematic clustering tree was obtained When we set the minimum
number of genes in each module to 200 and cutHeight = 0.995, ten modules in the OA group (Fig. 4C) and
seven modules in the OS group were obtained (Fig. 4D). Figure 4E shows the module-trait relationships
for the OA group. Five modules had absolute correlation values higher than 0.3: OA-blue, OA-magenta,
OA-red, OA-turquoise, and OA-yellow. The module-trait relationships in the OS group are shown in
Fig. 4F, with absolute correlation values higher than 0.3 for the OS-brown and OS-turquoise modules.

Among these modules, 392 genes were associated with both OA and OS (Fig. 4G). These 392 genes
and 46 hub DEGs were compared, and 10 shared hub DEGs were identified between the OA and OS
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Fig. 1. Sample distribution map. A. Sample distribution map of OA before and after removing batch effects using SVA. B.
Sample distribution map of OS before and after removing batch effects using SVA.

groups, including OGN, FAP, COL6A3, THBS4, IGFBP2, LRRC15, DDR2, RND3, EFNB2, and CD48
(Fig. 4H).

3.4. Eight shared hub DEGs and 114 miRNAs were involved in the miRNA-target gene network

A total of 211 miRNAs associated with OA and 230 miRNAs associated with OS were screened using
the HMDD (v3.2). Among them, 114 miRNAs were associated swith both OA and OS.

The genes targeting 114 miRNAs associated with both OA and OS were analyzed using miRWalk.
Subsequently, ten shared hub DEGs in the OA and OS groups were mapped to these target genes, resulting
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Fig. 2. A total of 104 overlapping differentially expressed genes (DEGs) in osteoporosis (OS) and osteoarthritis (OA) were
identified. A: Volcano plot and heatmap of DEGs in OA; B: Volcano plot and heatmap of DEGs in OA. Left: Effect size
(log2FC)-log10 (FDR) volcano plot. Red and blue dots represent significantly upregulated and downregulated DEGs, respectively.
The horizontal dashed line indicates a false discovery rate (FDR) < 0. 05. Right: Gene clustering heatmap based on the expression
levels of DEGs in each group. C: Venn map of DEGs in OA and OS; D: Gene ontology (GO) item enriched by overlapping
DEGs in OA and OS; E: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by overlapping DEGs in OA
and OS. The horizontal axis represents the number of DEGs, the vertical axis represents the item name, and the color represents
the correlation level.
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Fig. 3. Protein-protein interaction (PPI) network and Venn map for selecting hub differentially expressed genes (DEGs). A: PPI
network, and nodes of different colors represent genes with different differences; B: Venn map for hub DEGs, selected using
MCC, MNC, DEGREE, and EPC.

in 140 connection pairs (Fig. 5), including eight shared hub DEGs: OGN, COL6A3, IGFBP2, LRRC15,
DDR2, RND3, EFNB2, and CD48.

Two KEGG pathways were significantly enriched in these eight shared hub DEGs, including ECM-
receptor interaction and focal adhesion.
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Fig. 4. Ten genes were selected as valuable genes in the osteoporosis (OS) and osteoarthritis (OA) groups. A: Left: Adjacency
matrix weight parameter power selection chart for OA. The horizontal axis represents the weight parameter power and the vertical
axis represents the square of the correlation coefficients between log (k) and log (p (k)) in the corresponding network. The red line
represents the standard line, where the square value of the correlation coefficient reaches 0.9. Right figure: Schematic diagram of
average gene connectivity under different power parameters of OA. The red line represents the value of average network node
connectivity under the weight parameter power of the adjacency matrix in the left figure (1); B: Module partition tree diagram
with each color representing different modules in OA; C: Module-trait correlation heatmap in OA; D: Left: Adjacency matrix
weight parameter power selection chart for OS. The horizontal axis represents the weight parameter power and the vertical axis
represents the square of the correlation coefficients between log (k) and log (p (k)) in the corresponding network. The red line
represents the standard line, where the square value of the correlation coefficient reaches 0.9. Right figure: Schematic diagram
of average gene connectivity under different power parameters of OS. The red line represents the value of average network
node connectivity under the weight parameter power of the adjacency matrix in the left figure (1); E: Module partition tree
diagram with each color representing different modules in OS; F: Module-trait correlation heatmap in OS; G: Comparison chart
of gene sets involved in five OA-related modules and two OS-related modules; H: Venn map of hub differentially expressed
genes (DEGs) and genes selected by WGCNA.
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Fig. 5. miRNA-target gene network in osteoporosis (OS) and osteoarthritis (OA).

3.5. Similarly dysregulated expression trends were observed in the training and validation datasets in the
OA and OS groups

The expression levels of the 10 shared hub DEGs in the OA and OS groups are shown in Fig. 6.
Figure 6A shows that the levels of 10 shared hub DEGs in the OA training dataset were consistent
with those in GSE82107. Similarly, the levels of 10 shared hub DEGs in the OS training dataset align
with those in GSE13850 (Fig. 6B). Furthermore, we observed that CD48 was significantly upregulated
in the OA and OS groups and that four genes, EFNB2, DR2, COL6A3, and RND3, were significantly
downregulated. The other five genes, THBS4, LRRC15, OGN, FAP, and IGFBP2, were significantly
upregulated in the OA group and downregulated in the OS group.

4. Discussion

OA and OS are chronic diseases with prevalence rates that escalate with advancing age, both capable
of inflicting pain and functional impairment, thereby diminishing patient quality of life [32,33]. The
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Fig. 6. Expression levels of ten important genes in the osteoporosis (OS) and osteoarthritis (OA) groups. A: Expression levels of
ten important genes in the OA training and validation datasets of GSE82107; B: Expression levels of ten important genes in the
OS training and validation datasets of GSE13850.

relationship between OA and OS – whether they are positively correlated [34] or inversely correlated [35] –
has been a point of contention. Emerging research has provided new insights into convergent and divergent
risk factors for OA and OS, leading to revised understandings of the roles of bone mineral density, body
mass index, falls, genetics, and epigenetics in the pathophysiology of these diseases and their associated
increased fracture risks [36]. In recent years, a plethora of bioinformatics approaches has been extensively
applied to the analysis of potential biomarkers related to OA and OS, leading to the discovery of numerous
genes associated with the incidence and prognosis of these conditions. For instance, Wang et al. discovered
an upregulation of CRIP1 in synovial, blood, and cartilage samples through the analysis of the GEO
dataset, suggesting its potential as a diagnostic biomarker for OA [37]. Zhou et al. recognized ten pivotal
genes associated with OA via gene expression microarray data, potentially aiding in the elucidation of
molecular mechanisms of OA [38]. Yu et al. ascertained eight key genes through bioinformatics analysis
conducive to the construction of an early diagnostic model for OS [39]. Chen et al. developed a diagnostic
model based on nine key genes that reliably distinguished OS patients from healthy subjects, providing
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new insights into the diagnosis of OS [40]. Although the application of bioinformatics in OA and OS has
been extensively documented, there is a paucity of research exploring the common mechanisms between
OA and OS at the gene level. Hence, we conducted a bioinformatics analysis aimed at investigating the
shared molecular mechanisms between OS and OA. In the present analysis, 104 overlapping DEGs were
identified in the OA and OS groups, which were mainly related to inflammatory biological processes, such
as the Akt and TNF signaling pathways Furthermore, 10 important genes were identified in the OA and OS
groups. Among them, CD48 was significantly upregulated in the OA and OS groups, whereas four genes,
EFNB2, DR2, COL6A3, and RND3, were significantly downregulated. The other five genes, THBS4,
LRRC15, OGN, FAP, and IGFBP2, were significantly upregulated in the OA group and downregulated in
the OS group Overall, ten shared hub DEGs were closely associated with the pathogenic mechanism of
both OA and OS.

Multiple convergent and divergent factors, including genetics, mechanical load, and inflammation, have
been reported in OS and OA patients. Both these diseases are polygenic. In the present analysis, 104
overlapping genes of 578 DEGs in the OA group and 287 DEGs in the OS group were mainly related to
inflammatory biological processes, such as the Akt and TNF signaling pathways The PI3K/AKT and
TNF signaling pathways are essential for normal metabolism of bone tissues, such as bone metabolism
and immune responses. TNF-α is an important pathogenic factor associated with immune-mediated
bone diseases [41]. Bone marrow mesenchymal stem cells inhibit neuroinflammation by promoting the
PI3K/AKT signaling pathway and suppressing the NF-κB signaling pathway [42]. Sun et al. showed that
the PI3K/AKT signaling pathway is critical for modulating synovial inflammation, cartilage degradation,
and subchondral bone dysfunction [43]. Thus, genes related to inflammation may be involved in important
mechanisms that lead to OA and OS.

Among the ten shared hub DEGs, OGN, FAP, COL6A3, THBS4, IGFBP2, LRRC15, DDR2, RND3,
EFNB2, and CD48, the roles of some genes in the bone mechanism have been well demonstrated Previous
evidence suggests that the progression of OA and OS is related to multiple factors such as nutritional
factors, physical activity, and genetic factors. Increased subchondral bone loss is a characteristic feature
of early stages of OA and OS [44]. CD48 is an important component of T cell activation pathways, and
the activation of T cells is related to bone fragility and destruction [45]. Enhancement of the EFNB2-
EphB4 signaling cascade inhibits osteoclastogenesis, thereby preventing bone loss in ovariectomized rats,
whereas ablation of EFNB2 expression reverses the inhibitory effects on osteoclasts [46]. Furthermore,
modulating the balance of the EphB4-EFNB2 axis may ameliorate the pathological profile of OS [46,47].
Some genes are involved in the differentiation of bone marrow-derived stem cells, which may provide
novel therapeutic strategies for OA and OS. For example, COL6A3 enhances osteogenic and adipogenic
lineage differentiation by modulating mitochondrial health maintenance and promoting mitophagy [48].
Rnd3/RhoE are well known key regulators of the actin cytoskeleton in various cell types [49]. LRRC15, an
evolutionarily conserved leucine-rich transmembrane protein, is highly expressed in human OA cartilage
and osteoclasts derived from patients with rheumatoid arthritis [50,51]. Moreover, differential methylation
and LRRC15 expression in OA cartilage are associated with cellular stress responses and dysregulated
extracellular matrix remodeling [52]. OGN is associated with bone formation, with elevated OGN levels
found in both synovial fluid and damaged cartilage in OA patients [53,54]. A series of studies have
revealed the role of OGN in OA, suggesting that high expression of OGN may promote ossification and
repair of the articular cartilage [55,56]. In bone marrow stromal cells, FAP is significantly upregulated,
and functions of the gene play as an osteogenic suppressor. Moreover, THBS4 is involved in primary
keratinocyte migration and is upregulated in bone marrow lesions [57]. Although the roles of other genes,
including IGFBP2 and DDR2, have not been widely studied in OS and OA, it is recommended to verify
their functions in both OS and OA.
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This study had some limitations. First, the conclusions were based on an open-access online dataset.
Meanwhile, the background information of the enrolled subjects, such as the clinical backgrounds of
patients and disease subtypes, was lacking. To filter out the noise signal induced by the background
information, this conclusion should be verified using a large number of samples and clinical research.
Second, the potential role of the shared hub DEGs in OA and OS was confirmed by western blotting
and polymerase chain reaction. Furthermore, the functions of these genes should be explored in animal
models with gene silencing or overexpression Despite these limitations, four OA and OS datasets were
used in this study, and the expression levels of the selected hub DEGs were similar in both the training
and validation datasets.

In conclusion, we showed that ten shared hub DEGs, including OGN, FAP, COL6A3, THBS4, IGFBP2,
LRRC15, DDR2, RND3, EFNB2, and CD48, may be valuable biomarkers for both OA and OS, which
may improve our understanding of the molecular mechanisms underlying OA and OS.
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