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Summary

DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it 

is frequently dysregulated during tumor development and is closely intertwined with other genetic 

alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved 

adjacent tissues from kidney, brain, pancreas, lung, head and neck, and endometrium to identify 
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aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer 

catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in 

endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive 

regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of 

STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. 

We further demonstrated that methylation subtype-enrichment information can explain cell-of-

origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA 

methylation events that drive transcriptional and translational changes, shedding light on the 

tumor’s epigenetic landscape and the role of its cell-of-origin.

eTOC blurb

Liang et al. catalog pan-cancer DNA methylation with concordant transcriptional and translational 

changes, revealing lineage-specific epigenetic driver FGFR2 hypomethylation in uterine corpus 

endometrial carcinoma, and STAT5 hypermethylation as an immunosuppression switch in 

squamous tumors. They also identify methylation-driven subtypes associated with cell-of-origin, 

tumor heterogeneity, tumor phenotype, and links to therapeutic potential.

Graphical Abstract
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Introduction

Cytosine methylation is an epigenetic modification that confers stability and flexibility in 

the spatiotemporal gene regulation of many biological processes, including establishment 

and maintenance of cell identity. Aberrant DNA methylation is a hallmark of human cancer 

development and progression1–3. Aberrant DNA methylation has been observed in the 

global hypomethylation of repetitive sequences and the gene-specific hypermethylation of 

numerous CpG islands (CGI)4,5. Such changes within promoter regions can silence tumor 

suppressor genes or deregulate oncogenes. Moreover, the widespread changes in DNA 

methylation patterns usually arise in the early stages of tumorigenesis, suggesting a driving 

role of aberrant DNA methylation6. Given the reversible and dynamic nature of DNA 

methylation, treating cells with DNA demethylating agents might reprogram neoplastic cells 

back toward a normal state7. Delineating the functional consequences of aberrant DNA 

methylation is critical for improving cancer diagnosis, prognosis, and treatment.

Identifying DNA methylation patterns with functional roles in cancer and distinguishing 

them from tissue-specific epigenetic footprints remains challenging8. While some analytical 

approaches facilitate exploring the connection between DNA methylation and gene 

expression changes9,10, most studies have focused solely on transcriptome expression. We 

propose aggregating multi-omic data to comprehensively understand how tumor-specific 

methylation impacts both transcription and translation. By leveraging proteomic data as a 

direct measure of biological activity, we aim to discover DNA methylation drivers and gain 

insight of their role underlying tumor development.

Here, we integrated multi-omic data from 687 patients across seven cancer types from the 

Clinical Proteomic Tumor Analysis Consortium (CPTAC)11, and systematically examined 

the impact of cis-acting aberrant DNA methylation events on information flow, features, 

and functional consequences. Our analysis identified common and tissue-specific epigenetic 

events, including significant alterations in cancer genes affecting hallmark pathways. 

Distinct cancer subtypes were characterized by unique methylation patterns, validated by 

RNA and protein signatures reflecting each subtype’s molecular characteristics. Moreover, 

we identified putative druggable genes tightly regulated by DNA methylation, offering 

potential targets for tailored therapeutic interventions. This comprehensive catalog advances 

our understanding of DNA methylation-mediated tumorigenesis and offers insights towards 

the development of epigenetic therapies.

Results

Pan-Cancer landscape of DNA methylation and associated functional changes

To construct a landscape of cancer methylomes and associated functional changes, we 

collected 687 human tumors with available DNA methylation profiles (Infinium EPIC 

array), gene expression (RNA-seq), and protein abundance (mass spectrometry) across 

seven cancer types from CPTAC. This cohort was comprised of 107 clear cell renal 

cell carcinomas (ccRCC), 94 glioblastomas (GBM), 104 head and neck squamous 

cell carcinomas (HNSCC), 107 lung squamous cell carcinomas (LSCC), 102 lung 

adenocarcinomas (LUAD), 79 pancreatic ductal adenocarcinomas (PDAC), and 94 uterine 
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corpus endometrial carcinomas (UCEC). We also collected DNA methylation data from 

matched normal adjacent tissues (NAT) including kidney, head and neck, pancreas, and 

lung from CPTAC. For GBM and UCEC datasets that lacked DNA methylation data from 

NATs, we acquired the corresponding DNA methylome from The Cancer Genome Atlas 

(TCGA) and the Therapeutically Applicable Research to Generate Effective Treatments 

(TARGET) datasets in the form of Infinium HumanMethylation BeadChip (HM450) (Table 

S1, STAR Methods). All DNA methylation profiles were processed from raw array data, 

with standardized processing, quality control, and batch correction procedures (STAR 

methods). This expanded dataset allowed us to estimate methylation among reference tissues 

and to interrogate aberrant DNA methylation in a tissue-specific context (Figure S1).

First, to estimate how methylome, transcriptome, and proteome are correlated, we quantified 

the pairwise correlation between data sets for the 12,943 genes where all measurements 

are available using linear models, taking into account cancer type and tumor purity as 

covariates (STAR method, Figure 1A and Table S1). Consistent with expectations, RNA 

expression positively correlated with protein abundance, and promoter DNA methylation 

negatively correlated with RNA expression or protein abundance, indicating that promoter 

hypermethylation leads to gene silencing, while hypomethylation enhances gene expression 

(Figure 1A). Focusing on the 10,844 genes showing significant mRNA-protein correlation, 

we categorized them into groups based on the correlation between promoter methylation 

and RNA/protein expression. The correlation coefficients varied in strength and direction 

(Figure 1B), with 64.2% of promoter methylation showing no correlation, 18.4% correlated 

with RNA expression, and 3.5% correlated with protein abundance (Figure 1C). Only 

13.9% of the promoter methylation exhibited correlation with both RNA expression and 

protein abundance (Figure 1C). For example, MXRA5 and MNDA were correlated with 

RNA expression and protein abundance, respectively, while CARD11 and MGMT showed 

correlations with both RNA expression and protein abundance (Figure 1D). When parallel 

correlation tests were conducted within single cancer types without considering tumor 

purity, the fractions of promoters correlated with both RNA and protein abundance were 

even lower. This suggests that pan-cancer analysis with a larger sample size enhances 

discovery power (Table S1).

The limited impact of methylation on the proteome may be attributable to biological 

factors (e.g., translational regulation, tissue-specific expression, protein degradation, and 

post-translational modifications) or to technical factors resulting from the low detection 

sensitivity of low-abundance transcripts or proteins12,13. Indeed, we observed a significant 

decrease in RNA expression and protein abundance in genes where promoter methylation 

correlated only with RNA expression, compared to those where methylation correlated 

with both RNA expression and protein abundance (Figure S2A, Wilcoxon P < 2.2e-16). 

Furthermore, among the 353 genes with promoter methylation correlated solely with protein 

abundance, we identified 31 genes, including the previously reported MNDA14, with 

promoter hypermethylation and gene upregulation, indicative of a biological effect rather 

than a technical artifact (Figure 1D and 1E, Table S1). These genes exhibited enrichment 

in neutrophil degranulation and glycogen metabolism pathways (Figure 1F and Table S1). 

The significant correlation between promoter methylation and protein abundance suggests 

the presence of an additional regulatory layer likely detectable through proteomic data, 
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emphasizing the intricate and context-specific nature of DNA methylation’s impact on gene 

regulation.

To characterize the prevalence of aberrant DNA methylation across seven cancer types, we 

next detected recurrent and deregulated DNA methylation in tumors compared to NATs. 

We then determined the association of DNA methylation with changes in both mRNA 

expression and protein abundance using the published pipeline RESET9. To minimize batch 

effects or confounding bias across cancer types, each cohort was analyzed individually. 

Our analysis aimed to profile aberrant DNA methylation for regions actively contributing 

to gene regulation15. Therefore, probe sets were limited to those within promoter regions, 

or 300 bp upstream and downstream of the transcription start sites for the RESET pipeline 

(Figure S2B and Table S2). Overall, we detected 5570 hypermethylated CpG sites associated 

with mRNA downregulation of 2549 genes, 889 hypermethylated CpG sites associated with 

protein downregulation of 425 genes, 537 hypomethylated CpG sites associated with mRNA 

upregulation of 442 genes, and 166 hypomethylated CpG sites with protein upregulation 

of 124 genes (FDR < 10%, Figure 2A). No aberrant DNA methylation has been identified 

in the PDAC cohort, which could be explained by low tumor purity16. Consistent with 

previous studies, promoter hypermethylation was observed more frequently than promoter 

hypomethylation in all cancer types9,17. Our results confirmed that several well-known 

tumor-associated genes are regulated epigenetically, including MLH1 in UCEC18, MGMT in 

GBM and HNSCC19. However, most identified genes have not been previously implicated in 

DNA methylation-mediated regulation (Table S2).

Next, for individual aberrant DNA methylation events, we examined the concordance 

between mRNA and protein changes. Out of 964 total hypermethylation and 217 total 

hypomethylation events, we identified 365 hypermethylation and 74 hypomethylation events 

associated with both RNA expression and protein abundance changes (Figure 2B and 

Figure S2C), with a 70.5% validation rate for the genes having available DNA methylation 

(HM450) and RNA-seq data in TCGA cohorts (FDR < 10%, Table S2). Among them, we 

observed 98.9% of the aberrant methylation had the same direction of effect across the 

seven cancer types. About 78.8% of the aberrant methylation have been recovered from 

the same analysis with tumor purity-adjusted methylation values (FDR < 10%, Table S2), 

suggesting that our reported events are not being driven by underlying differences in tumor 

purity. Having constructed a comprehensive map of the cis-acting cancer methylome, we 

were able to delineate functional impacts of deregulated DNA methylation for a set of genes 

directly related to tumorigenesis (Table S2). Figure 2C illustrates the median methylation, 

RNA, and protein differences for cancer-associated genes, presented as the difference 

between NAT and tumor samples. In line with previous studies, we observed 41 of the 

aberrant methylation events are cancer type-specific17,20,21. Tumor necrosis receptor FAS 
in GBM22 and homeobox gene MEIS1 in UCEC23 are two such examples. Overall, these 

results highlight the context-dependent regulation of DNA methylation and tissue-specific 

carcinogenesis17. Only 5 of the aberrant methylation events, namely hypomethylated EGFR, 

and hypermethylated STAT5A, MGMT, CARD11, and TRIM22 are common across cancer 

types. The generalizability of these aberrant DNA methylation patterns suggests their 

importance in tumor development.
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Noting that our integrative analysis can also reasonably capture the impact of non-cancerous 

cells in the tumor microenvironment on bulk multi-omics profiles, we also included 

published single-cell RNA-seq datasets to annotate whether the reported event is likely 

to be identified in tumor, immune, or stromal cells24–28 (STAR methods). For example, in 

ccRCC, EGFR was expressed in cancer cells and TRIM22 was expressed in immune cells, 

indicating the possibility of aberrant DNA methylation affecting different populations of 

cells in the tumor microenvironment. In total, 190 out of 436 events (43.6%) were annotated 

for their specific expression (Table S2). While our integrative multi-omic analysis based on 

bulk tissue provides a reliable estimate across a large number of tumors, the complementary 

scRNA-seq annotations deepen these analyses by evaluating gene expression patterns of the 

reported events at the cellular level for future study.

cis-acting aberrant DNA methylation as a possible driver event

DNA methylation-mediated modulation might be an important mechanism affecting 

the regulation of oncogenes and tumor suppressor genes. To test this hypothesis, we 

characterized cis-acting aberrant DNA methylation on 299 driver genes29. Since DNA 

methylation can affect the binding of transcription factors (TFs)30, we examined the number 

and enrichment of TF binding sites (TFBS) in loci associated with expression changes. All 

loci were associated with at least one TFBS. Both hypomethylated and hypermethylated 

CGI sites were characterized by a similar number of TFBS (mean 8.14 v.s. 7.49 TFBS) 

(Figure 3A). PREP1, a master regulator that functions as a tumor suppressor in maintaining 

genome stability31, was the most enriched TFBS in hypermethylated loci. This result 

supports the notion that TFs might serve as both the readers and effectors of aberrant DNA 

methylation in tumors30, leading to altered expression as revealed by transcriptomic and 

proteomic data.

Next, we explored the relationship among genetic alterations, DNA methylation, or histone 

acetylation. For the driver genes with cis-acting DNA methylations, most methylation events 

were mutually exclusive with genomic alterations, as exemplified in LSCC (Figure 3B 

and Figure S3A). For example, the correlation between KLF5 expression and promoter 

DNA methylation suggests that methylation is the main factor regulating its expression 

(Figure S3B). Investigating the interplay between DNA methylation and histone acetylation 

revealed that tumors exhibiting a high frequency of hypermethylation are significantly 

linked to decreased levels of H3 acetylation (Figure 3C, Wilcoxon P<0.05), indicating 

an overall repression of genes. Furthermore, a distinct relationship was observed among 

immune subtypes, hypermethylation frequency, and histone acetylation profiles, where the 

immune cool group showed an association with tumors displaying high hypermethylation 

frequency (Figure 3D). The pattern of mutual exclusivity and the interaction between 

DNA methylation and histone acetylation suggests that DNA methylation contributes to 

positive selection and histone changes, respectively, potentially playing a driving role in 

tumorigenesis.

Comparison to NATs showed DNA hypomethylation is the main perturbation occurring 

in the IDH2 gene, found in 6 of 107 LSCC tumors (Figure 3E and Figure S3C). Since 

overexpression of IDH2 contributes to altered energy metabolism32,33, we examined the 
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metabolic activity of those cancers in samples with or without IDH2 hypomethylation. The 

results showed preferential upregulation of genes involved in cancer metabolism, including 

KDMs, ALKBHs, TETs, and MTOR, with the specific genes and extent of their expression 

changes varying slightly across different pathways (Figure 3F). To detect the downstream 

metabolic remodeling effect of IDH2 hypomethylation, we investigated the relationship 

between IDHs alterations and histone acetylation profiles. A total of 393 patients with 

available acetylation and methylation data were categorized into four groups: IDH1/IDH2 
wild-type (n=374), IDH1 mutants (n=11), IDH2 hypomethylated samples (n=5), and IDH2 
mutants (n=3). We found that IDH2 hypomethylation, similar to IDH1 and IDH2 mutants, 

can significantly impact the correlations between histone acetylation and DNA methylation 

levels at 2-hydroxyglutarate (α-KG) target genes (Figure 3G and Table S2) and IDH2 target 

genes (Figure S3D and Table S2). For example, significantly lower levels of H1 K168K, H1 

K75K, and H2 K86K were observed in IDH1/2 mutant and IDH2 hypomethylated samples 

compared to IDH1/2 wild types and IDH2 normal methylated samples, respectively (Figure 

S3E). Despite the distinct nature of IDH2 hypomethylation compared to IDH1 and IDH2 
mutations, the similarity in correlation patterns suggests a potential metabolic convergence 

of these alterations across cancer types. The combined methylation and acetylation profiling 

revealed driver mutation-independent IDH2 activation.

Hypomethylated RTKs are newly identified driver events

We found that several receptor tyrosine kinases (RTKs), including FGFR2 and EGFR, are 

frequently hypomethylated in UCEC and across cancer types, respectively (Figure 2C). To 

dissect the contribution of hypomethylated RTKs to oncogene activation, we examined the 

relationship between promoter methylation and genetic alteration. Specifically, we identified 

mutations, fusions, and copy number variations (CNVs), and their effects on RTK RNA and 

protein levels.

About 63.2% (12 of 19) of FGFR2 missense and indel mutations were activating mutations 

that enabled high-grade inflammation and cell proliferation without hypomethylation34–39 

(Figure 4A). However, we identified 9 UCEC tumors carrying cis-acting hypomethylated 

FGFR2, 8 of which had co-occurring genomic alterations. Furthermore, unsupervised 

clustering of DNA methylation data across 94 CPTAC UCEC tumors and 43 TCGA normal 

samples from the same organ type revealed that FGFR2 hypomethylated cases formed a 

distinct cluster with lower DNA methylation than normal tissues (Figure 4B). Specifically, 

one CGI (cg10314760) within the FGFR2 promoter displayed a strong correlation between 

promoter hypomethylation and active gene expression both at the RNA and protein levels 

(Figure 4C). Our results suggest that promoter methylation is a major factor modulating 

expression of FGFR2, and that FGFR2 hypomethylation represents another mechanism of 

RTK activation potentially commensurate with activating mutations.

To distinguish the oncogenic effects of FGFR2 hypomethylation from co-occurring 

aberrations, we stratified UCEC tumors by the type of FGFR2 genomic alteration and 

examined FGFR2 expression accordingly. We found that the median of FGFR2 RNA 

expression or protein abundance are consistently higher in tumors with hypomethylated 

FGFR2 than that in tumors with normal methylated FGFR2. Higher expression of FGFR2 
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is significant in the group with CNVs at the cognate locus (Wilcoxon P < 0.005) 

(Figure 4D). Validation in the TCGA UCEC cohort confirmed our findings. FGFR2 
exhibited hypomethylation at CGI site (cg10314760) in 21 of 174 tumor samples, strongly 

correlating with active gene expression (Figure S4A). Consistent correlation between 

FGFR2 hypomethylation and upregulation was observed in samples with wild type FGFR2, 

shallow deletion of FGFR2, and shallow amplification of FGFR2 (Figure S4B). This result 

suggests that, whereas activating mutations, amplifications, and promoter hypomethylation 

enable FGFR2 upregulation to differing extents, co-occurring FGFR2 hypomethylated 

sites result in even more profound expression changes than amplification alone. These 

results emphasize the important role of promoter hypomethylation in contributing to 

oncogenic gain-of-function. Similarly, hypomethylated EGFR was associated with EGFR 

upregulation in HNSCC, LSCC, and ccRCC (Figure S4C-D). Our results are consistent 

with the pan-cancer analysis suggesting that tumors harbor multiple aberrations within 

individual oncogenes such as FGFR2 or EGFR, likely conferring enhanced oncogenicity 

in combination40. Overall, although recurrent gain-of-function genomic alterations in RTKs 

have long been known to promote a variety of cancers41, our results reveal that RTK 

hypomethylation is also a bona fide epigenetic driver across several cancer types.

Hypermethylation of STAT5A is associated with pervasive changes in STAT5A regulon 
activity

Altered expression of TF can disrupt the activity of its regulon, a group of genes that 

are regulated by a common regulatory element. To estimate the impact of aberrant DNA 

methylation on regulon activity, we first identified 14 cis-acting hypermethylation events 

at TFs, and then tested their association with corresponding regulons, such as receptors, 

activator, repressor, and target genes involved in the same pathway (Fisher’s exact test, FDR 

P<0.1, Table S3). We identified significant associations between hypermethylated TFs and 

low regulon activity at both RNA expression and protein abundance levels. Since STAT5A 

regulon comprises the largest number of interacting genes, we therefore focus on STAT5A 

for the downstream analysis.

STAT5A controls cell identity, cytotoxicity, and cell survival; dysregulation of those 

processes can contribute to tumorigenesis42. Unsupervised clustering of STAT5A-interacting 

proteins, using expression data from HNSCC tumors divided samples into two groups: 

those with high regulon activity and those with low regulon activity (Figure 5A). Notably, 

samples with hypermethylated STAT5A were significantly enriched in the regulon-low 

group (Fisher’s exact test, P=7.8E-05). The same pattern was observed in protein abundance 

(Figure 5B, Fisher’s exact test, P=0.025). Furthermore, exome sequencing of these tumors 

did not identify any distinct, recurrent coding sequence mutations in STAT5A-interacting 

genes (Table S3), suggesting that other genetic drivers were not involved. Additionally, 

STAT5A phosphorylation was not significantly associated with either STAT5A methylation 

status or STAT5A regulon activity (Figure S5A). Altogether, the enrichments we observed 

indicate that aberrant methylation of STAT5A leads to pervasive regulon changes in 

HNSCC. Similar to HNSCC, hypermethylated STAT5A was associated with low regulon 

activity in LSCC (Figure S5B).
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Since samples with hypermethylated STAT5A were significantly associated with lower 

regulon activity at both RNA and protein levels (Figure 5C), we hypothesized that STAT5A-

interacting components (i.e., receptors, kinases, repressors, co-activators, and target genes) 

would be downregulated in samples with hypermethylated STAT5A. Among the target 

genes, we observed significant downregulation of IRF1, PRF1, IFNG, IL2RA, and IL6ST 
(Wilcoxon P<0.05) at either/both RNA and protein levels (Figure 5D). These observations 

link hypermethylated STAT5A to the regulation of cytokine production, cytotoxicity, cell 

proliferation, and interferon signaling.

Hypermethylated STAT5A is associated with immune cell depletion in squamous tumors

Recent study has shown that STAT5A-mediated interferon signaling regulates the expression 

of CD274 (encodes PD-L1) and PDCD1LG2 (encodes PD-L2), reflecting the clinical 

significance of STAT5A signaling in immunotherapy43. STAT5A target genes are directly 

implicated in immune response (e.g., IL2RA, IRF1, and IFNG) and their low expression 

implies alteration of normal immune function and homeostasis44. We therefore focused on 

characterizing the immune component of HNSCC and LSCC tumors to understand how 

hypermethylated STAT5A affects the tumor microenvironment.

To explore the microenvironment of HNSCC and LSCC tumors, we stratified transcriptome 

data from cell mixtures into multiple immune cell types using xCell45. Consensus clustering 

of 64 different immune-related cell types identified four major immune clusters, including 

immune-cold, immune-cool, immune-warm, and immune hot subtypes, which harbored 

general characteristics of immunosuppressive to inflammatory microenvironment28,46,47 

(Table S3). STAT5A hypermethylated samples were significantly enriched in the immune-

cool group both in HNSCC and LSCC (Figure 6A and Figure S6A, Fisher’s exact 

test, P<0.00001 and P=0.0002, respectively). STAT5A hypermethylated samples displayed 

significantly decreased expression of genes associated with immune effectors and dendritic 

cells (Figure 6B and Figure S6B, Wilcoxon P<0.05). Interestingly, for squamous tumors 

with available histone acetylation data, we found samples with hypermethylated STAT5A 
have significantly lower acetylation of histone H3 lysine 14 (H3K14)(FDR=0.05, Figure 

S6C), representing an overall gene repression48. Our findings suggested that samples 

with hypermethylated STAT5A are significantly associated with immune cell depletion in 

squamous tumors.

Next, to further identify the expression specificity of STAT5A hypermethylation in HNSCC, 

we evaluated 29 representative HNSCC cases by immunohistochemistry (IHC) markers 

STAT5A (Table S3). We found prominent STAT5A protein expression in the tumor-

infiltrating lymphocytes (TILs) and peritumoral lymphocytes, while STAT5A was minimally 

expressed or absent in tumor cells (Figure 6C). The overall level of STAT5A abundance in 

the stained slide was correlated with the level of TILs or peritumoral lymphocytes (Figure 

6D). Interestingly, samples with hypermethylated STAT5A showed a distinct boundary 

between tumor cells and STAT5A-expressing immune cells (Figure 6E, left panels), while 

tumor samples with normal methylated STAT5A showed a mixture of tumor cells and 

STAT5A-expressing immune cells (Figure 6E, right panels). We speculated that immune 
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cells with hypermethylated STAT5A might limit the migration of lymphocytes in the tumor 

microenvironment, however the working model requires further investigation in the future.

Our finding of lower tumor microenvironment factors in STAT5A-hypermethylated samples 

is in agreement with previous studies showing that hematopoietic stem cell proliferation was 

severely impaired in Stat5A-deficient mice49–51. It is also consistent with STAT5A being 

identified as a key tumor suppressor in lymphoma cell lines52. In addition, studies have 

indicated that the development of HNSCC is closely related to immunosuppression and 

immune escape53. These findings suggest that STAT5A hypermethylation may mediate the 

disease-dependent expression of STAT5A-targeted genes54 and contributes to altered tumor 

immunogenicity.

Aberrant methylation associated with therapeutic vulnerabilities

We next explored if epigenetic features can classify tumors into transcriptionally and 

translationally distinct subtypes. To identify subtypes based on methylation patterns, we 

generated methylation profiles from 687 tumors and NATs, and used uniform manifold 

approximation and projection (UMAP) to reduce methylation signals from 340,000 CGIs 

into two dimensions55 (Figure 7 and Figure S7A). We found that tumors clustered by 

organ system, including brain (GBM), kidney (ccRCC), lung (LUAD and LSCC), head 

and neck (HNSCC), pancreas (PDAC), and uterus (UCEC) (Figure 7A, first column). 

Additionally, squamous cell cancers, LSCC and HNSCC, formed a distinct cluster adjacent 

to LUAD. The distinct pattern between chromophobe renal cell carcinomas (C3N-00492 

and C3N-01175) and ccRCC samples (Figure S7A) were consistent with their distinct 

origins56,57. Direct comparisons between tumors and corresponding normal adjacent tissues 

revealed pronounced methylation differences (Figure 7A, second column). To investigate 

intrinsic lineage differences in DNA methylation between tumors possessing different cells-

of-origin, we examined differentially methylated CGIs in tumor samples compared to NAT 

samples and found 99 cancer-specific aberrant methylation promoters (Figure 7B and Table 

S4). Together, the results suggest that the DNA methylome of tumors faithfully reflects 

cell-of-origin and malignant transformation.

Next, using CGIs showing significant differences between tumors and NATs, we identified 

between 3 and 5 clusters from each cancer type (Figure 7A, third column, and Figure 

S7B). We correlated those methylation subtypes with existing RNA expression-based 

subtypes16,24,56,58–61 (Fisher’s exact test P < 0.05), and found that methylation subtypes 

captured several important genomic features and clinical characteristics (Figure S7C and 

Table S4). For example, the UCEC C1 to C4 methylation subtypes are enriched with 

POLE, CNV-low, MSI-high, and CNV-high tumors, respectively62. The LUAD C1 to 

C3 methylation subtypes are enriched with proximal-proliferative, proximal-inflammatory, 

and terminal respiratory unit tumors, respectively63,64. GBM subtypes C4 and C5 feature 

mesenchymal phenotype and CpG island methylator phenotype associated with IDH1 
mutation, respectively22. Altogether, our results suggest that clustering cancer samples based 

on DNA methylation can help identify molecularly and clinically relevant subtypes.

To further explore the biological differences between methylation subtypes, we performed 

an over-representation pathway analysis using differentially expressed genes and proteins, 
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revealing significantly enriched pathways related to tumorigenesis (Figure 7C and Table 

S5, P < 0.05). Some significant subtype-specific tumorigenic signatures were consistently 

observed at the transcriptomic and proteomic levels, such as enrichment of LSCC-C1 

for NFE2L2 orchestrating the adaptive response to oxidative stress65,66, and enrichment 

of ccRCC-C1 for tumorigenic transcriptional network coordinated by HSF167. Despite 

comprising distinct cancer types, LSCC-C3, LUAD-C2, PDAC-C2, HNSCC-C2 and GBM-

C4 were characterized by immune-related signatures at RNA and/or protein levels. This 

correlation suggests signaling convergence among various cancers, in line with previous 

studies demonstrating that some methylation subtypes are significantly associated with 

immune signature68–70. On the other hand, enrichment of pathway signatures was not 

detected in some methylation subtypes, which were thus only characterized by their distinct 

methylation pattern. For example, deficiency in DNA polymerase ε (POLE) proofreading 

generates an extensive number of somatic mutations and leads to a methylation profile, 

which is shown as the UCEC subtype C1 (Figure 7C and Figure S7D). Overall, these results 

demonstrate heterogeneity within cancer types and how distinct methylation patterns may 

give rise to various cancer phenotypes.

To identify the interplay between driver mutation and methylation subtypes in 

tumorigenesis, we correlated methylation subtypes with 299 driver mutations. We found 

13 out of 25 methylation subtypes are significantly associated with cancer-specific driver 

mutations (Figure 7C and Figure S7D). Consistently, enrichment of seven driver mutations 

in particular RNA-based subtypes have been identified previously, including UCEC-

C4 (CNV-high) enriched with TP53 mutations71, UCEC-C3 (MSI-high) with KMT2B 
mutations61, UCEC-C2 (CNV-low) with CTNNB1 mutations71, LUAD-C3 (terminal 

respiratory unit) with EGFR mutations72, LUAD-C1 (proximal-proliferative) with STK11 
mutations64, and GBM-C4 (mesenchymal) with NF1 mutations73,74. We also identified 

enrichment of mutations at epigenetic modifiers that could directly affect cancer methylome. 

For example, IDH1 deficiency generates high levels of α-KG and leads to epigenetic 

reprogramming, which is shown as the GBM subtype C524. Mutations in PBRM1 
(a chromatin remodeler), SETD2 (a histone methyltransferase), and BAP1 (a histone 

deubiquitinating enzyme) lead to distinct DNA methylation phenotypes in ccRCC75,76. 

The significant correlation between driver mutations and methylation subtype suggested 

that deregulation of driver genes induces epigenetic reprogramming, rewiring regulatory 

networks together during tumorigenesis.

Beyond the methylation subtyping within each cohort, we also conducted methylation 

profiling and signature enrichment analysis across HNSCC, LSCC, LUAD, and PDAC, 

which form a distinct cluster in the UMAP projection (Figure 7A, fourth column, and 

Figure S7E). We identified six methylation groups with various signatures, including groups 

enriched with immune-related signatures (MC1 and MC2), groups enriched with squamous 

tumors (MC3 and MC4), LUAD-dominant group (MC5), and PDAC-dominant group (MC6) 

(Figure S7F and Table S4, P < 0.05). MC5 and MC6 are enriched with cancer type-specific 

signatures such as β cell development and surfactant metabolism, respectively. Following 

the observation of methylation subtypes, we again observed signaling convergence among 

various cancers in MC1 and MC2. Notably, cancers with squamous features (MC3 and 

MC4) were enriched with replication stress signatures, coinciding with their high degree 
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of genomic instability77,78. Our multi-omic integrative analysis enables the identification 

of common functionality arising from the same methylation profile across different cancer 

types.

Finally, we investigated druggable targets for sites with cis-acting dysregulated DNA 

methylation. We integrated cis-acting DNA methylation with the Clinical Interpretation 

of Variants in Cancer (CIViC)79 and analyzed target genes with outlier expressions for 

which pharmacological intervention might be available (Table S6). Allowing for “off-label” 

drug treatment, we found that 19.2% of samples (132 of 687 tumors) would likely benefit 

from one or more treatments targeting genes altered by DNA methylation (Figure S7G). 

The most frequent druggable DNA methylation events across the seven cancer types are 

those on MGMT (n = 45 tumors), NAPRT (n = 31 tumors), and EGFR (n = 26 tumors). 

These findings may have important clinical implications. For example, tumor-specific loss 

of NAPRT, mediated by promoter hypermethylation, is synthetically lethal with NAMPT 

inhibitor treatment in multiple cancer types, resulting in inactivation of nicotinic acid 

salvage pathways80. However, it is worth mentioning that we do not claim superiority over 

any other drug discovery method since it is difficult to evaluate the performance without 

gold standards. We claim that: (1) the high correlation among different data types provides 

validation to each other for the functional events in tumors; and (2) this study provides 

highly regulated aberrant DNA methylation events that are reflected in RNA expression 

and protein abundance readout, which is useful and complementary to other methods. Thus, 

collectively, these characterizations of cis-acting aberrant DNA methylation in cancer reveal 

potential new directions for treatment optimization.

Discussion

The pan-cancer multi-omic analysis revealed driver gene regulation via DNA methylation, 

providing insights into methylation-based stratification of cancer patients. We identified 

and characterized methylation subtypes enriched with various RNA and protein signatures 

that have potential therapeutic and prognostic implications. Of interest, we observed that 

subsets of tumors in different organs may share a convergent immune-related signature. For 

these, the cancer methylome may offer opportunities for patient stratification to increase the 

efficacy of immune-based therapies. Moreover, we observed clinically relevant alterations 

with important therapeutic potential in 132 out of 687 tumors. Targeting those common 

aberrant methylation events could enhance the therapeutic reach of existing drugs by 

broadening the treatable patient and tumor populations. To maximize this benefit, future 

studies may look toward optimizing epigenetic therapies.

We uncovered several bona fide DNA methylation drivers showing functional consequences, 

including hypomethylated FGFR2 and EGFR, which could be informative in expanding 

patient eligibility of conventional genotype-directed clinical trials. In addition, the apparent 

co-occurrence of FGFR2 hypomethylation and amplification suggests that epigenetic 

enhancement of FGFR2 expression may offer selective advantage for developing a second 

FGFR2 alteration, perhaps from enhanced FGFR2 signaling in these cells. The converse 

relationship is also possible: genomic alterations to FGFR2 disrupt the reading, writing, 

or maintaining of DNA methylation machinery in tumor cells, subsequently leading to 
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aberrantly reduced methylation within the FGFR2 promoter. Regardless of the direction, 

this relationship takes, since UCEC tumors harboring epigenetic and genetic alterations are 

significantly associated with FGFR2 upregulation, it is likely that FGFR2 hypomethylation 

works in concert with amplification at FGFR2 to promote tumorigenesis81.

Studies have shown that HNSCC tumors evade the host immune system by manipulating 

their own immunogenicity53. Our findings reinforce the critical nature of STAT5A as a 

signaling hub in modulating tumor immunogenicity across squamous cancers. Together, 

these findings suggest opportunities for therapeutic intervention by targeting epigenetic 

alterations within the STAT5A promoter. DNMT inhibitors, such as 5’-azacytidine, have 

been shown to reduce methylation of the STAT5A promoter in cell lines52 and are FDA-

approved for treating myelodysplastic syndrome82. Furthermore, activation of STAT5A 

signaling may transform an immunologically cold, inactive tumor into a hot, inflamed 

one and thus increase the anti-tumor immune response. Additional investigation is required 

to uncover the mechanisms mediating STAT5A hypermethylation and downstream immune-

related signaling pathways, including the interaction between them, and the impact on 

therapeutic sensitivity.

There are several limitations to this study. First, recent investigations have shown that not 

only promoters, but also intragenic and intergenic regions, are widely modulated during 

disease progression83. Here, we only focus on cis-acting DNA methylation at promoter 

regions, while trans-acting DNA methylation (i.e. DNA methylation acting upon other 

target genes) and other regulatory elements are not discussed. Second, previous studies 

have shown that DNA methylation and gene expression are not as frequently correlated as 

previously thought84. Therefore, DNA methylation may have critical functions other than 

gene expression regulation. One possibility is that DNA methylation changes influence 

transcriptional potential rather than actual transcription status and could therefore be 

involved in the epigenetic plasticity of tumor cells85,86. Another possibility is that aberrant 

intra- or intergenic DNA methylation in cancer cells may lead to increased non-synonymous 

mutation rate. Finally, although our integrative multi-omic analysis has limitation in 

differentiating DNA methylation changes specifically in cancer epithelial cells or tumor-

infiltrating lymphocytes, we provide a reliable estimate across a wide range of tumors, 

laying the groundwork for future single-cell analyses and spatial omics investigations. 

We emphasize the importance of isolating cancer epithelial cells and employing DNA 

methylome sequencing for future study. Altogether, future studies at single cell resolution 

may help reveal additional mechanistic details underlying the contribution of aberrant DNA 

methylation to tumor development.

Overall, our results help identify the contribution of DNA methylation in tumorigenesis 

and delineate its role in initiating and maintaining malignancies. This thorough account 

of cis-acting events and characterization of the cancer methylome will inform systematic 

explorations of aberrant DNA methylation and associated functional consequences, 

ultimately revealing potential new disease mechanisms and therapeutic opportunities.
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STAR METHODS

RESOURCE AVAILABILITY

Lead contact

• Further information and requests for resources and reagents should be directed to 

and will be fulfilled by the Lead Contact, Li Ding (lding@wustl.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw and processed proteomics as well as open-access genomic data, can be 

obtained via Proteomic Data Commons (PDC) at https://pdc.cancer.gov/pdc/

cptac-pancancer. Raw genomic and transcriptomic data files can be accessed via 

the Genomic Data Commons (GDC) Data Portal at https://portal.gdc.cancer.gov 

with dbGaP Study Accession: phs001287.v16.p6. Complete CPTAC Pan-Cancer 

controlled and processed data can be accessed via the Cancer Data Service 

(CDS, https://dataservice.datacommons.cancer.gov/). The CPTAC Pan-Cancer 

data hosted in CDS is controlled data and can be accessed through the NCI DAC 
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approved, dbGaP compiled whitelists. Users can access the data for analysis 

through the Seven Bridges Cancer Genomics Cloud (SB-CGC) which is one 

of the NCI-funded Cloud Resource/platform for compute intensive analysis. 

Instructions to access data: 1. Create an account on CGC, Seven Bridges 

(https://cgc-accounts.sbgenomics.com/auth/register 2. Get approval from dbGaP 

to access the controlled study (https://www.ncbi.nlm.nih.gov/projects/gap/cgibin/

study.cgi?study_id=phs001287. v16.p6 ) 3. Log into CGC to access Cancer 

Data Service (CDS) File Explore 4. Copy data into your own space and 

start analysis and exploration 5. Visit the CDS page on CGC to see what 

studies are available and instructions and guides to use the resources. (https://

docs.cancergenomicscloud.org/page/cds-data).

• All original code has been deposited at GitHub and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants—A total of 687 participants were included in strict accordance with 

the CPTAC-3 protocol with informed consent from the patients. Prospective biospecimen 

collection (tumor and adjacent normal samples where feasible) followed a tumor type 

specific protocol and standard operating procedures, where sample collection, qualification 

and processing were optimized for both genomics and proteomics16,24,56,58–61. CPTAC 

samples were collected by 30+ tissue source sites from both domestic and international 

locations and processed by a central biospecimen core resource. The samples were 

pathology qualified by a general pathologist and later reconfirmed by a disease-specific 

expert pathologist through histopathology image review and immunohistochemistry assays 

where applicable.

Clinical data annotation—Clinical data were obtained from TSS and aggregated by 

the Biospecimen Core Resource (BCR, Van Andel Research Institute (Grand Rapids, MI)). 

Data forms were stored as Microsoft Excel files (.xls). Clinical data can be accessed and 

downloaded from the CPTAC Data Portal and https://pdc.cancer.gov/pdc/cptac-pancancer as 

described in [CANCER-CELL-D-22–00603 companion Pan-Cancer resource manuscript]47.

METHODS DETAILS

CPTAC datasets description—We aggregated somatic variants, copy number variations, 

transcriptomic, proteomic, and clinical data generated by the National Cancer Institute 

CPTAC from CPTAC data portal, Genomic Data Commons (GDC), and published studies47 

(See Data and Code Availability). The datasets include CPTAC Clear Cell Renal Cell 

Carcinoma (ccRCC) Discovery Study56, CPTAC Glioblastoma (GBM) Discovery Study24, 

CPTAC Lung Adenocarcinoma (LUAD) Discovery Study60, CPTAC Lung Squamous 

Cell Carcinoma (LSCC) Discovery Study59, CPTAC Head and Neck Cancer (HNSCC) 

Discovery Study58, CPTAC Pancreatic Ductal Adenocarcinoma (PDAC) Discovery Study16, 

and CPTAC Uterine Corpus Endometrial Carcinoma (UCEC) Discovery Study61. Of note, 
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previous CPTAC cohorts (Breast Invasive Carcinoma, Colon Adenocarcinoma, and Ovarian 

Serous Cystadenocarcinoma) did not obtain DNA methylation measurement, therefore we 

could not include those CPTAC cohorts in this study.

All the data were harmonized by CPTAC pipelines47, which included alignment to the 

GDC hg38 human reference genome (GRCh38.d1.vd1), annotation with GENCODE v22 

(RNA expression quantification) or v34 (the others), and thorough quality checks. Briefly, 

somatic mutations were called by the SomaticWrapper pipeline from Washington University 

in St Louis, which includes four different callers: Strelka299, MUTECT v1.1.7100, VarScan 

v.2.3.8101, and Pindel v.0.2.5102. Copy number variation and structure variants were 

identified by BIC-seq2107 and Manta v.1.6.0108, respectively (CPTAC pipeline from 

Washington University in St. Louis). Gene fusions in RNA-Seq samples were identified 

using three callers: STAR-Fusion104, EricScript105, and Integrate106, with fusions reported 

by at least 2 callers or reported by STAR-Fusion being retained (CPTAC pipeline from 

Washington University in St Louis)103. For transcriptomic data, gene-level stranded read 

counts were obtained using HTSeq v0.11.2120 and then converted to Fragments Per Kilobase 

of transcript per Million mapped reads Upper Quartile (FPKM-UQ) values by following 

the GDC’s RNA-Seq pipeline, except running the quantification tools in the stranded mode 

(CPTAC pipeline from Washington University in St Louis). Tandem mass tags-based global 

proteomic and phosphoproteomic data were searched using the MSFragger search engine 

v3.4109 against a GENCODE v34 protein FASTA database, processed by Philosopher 

toolkit v4.0.1110, and quantified by TMT-Integrator111. All the cohorts were uniformly 

processed and harmonized using the Philosopher toolkit. Missing values for the proteins or 

phosphosites that appeared in at least 50% of samples were imputed using DreamAI112 on 

each cohort separately. The acetylation data for six cancer types (BRCA, GBM, LUAD, 

LSCC and UCEC) were generated using MS/MS spectra. These spectra were analyzed 

with Spectrum Mill (SM) v7.08 (proteomics.broadinstitute.org) to identify and quantify the 

shared acetylation sites among the cohorts.

DNA methylation data preprocessing—Raw methylation image files generated by 

Illumina Infinium EPIC BeadChip were downloaded from the CPTAC GDC (See Data 

and Code Availability). We calculated methylated (M) and unmethylated (U) intensities 

for tumor and normal adjacent tissue samples as described in the methylation processing 

pipeline on GitHub121 (See Key Resources Table). Generally, we flagged a locus as NA if 

probes did not meet a detection P-value of 0.01. Probes with a minor allele frequency more 

than 0.1 were removed. Probes located on the sex chromosomes and samples with more than 

85% NA values were removed from subsequent analysis. Infinium EPIC probes annotated 

as poor performing were filtered out, leaving 832,749 unique probes94. To map EPIC arrays 

to GRCh38 assembly, all probes are reannotated by InfiniumAnnotation GENCODE v36, 

which was downloaded from the InfiniumAnnotation website (https://zwdzwd.github.io/

InfiniumAnnotation)94.

The raw methylation image files of TARGET-NBL88, TCGA-GBM89, and TCGA-UCEC71 

datasets generated by Illumina Infinium HumanMethylation450 BeadChip assays, used 

here for normal adjacent tissue approximation, were downloaded from TCGA FireHose or 

TARGET data matrix and processed as described above. We combined the data derived from 
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the two platforms, but only used data on common probes (GBM: 364518 probes, UCEC: 

364518 probes) (Table S1).

Batch correction of DNA methylation value—To account for batch effects introduced 

by different data sources, we performed batch-effect correction on the DNA methylation 

data using the ChAMP Bioconductor package96 with default parameters. The methylation 

data matrix was first imputed using the champ.impute() function and then batch-corrected 

using champ.runCombat() function. Singular value decomposition (SVD) was conducted 

before and after batch correction for each cohort using champ.SVD() function. The choice 

of variable for batch correction was determined based on SVD diagnostic plots, where most 

cancer types were corrected using the “batch” variable, while for GBM and UCEC samples, 

the “source” variable was utilized. TCGA GBM and TCGA UCEC tumor samples were 

included solely for the purpose of batch correction and subsequently removed (Table S1). 

No batch correction was applied to HNSCC samples due to the lack of improvement in SVD 

diagnostic plots.

Multi-omic data correlation analysis—To investigate the correlation between mean 

promoter methylation, RNA expression, and protein abundance for 12,934 genes, we 

utilized linear regression models to fit three different relationships (methylation versus 

RNA expression, methylation versus protein expression, and RNA expression versus protein 

expression) and evaluated the significance of each model using adjusted R-squared values, 

regression coefficients, and P-values of coefficients. Specifically, we used the following 

model:

Y g = β0 + β1Mg + β2P + β3C + ϵ

where Y is a (n x 1) vector representing either protein or RNA abundance of a given gene, 

M is a vector indicating the methylation status for that particular gene (g) in a tumor sample, 

and the tumor purity (P) calculated by ESTIMATE122 was also included as a covariate. 

Cancer type was one-hot encoded and was included as an additional covariate (C). Lastly, 

the error ϵ is assumed to be normally distributed with a constant variance σ.

Additionally, we accounted for multiple comparisons and applied an FDR correction to 

determine the adjusted P-values and assess the significance of the associations with a 

threshold of P-value < 0.05. This comprehensive approach enabled us to identify which pairs 

were significantly associated.

Defining aberrant DNA methylation using RESET—We mapped CpG probes 

to canonical transcriptional start sites and unconventional exonic TSS as defined by 

FANTOM5 consortium87, and then applied the RESET algorithm9 separately on each 

tumor type using the corresponding adjacent normal tissue samples. For integrating HM450 

(adjacent normal tissue) and EPIC (tumor) datasets for GBM and UCEC, the arrays 

were intersected to a HM450 probeset to ensure comparability. To identify aberrant DNA 

methylation events associated with transcriptional or translational changes, aggregated 
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mRNA expression and global proteomic data were used as an input, respectively. We 

considered the association as significant if the methylation event had FDR < 10%.

A parallel RESET run was conducted using purity-adjusted beta values. Briefly, a linear 

regression model is fitted to each tumor cohort using the original methylation estimate as 

the dependent and “1-purity” as the independent variable to obtain a linear fit, where the 

resultant intercept is the pure tumor methylation state123. After normalizing values between 

0 to 1 to satisfy the beta distribution of methylation values, the purity-adjusted beta value at 

individual CpG sites were obtained. We then repeated our association analysis with purity-

adjusted beta values, and provided the mean FDR value in the “FDR_mean|RNA(Purity) 

“ and “FDR_mean|Protein(Purity)” columns of Table S2 as an additional annotation to the 

reported events.

For Figure 2C, the methylation difference is derived from the mean beta values differences 

between samples with or without aberrant methylation. For RNA and protein differences, the 

values are derived from the mean differences of scaled RNA sequencing data or proteomic 

data between samples with or without aberrant methylation.

Validation in TCGA cohorts—For aberrant DNA methylation events with concurrent 

RNA and protein changes where DNA methylation (HM450 array) and RNA-seq data 

were available from TCGA, we downloaded and uniformly processed the raw DNA 

methylation data from 2,011 TCGA tumors across 7 cancer types, including ccRCC (N 

of tumors = 273), GBM (N = 58), HNSCC (N = 514), LSCC (N = 363), LUAD (N = 

452), PDAC (N = 177), and UCEC (N = 174). The harmonized RNA expression, protein 

abundance data (reverse phase protein array, RPPA), mutation profiles, and copy number 

variation files were downloaded from GDAC. We then identified the aberrant methylation 

associated with RNA expression or protein abundance changes using the same RESET 

analysis aforementioned. Since the EPIC array used in this study represents a bigger 

genomic coverage when compared to the one from TCGA (HM450), we performed a direct 

comparison of genes where their promoters have been covered in both studies. At least 

FDR < 10% was required to determine if the event was validated. Due to the sparsity 

of protein measurements included in the RPPA dataset from TCGA (the mean number 

of protein measurements in each cohort is 171.1), we calculated the validation rate at 

RNA level only. The validation results were shown in the “FDR_mean|RNA(TCGA)”, 

“FDR_mean|Protein(TCGA)”, “No.Methylation.Events_mean|RNA(TCGA)”, and “ProbID|

RNA(TCGA)” columns of Table S2.

DEG analysis using scRNA-seq dataset—We used published single-cell RNA-seq 

(scRNA-seq) datasets24–27 to annotate whether the reported aberrant DNA methylation 

event was likely to be identified in cancer cells, immune cells, or stromal cells. Briefly, 

we separated the cells into three main categories including tumor, immune, and stromal. 

Differentially expressed genes (DEGs) corresponding to each category were identified by 

the FindMarkers function in Seurat124 using the Wilcoxon rank sum test. DEGs were further 

filtered using the criteria of FDR < 0.05. DEGs identified in the same cancer type with 

a reported DNA methylation event at the corresponding promoters were annotated in the 

“scRNA-seq|cluster_matched_cancertype” column of Table S2. DEGs that were uniquely 
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identified in cancer cells, immune cells, or stromal cells of the other cancer types were 

annotated in the “scRNA-seq|cluster_cross_cancertype” column of Table S2.

Defining cancer-associated genes—Cancer-associated genes were compiled from a 

299 driver gene list defined by Bailey et al29 and cancer-associated genes listed in Mertins et 

al125 and adapted from Vogelstein et al126.

TFBS enrichment analysis—The frequency distribution of transcription factor bind sites 

(TFBS) of hypermethylation and hypomethylation probes was conducted at locations of 

these probes and human hg38 TFBS locations in the JASPAR database93. We further defined 

hyper and hypomethylation significant probes with driver genes and adopted the HOMER 

software114 to explore motifs enriched in these significant probes.

Profiling genetic alterations at driver genes—We obtained the somatic mutations 

in 299 driver genes29 harboring aberrant DNA methylation as described in “Identification 

of significantly mutated genes in methylation subtypes”. We further collected gene fusions 

involved in the driver genes. Aberrant DNA methylation was obtained as described in 

“Defining aberrant DNA methylation using RESET”. For the CPTAC samples, we defined 

the log2 copy ratios of each gene larger than 0.3 or smaller than −0.3 as amplification 

or deletion, respectively. For the TCGA samples, we defined the GISTIC value of −2, 

−1, 1, 2 as deep deletion, shallow deletion, shallow amplification, and deep amplification, 

respectively. We separated all the tumors into “No Genomic Alteration”, “Mutation”, and 

“CNV” categories based on the genomic alteration profiles of the locus being tested. For 

tumors harboring mutation, CNV, and gene fusions, we categorized them as “Mutation”. The 

missense mutations at FGFR2 locus were visualized using ProteintPaint Lollipop.

Histone acetylation analysis—To investigate the impact of IDH1/2 somatic alterations 

and aberrant methylations on the correlations between histone acetylation levels and 

methylation levels at IDH2 or α-KG target genes, we categorized a total of 393 patients 

with available acetylation and methylation data into four groups based on their IDH1/2 
mutation and methylation status: IDH1/IDH2 wild-type (n=374), IDH1 mutants (n=11), 

IDH2 hypomethylated samples (n=5), and IDH2 mutants (n=3). To assess the levels of 

histone acetylation and DNA methylation at target genes in each group, we calculated 

Pearson correlation coefficients and determined the significance levels (P-values) of the 

correlations using the R function cor.test(). We focused on the acetylation-methylation pairs 

that showed significant correlations for further analysis (Pearson’s r > 0.2, P < 0.05, or 

Pearson’s r < −0.2, P < 0.05). To examine the differences in correlation coefficients among 

the groups, we utilized the R package rstatix (version 0.7.2). Specifically, we compared the 

group differences separately for positively and negatively correlated acetylation-methylation 

pairs.

We also compared the impact of IDH1 mutation in GBM and IDH2 hypomethylation in 

LSCC on histone acetylation levels. By examining 46 specific sites on histones H1, H2, H3, 

and H4, we compared the abundance of histone acetylation between IDH1 mutant (n=7) 

and wild-type (n=87) groups in GBM, as well as between IDH2 hypomethylation (n=5) and 

normal methylation (n=99) groups in LSCC using the Wilcoxon signed-rank test.
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Frequency of gene hyper- or hypomethylation—To determine the frequency of 

hyper- or hypomethylation in each tumor, we calculated the proportion by aggregating the 

counts of CGI sites exhibiting aberrant methylation and dividing it by the total number of 

CGI sites in the tumor sample. This analysis was performed using the RESET output.

Regulon association analysis—We collected transcription factor-interacting genes 

from publicly available databases OmniPath95, and grouped the samples into regulon-high 

(>0) and regulon-low (<0) based on the sum of transcription factor-interacting genes using 

RNA expression and protein abundance data. To test the association of the regulons with 

the DNA methylation status of transcription factors, we used Fisher’s exact test to test 

for overrepresentation of samples with aberrantly methylated transcription factors in the 

set of samples defining the regulon activity as described above. To account for multiple 

comparisons in Fisher’s exact test, we applied the Benjamini-Hochberg (BH) method 

to adjust the P-values for false discovery rate (FDR) control. We narrowed the list of 

transcription factors down to STAT5A and STAT5A-interacting genes based on FDR P-value 

<= 0.1 and the number of interacting genes >=5. We then performed unsupervised clustering 

of the STAT5A regulon using the Ward.D2 linkage method to generate heatmaps.

Cell type enrichment deconvolution—We inferred the abundance of each cell type 

using the xCell web tool45 using the FPKM-UQ expression matrix as input. xCell is a gene 

signature-based method learned from thousands of pure cell types from various sources, 

which performed the cell type enrichment analysis from gene expression data for 64 immune 

and stromal cell types (default xCell signature). xCell generates an immune score per sample 

that integrates the enrichment scores of immune cells (B cells, CD4+ T-cells, CD8+ T-cells, 

DC, eosinophils, macrophages, monocytes, mast cells, neutrophils, and NK cells), a stroma 

score, and a micro-environment score which is the sum of the immune score and stroma 

score28,47.

Immunohistochemistry analysis—Immunohistochemistry (IHC) staining was 

performed on 4-micron formalin-fixed, paraffin-embedded (FFPE) tissue sections. Prior 

to staining, antigen retrieval was performed using the heat-induced epitope retrieval 

method at pH 6. Staining employed the Dako Autostainer Link 48 with EnVision FLEX 

visualizing kit (K800221-2; Dako, Agilent Technologies Inc.) and rabbit polyclonal antibody 

against human STAT5A (HPA042128, Atlas Antibodies, 1:150 dilution). Appropriate known 

positive and negative control tissue were run in each assay batch.

A semi-quantitative product score for tumor-infiltrating lymphocytes (TILs) and peritumoral 

lymphocytes were scored by the study pathologists. Percentage of lymphocytes represents 

the positive lymphocytes relative to the total number of cells (tumors and lymphocytes) in 

the stained slide, while the intensity represents staining intensity of STAT5A (none, 0; weak, 

1; moderate, 2; strong, 3). An independent H-score of STAT5A abundance in the stained 

slide is calculated using QuPath115.

Methylation-driven subtyping—To identify subtype based on cancer methylome, we 

took CGIs showing significant differences between tumors and NATs and performed 

unsupervised classification of tumors using consensus clustering on the most variable 8,000 
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CGIs by the R package ConsensusClusterPlus (parameters: reps = 2000, pItem = 0.9, 

pFeature = 0.9, clusterAlg = “kmdist”, distance = “spearman”)98. Samples were assigned to 

the optimal number of clusters.

Pathway over-representation analysis—To designate the representative pathways 

of methylation subtypes from transcriptomic and proteomic data, we used the Wilcoxon 

rank sum test to select the top 250 differentially expressed features (RNA expression and 

protein abundance) for each subtype or methylation group. We then performed hierarchical 

clustering on these features. Each set of clustered features underwent pathway enrichment 

analysis using Reactome116. Pathways with P-value smaller than 0.05 were manually 

reviewed and selected based on the following rules: (1) if similar signatures showed up 

repeatedly in the significant list, (2) if the significant pathway is supported by literature, and 

(3) if the signature had been supported by FDR test with P-value smaller than 0.05, (4) if 

the signatures were consistently observed at the transcriptomic and proteomic levels. Those 

manually reviewed pathways are highlighted in Figure 7C and Figure S7F.

Identification of significantly mutated genes—A list of 299 driver genes was 

downloaded from Bailey et al.29 and results of somatic mutations were downloaded from the 

CPTAC discovery studies16,24,56,58–61. We compiled a genomic alteration profile for each 

sample (file name: PanCan_Union_Maf_Broad_WashU_v1.1.maf), including frameshift 

deletion, frameshift insertion, inframe deletion, inframe insertion, missense mutation, 

nonsense mutation, nonstop mutation, splice site mutation, and intron mutation in 299 

driver genes. We then categorized samples with driver mutations based on their methylation 

subtypes, and conducted Fisher’s exact test to test for overrepresentation of any key driver 

somatic alterations in the methylation subtypes.

RNA expression-based subtypes—The classifications of RNA expression-based 

subtypes of ccRCC, GBM, HNSCC, LSCC, LUAD, PDAC, and UCEC samples were 

downloaded from the CPTAC discovery studies16,24,58–61. We then compared the association 

of RNA expression-based subtype and methylation subtypes using Fisher’s exact test.

Druggable genes with aberrant methylation—CIViC is a curated list of druggable 

variants describing their therapeutic, prognostic, diagnostic and predisposing relevance. We 

downloaded the list and intersected the list of genes with aberrant methylation. The potential 

druggability of each gene was manually reviewed to see if the altered expression of such 

gene is associated with therapeutic relevance supported by literature.

ADDITIONAL RESOURCES

The CPTAC program website, which includes details about program initiatives, 

investigators, and datasets, can be accessed at https://proteomics.cancer.gov/programs/cptac.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis—All statistical analyses were performed using R or Python unless 

explained otherwise. Multiple comparisons were adjusted by the Benjamini-Hochberg127. 

Statistical parameters for each experiment are reported in the respective figure legend.
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Highlights

1. Pan-cancer epigenetic aberrations and their transcriptional and translational 

changes

2. FGFR2 and EGFR hypomethylation are bona fide driver DNA methylation 

events.

3. STAT5A methylation is a potential switch for immunosuppression in 

squamous tumors.

4. Methylation subtypes illuminate cell origin, tumor heterogeneity, and tumor 

phenotype.
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Figure 1. Correlations between promoter DNA methylation, transcriptome, and proteome
(A) Left: A schematic of tumor types collected for this study. Right: Density plot showing 

the distribution of adjusted R values between protein abundance and RNA expression 

(yellow), promoter methylation and RNA expression (orange) or protein abundance (green).

(B) Scatter plot showing adjusted R values distribution for genes with promoter methylation 

correlated with RNA (left, orange), protein (middle, green), or both RNA and protein (right, 

blue).

(C) Upsetplot showing the breakdown of genes based on their correlation with promoter 

methylation and RNA/protein expression.

(D) Examples with distinct correlations between promoter methylation, RNA expression, 

and protein abundance. Each dot represents one tumor, with the solid line representing the 

correlation between scaled RNA and promoter methylation, and the dashed line representing 

the correlation between scaled protein abundance and promoter methylation. Significant 
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correlations are highlighted (orange: RNA only; green: protein only, blue and purple: RNA 

and protein).

(E) Examples of anti-correlated genes with promoter hypermethylation, exhibiting 

upregulation at the RNA level and downregulation at the protein level.

(F) Pathway enrichment analysis of the 31 anti-correlated genes with promoter 

hypermethylation, showing upregulation at the RNA level and downregulation at the protein 

level. Pathway with FDR P-value <0.05 is highlighted in bold.

See also Figures S1, S2, and Table S1.

Liang et al. Page 32

Cancer Cell. Author manuscript; available in PMC 2024 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The cancer methylome landscape associated with transcriptomic and proteomic change
(A) RNA expression (upper) and protein abundance (lower) changes in genes between 

aberrant and normal samples. Y axis corresponds to the statistical significance of aberrant 

DNA methylation with changed expression and x axis to the median difference of gene 

expression of samples with or without aberrant DNA methylation. Representative genes are 

colored based on methylation status: yellow, hypermethylation; blue, hypomethylation. Dot 

size indicates the number of CGIs associated with expression changes.

(B) Venn diagrams showing the number of hypermethylated (upper) and hypomethylated 

(lower) genes having significant RNA expression and/or protein abundance changes.
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(C) Common and cancer type-specific aberrant methylations of cancer-associated genes. 

Shading of the filled circle indicates the median methylation difference (upper), RNA 

expression difference (middle), and protein abundance difference (lower) between aberrant 

and normal samples at significant CpG sites. Dot size is proportional to the number of 

samples harboring indicated aberrant DNA methylation events in the cancer cohort.

See also Figure S2 and Table S2.
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Figure 3. Characterization of aberrant methylation in driver genes
(A) Distribution of the number of transcription factor binding sites for functional 

hypermethylation (yellow) and hypomethylation (blue). Enriched motif was highlighted in 

the inset.

(B) Mutual exclusivity and co-occurrence of genomic and epigenomic alterations in driver 

genes in LSCC.

(C) Violin plot comparing histone H3 acetylation levels between highly hypermethylated 

tumors and lowly hypermethylated tumors. Boxes represent the interquartile range (IQR), 
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with the median frequency indicated by the horizontal line. Whiskers extend from the 

boxes to indicate the data range. Statistically significant differences between groups were 

determined using Wilcoxon rank sum test.

(D) Heatmap of histone sites exhibiting significant differential acetylation (FDR < 0.1) 

among immune subtypes. The grayscale color scale denotes the hypermethylation frequency 

in each tumor.

(E) RNA expression (upper) and protein abundance (lower) levels stratified by IDH2 
genomic alterations and IDH2 hypomethylation (blue) versus IDH2 normal methylation 

(gray), with ** denoting Wilcoxon P<0.005. Median values are shown as solid black lines, 

and first and third quartiles are represented by dashed lines.

(F) Pathway diagram illustrating the average difference in RNA expression (left square) 

and protein abundance (right square) between IDH2 hypomethylated samples and normal 

methylated samples in LSCC. The shading of the filled squares indicates the extent of the 

differences.

(G) Positive (upper) and negative (lower) correlation coefficients of histone acetylation 

levels and methylation levels at α-KG target genes among IDH1/IDH2 wild-type, IDH1 
mutant, IDH2 hypomethylated samples, and IDH2 mutant. The breakdown of each group 

was shown in the pie chart below. Boxes represent the IQR, with the median correlation 

value indicated by the horizontal line. Whiskers extend from the boxes to show the data 

range. Statistically significant differences between groups were determined using FDR-

corrected P-values, with **** indicating P < 2.2e-16.

See also Figure S3 and Table S2.
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Figure 4. Collaborative effects of FGFR2 mutations and hypomethylation on FGFR2 
upregulation
(A) Lolliplot showing missense mutations of FGFR2 in UCEC samples. The amino acids 

and types of mutations are labeled. Positions that are recurrently mutated are highlighted 

with the number of occurrences. The FGFR2 functional domains are colored.

(B) Unsupervised clustering of UCEC tumors (upper) and normal adjacent tissues (lower) 

based on DNA methylation of the FGFR2 promoter.
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(C) Correlation of methylation with gene expression (upper) and protein abundance (lower). 

Samples are colored based on genetic and/or epigenetic alterations of FGFR2. Tumors 

harboring FGFR2 hypomethylation are highlighted by large dot size.

(D) RNA expression (upper) and protein abundance (lower) levels stratified by FGFR2 
genomic alterations and FGFR2 hypomethylation (blue) versus FGFR2 normal methylation 

(gray), with ** denoting Wilcoxon P<0.005. Median values are shown as solid black lines, 

and first and third quartiles are represented by dashed lines.

See also Figure S4.
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Figure 5. STAT5A hypermethylation associated with pervasive STAT5A regulon changes
(A) Unsupervised clustering of STAT5A regulon genes using Pearson correlation of scaled 

RNA sequencing data. Annotations denote STAT5A expression and methylation levels. 

Mean activity indicates the overall sum of regulon activity. The color scale is proportional to 

expression (red: upregulation; blue: downregulation).

(B) Unsupervised clustering of STAT5A regulon genes using Pearson correlation of scaled 

global proteome data.

(C) Violin plot comparing regulon activity in hypermethylated STAT5A (yellow) and 

normally methylated STAT5A (gray) samples. Median values are shown as solid black lines, 
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and first and third quartiles are represented by dashed lines. Statistical significance was 

determined using a Wilcoxon rank-sum test.

(D) Pathway members and interactions in the STAT5A regulon. The mean expression 

differences between STAT5A hypermethylated samples and normally methylated samples 

are indicated by shading of the filled squares.

See also Figure S5 and Table S3.
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Figure 6. Functional impact of STAT5A hypermethylation on immune cell depletion in HNSCC
(A) Heatmaps showing distinct immune subtypes of HNSCC tumors derived from xCell 

enrichment scores. The top panel shows the immune score, DNA methylation status of 

STAT5A, immune subtype, and tumor stage.

(B) Violin plots comparing xCell enrichment scores of immune effectors and dendritic cells 

in hypermethylated STAT5A (yellow) and normally methylated STAT5A (gray) samples in 

HNSCC tumors. Median values are shown as solid black lines, and first and third quartiles 
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are represented by dashed lines. Statistical significance was determined using a Wilcoxon 

rank-sum test.

(C) Representative image of IHC (immunohistochemistry) staining of STAT5A protein 

(brown) in HNSCC tumor sample. Scale bar = 100 μm.

(D) Correlation between the quantified STAT5A protein abundance versus the level 

of tumor-infiltrating lymphocytes (TILs, left panel) or peritumoral lymphocytes (right 

panel). Samples were colored by the DNA methylation status of STAT5A (yellow: 

hypermethylation, gray: normal methylation). Samples with representative IHC images are 

highlighted by large dot size.

(E) IHC staining of STAT5A in HNSCC tumors. Representative tumor cells (stars) and 

lymphocytes (arrows) are shown. Tumor boundary is indicated by a black line. Scale bar = 

100 μm.

See also Figure S6 and Table S3.
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Figure 7. Summary of the cancer methylome for cell-of-origin, tumor signatures, and therapy
(A) Projection of the cancer methylomes. Each point is a sample and is colored based on 

the cancer type (first column), sample type (second column), methylation subtype (third 

column), or multi-cancer methylation group (fourth column).

(B) Heatmap of differentially methylated CpG sites at promoter regions in seven cancer 

cohorts compared to normal adjacent tissue. Selected promoters annotated with the number 

of differentially methylated CpG sites are shown.
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(C) Alluvial plot showing the per-cancer methylation subtypes (second row), their enriched 

significantly mutated genes (SMGs) (first row), enriched RNA expression signature (third 

row), and enriched protein signature (fourth row). The curved lines across panels correspond 

to different methylation subtypes.

Signatures with FDR P-values < 0.05 are highlighted with *.

See also Figure S7 and Tables S4-S6.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-STAT5A 
antibody

Atlas Antibodies Catalog: HPA042128, RRID: AB_2677864

Biological samples

Primary tumor and normal adjacent 
tissue samples

CANCER-CELL-D- 22–
00603 companion 
Pan-Cancer resource 
manuscript47

https://pdc.cancer.gov/pdc/cptac-pancancer

Chemicals, peptides, and recombinant proteins

Dako Protein Block, Serum-free 
blocking solution

Agilent Technologies Inc Catalog: X090930–2

Dako Taget Retrieval Solution, pH=6 Agilent Technologies Inc Catalog: S236984–2

Dako Wash Buffer 10X Agilent Technologies Inc Catalog: S3006

Critical commercial assays

TruSeq Stranded Total RNA Library 
Prep Kit with Ribo-Zero Gold

Illumina Catalog: RS-122–2301

Infinium MethylationEPIC Kit Illumina Catalog: WG-317–1003

Nextera DNA Exosome Kit Illumina Catalog: 20020617

KAPA Hyper Prep Kit, PCR-free Roche Catalog: 07962371001

TMT-11 Reagent Kit ThermoFisher Scientific Catalog: A34808

BCA Protein Assay Kit ThermoFisher Scientific Catalog: 23225

PTMScan® Acetyl-Lysine Motif 
[Ac-K] Kit

Cell Signaling Catalog: 13416

EnVision FLEX Visualizing Kit Agilent Technologies Inc Catalog: K800221–2

Deposited data

CIViC nightly, 062220 Griffith et al.79 https://civicdb.org/home

FANTOM5 FANTOM Consortium et 
al.87

http://fantom.gsc.riken.jp/5/

TARGET Methylation data Pugh et al.88 https://ocg.cancer.gov/programs/target/data-matrix

TCGA Methylation data and RNA-
seq data

TCGA et al.64,71,78,89–92 https://gdac.broadinstitute.org/

JASPAR Khan et al.93 https://jaspar.genereg.net/

InfiniumAnnotation Zhou et al.94 https://zwdzwd.github.io/InfiniumAnnotation

OmniPath Türei et al.95 http://omnipathdb.org/

ccRCC scRNA-seq data Li et al.25 https://portal.gdc.cancer.gov/projects/CPTAC-3

GBM scRNA-seq data Wang et al.24 https://portal.gdc.cancer.gov/projects/CPTAC-3

PDAC scRNA-seq data Cui Zhou et al.26 https://data.humantumoratlas.org/

Lungs scRNA-seq data Travaglini et al.27 https://www.synapse.org/#!Synapse:syn21041850

CPTAC clinical and proteomic data CANCER-CELL-D- 22–
00603 companion 
Pan-Cancer resource 
manuscript47

https://pdc.cancer.gov/pdc/cptac-pancancer
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REAGENT or RESOURCE SOURCE IDENTIFIER

CPTAC genomic and transcriptomic 
data

CANCER-CELL-D- 22–
00603 companion 
Pan-Cancer resource 
manuscript47

https://pdc.cancer.gov/pdc/cptac-pancancer and Cancer Data Service 
(CDS)

CPTAC DNA methylation data This study https://pdc.cancer.gov/pdc/cptac-pancancer

CPTAC acetylation data CANCER-CELL-D- 22–
00603 companion 
Pan-Cancer resource 
manuscript47

https://pdc.cancer.gov/pdc/cptac-pancancer

Software and algorithms

RESET Saghafinia et al.9 http://ciriellolab.org/reset/reset.html

ChAMP Morris et al.96 https://www.bioconductor.org/packages/release/bioc/vignettes/ChAMP/
inst/doc/ChAMP.html

Methylation array analysis pipeline 
for CPTAC

This study https://github.com/ding-lab/cptac_methylation

methylationArrayAnalysis v3.9 Maksimovic et al.97 https://master.bioconductor.org/packages/release/workflows/html/
methylationArrayAnalysis.html

Illumina EPIC methylation array v0.6 See link https://bioconductor.org/packages/release/data/annotation/html/
IlluminaHumanMethylationEPICanno.ilm10b2.hg19.html

ConsensusClusterPlus v1.48.0 Wilkerson et al.98 https://bioconductor.org/packages/ConsensusClusterPlus/

xCell v1.2 Aran et al.45 http://xcell.ucsf.edu/

SomaticWrapper Ding Lab https://github.com/ding-lab/somaticwrapper

Strelka2 Saunders et al.99 https://github.com/Illumina/strelka

MUTECT v1.1.7 Cibulskis et al.100 https://software.broadinstitute.org/gatk/download/archive

VarScan v2.3.8 Koboldt et al.101 http://varscan.sourceforge.net

Pindel v0.2.5 Ye et al.102 http://gmt.genome.wustl.edu/packages/pindel/

Fusion calling pipeline for CPTAC Gao et al.103 https://github.com/cuidaniel/Fusion_hg38

STAR-Fusion v1.5.0 Haas et al.104 https://github.com/STAR-Fusion/STAR-Fusion/wiki

EricScript v0.5.5 Benelli et al.105 https://sites.google.com/site/bioericscript

Integrate v0.2.6 Zhang et al.106 https://sourceforge.net/p/integrate-fusion/wiki/Home/

Copy Number Variant Calling Ding Lab https://github.com/ding-lab/BICSEQ2

BIC-seq2 Xi et al.107 http://compbio.med.harvard.edu/BIC-seq/

SomaticSV Ding Lab https://github.com/ding-lab/SomaticSV

Manta v1.6.0 Chen et al.108 https://github.com/Illumina/manta

MSFragger v3.4 Kong et al.109 https://msfragger.nesvilab.org/

Philosopher toolkit v4.0.1 da Veiga Leprevost et 
al.110

https://philosopher.nesvilab.org/

TMT-Integrator Djomehri et al.111 http://tmt-integrator.nesvilab.org/

HTSeq v0.11.2 Anders et al.117 https://htseq.readthedocs.io/en/master/

DreamAI Ma et al.112 https://github.com/WangLab-MSSM/DreamAI

ProteintPaint Lollipop Zhou Lab https://viz.stjude.cloud/zhou-lab/visualization/proteintpaint-lollipop-
example~57

LIMMA v3.36 (R Package) Ritchie et al.113 https://bioconductor.org/packages/release/bioc/html/limma.html

HOMER Heinz et al.114 http://homer.salk.edu/homer/
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REAGENT or RESOURCE SOURCE IDENTIFIER

QuPath v0.3.2 Bankhead et al.115 https://qupath.github.io/

Reactome Fabregat et al.116 https://reactome.org/

Scanpy v1.7.0 Wolf et al.117 https://github.com/scverse/scanpy

Python v3.7 Python Software 
Foundation

https://www.python.org/

R v3.6 R Development Core 
Team

https://www.R-project.org/

Bioconda Grüning et al.118 https://bioconda.github.io/

Bioconductor v3.9 Huber et al.119 https://bioconductor.org/

Cancer Cell. Author manuscript; available in PMC 2024 December 03.

https://qupath.github.io/
https://reactome.org/
https://github.com/scverse/scanpy
https://www.python.org/
https://www.r-project.org/
https://bioconda.github.io/
https://bioconductor.org/

	Summary
	eTOC blurb
	Graphical Abstract
	Introduction
	Results
	Pan-Cancer landscape of DNA methylation and associated functional changes
	cis-acting aberrant DNA methylation as a possible driver event
	Hypomethylated RTKs are newly identified driver events
	Hypermethylation of STAT5A is associated with pervasive changes in STAT5A regulon activity
	Hypermethylated STAT5A is associated with immune cell depletion in squamous tumors
	Aberrant methylation associated with therapeutic vulnerabilities

	Discussion
	Consortia

	STAR METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
	Human participants
	Clinical data annotation

	METHODS DETAILS
	CPTAC datasets description
	DNA methylation data preprocessing
	Batch correction of DNA methylation value
	Multi-omic data correlation analysis
	Defining aberrant DNA methylation using RESET
	Validation in TCGA cohorts
	DEG analysis using scRNA-seq dataset
	Defining cancer-associated genes
	TFBS enrichment analysis
	Profiling genetic alterations at driver genes
	Histone acetylation analysis
	Frequency of gene hyper- or hypomethylation
	Regulon association analysis
	Cell type enrichment deconvolution
	Immunohistochemistry analysis
	Methylation-driven subtyping
	Pathway over-representation analysis
	Identification of significantly mutated genes
	RNA expression-based subtypes
	Druggable genes with aberrant methylation

	ADDITIONAL RESOURCES
	QUANTIFICATION AND STATISTICAL ANALYSIS
	Statistical analysis


	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

