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Integrative computational analyses implicate regulatory
genomic elements contributing to spina bifida
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A B S T R A C T

Purpose: Spina bifida (SB) arises from complex genetic interactions that converge to interfere
with neural tube closure. Understanding the precise patterns conferring SB risk requires a deep
exploration of the genomic networks and molecular pathways that govern neurulation. This
study aims to delineate genome-wide regulatory signatures underlying SB pathophysiology,
Methods: An untargeted, genome-wide approach was used to interrogate regulatory regions for
rare single-nucleotide and copy-number variants (rSNVs and rCNVs, respectively) predicted to
affect gene expression, comparing results from SB patients with healthy controls. Qualifying
variants were subjected to a deep learning prioritization framework to identify the most
functionally relevant variants, as well as the likely target genes affected by these rare
regulatory variants.
Results: This ensemble of computational tools identified rSNVs in specific transcription factor
binding sites (TFBSs) that distinguish SB cases from controls. rSNV enrichment was found in
specific TFBSs, especially CCCTC-binding factor binding sites. These TFBSs were subjected to
a deep learning prioritization framework to identify the most functionally relevant variants, as
well as the likely target genes affected by these rSNVs. The functional pathways or modules
implicated by these regulated genes serve protein transport, cilia assembly, and central
nervous system development. Moreover, the detected rare copy-number variants in SB cases
are positioned to disrupt gene regulatory networks and alter 3-dimensional genomic
architectures, including brain-specific enhancers and topologically associated domain
boundaries of relevant cell types.
Conclusion: Our study provides a resource for identifying and interpreting genomic regulatory
DNA variant contributions to human SB genetic predisposition.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American College of Medical
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Introduction

In the first 5 weeks of human gestation, a flat plate emerges
of neuroepithelial cells that proliferate, become polarized
and migrate in a process of convergence-extension, apically
constrict, and fold into a neural tube that forms the brain and
spinal cord. Failure of this neurulation leads to neural tube
defects (NTDs). Rostral NTDs expose brain (anencephaly)
and are lethal in utero or at term, whereas spina bifida (SB,
aka myelomeningocele) involves more caudal vertebrae,
spinal cord, and/or nerve roots and is survivable. Despite
folic acid fortification efforts and recent advances in fetal
repair surgery, SB remains a debilitating birth defect of the
spinal cord with brain comorbidity and carries a prevalence
of 3.5 to 5.3 cases per 10,000 live births worldwide.1 Even
with surgical intervention, NTDs carry a heavy clinical,
financial, and public health cost. Analyzing genomic data of
human NTD patients is advancing the field beyond protein
coding variant studies of disease pathophysiology.
Achieving a precision medicine inspired approach to NTD
risk assessment requires a deeper exploration of the gene
regulatory networks and transcriptional programs that
govern the early developmental processes of neural tube
formation and closure. To test the hypothesis that significant
contributions to NTD risk are not solely attributable to likely
gene-disrupting (LGD) DNA variants, we have begun to
interrogate not only exomes but also the elements of the
genome regulating gene expression.

Although the potential role of intergenic variation in
NTD causation remains to be clarified, noncoding variants
are known to account for greater than 90% of the statisti-
cally significant findings from genome-wide association
studies, including across a range of neurological disorders.2

Recent studies provide evidence to support that regulatory
noncoding variation plays a significant role in numerous
neurodevelopmental disorders and structural birth defects.3,4

Specific regulatory changes, including rare variants that
disrupt transcription factor binding sites (TFBS), defined as
6 to 12 nucleotide stretches of DNA with specific motifs to
which transcription factors bind within enhancers have been
shown to contribute to congenital malformations, as well as
neurodevelopmental disorders.5 Rare genetic variants at
TFBS have not only been associated with genetic pheno-
types but have also been directly linked with altering local
methylation profiles.6 We therefore sought to methodically
interrogate the regulatory genome in our SB patient cohorts
and to offer an untargeted approach avoiding candidate gene
searches and ascertainment bias.

An inherent challenge to interpreting regulatory variation
stems from our expanding nonlinear view of nucleotide
sequences. TFBS are not necessarily regulating the nearest
neighbor transcription unit but often affect transcription of
genes at great distances from the site. Recent advanced
methods for investigation of the 3-dimensional genome have
reinforced the notion that gene regulation is inherently
associated with chromatin topology and cellular function.7

This requires computational interrogation of rare regulato-
ry variants and assessment of their potential role in genomic
organization from a 3-dimensional DNA perspective.

Topologically associating domains (TADs) are a feature
of genomic organization in which chromosomes fold into
domains with preferential interactions. It has been shown
that contacts between enhancers and promoters are largely
restricted within TADs and that TAD features, including
their boundaries, are strongly conserved in mammals.8

Advanced high-throughput chromosome conformation
capture—or Hi-C—technologies are now detecting high-
resolution finer domains and sub-TADs, highlighting an
enrichment of chromatin marks, as well as important fea-
tures, such as interaction sites for the CCCTC-binding factor
(CTCF).9 There is an increasing amount of evidence sug-
gesting that TADs represent a functional subdivision of
genomic organization in which enhancer-promoter contacts
are spatially restricted and that TAD boundary disruption
may lead to aberrant transcriptional signatures, which may
be predicted to be pathogenic.10

Here, we establish a framework to identify and priori-
tize these regulatory variants within the genetic architec-
ture of NTD risk, which builds upon several recent
genome-wide studies. Wolujewicz et al11 previously
detected a rare copy-number variant (rCNV) burden in
human SB cases affecting exonic regions of the genome
and Aguiar-Pulido et al12 highlighted an approach to
distinguish SNV signatures and predict SB risk based on
rare LGD variants. Here, we investigate the contribution
of rare SNVs (rSNVs) and rCNVs in the regulatory ge-
nomes of SB cases compared with ancestry-matched
controls, supporting the hypothesis that rare regulatory
variants may have functional pathophysiological roles in
the genetic susceptibility to SB.
Materials and Methods

Study population and genome sequencing

This case-control study was conducted by integrating popu-
lation cohorts from the United States, as well as from Qatar.
Genomic DNA was extracted from deidentified infant blood
spot and venipuncture samples collected in the United States
and participants in the national Spina Bifida Clinic at the
Hamad Medical Corporation, Qatar. The human participant
research study protocol was approved by Institutional Review
Boards in the United States (Weill Cornell Medical College-
NY) and in the Middle Eastern population receiving
their health care in Qatar (Hamad Medical Corporation and
Weill Cornell Medical College-Qatar). Consent documenta-
tion was provided in both English and Arabic.
DNA extraction was completed using the Pure-gene DNA
Extraction Kit from Qiagen, and the input amounts of DNA
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ranged from 200 to 500 ng for infant blood spots and 2 to 3 μg
from venipuncture samples. Genome sequencing was con-
ducted on all DNA samples using Illumina v.3 chemistries on
HiSeq 2500 instruments to obtain short paired-end reads of 2×
100 base pairs (bp). After passing all quality control measures,
our case participants comprised 149 SB cases who presented
with nonsyndromicmyelomeningocele, and our control cohort
included 149 unrelated individuals ancestry matched to the
case population. After population structure analyses using
PLINK13 genomic distanceswere calculated from9gene pools
followed by subsequent optimization of case-control pairings
as previously described.12

Alignment and quality control

All sequences, whether from our collection or the control
sequences obtained from existing databases,14-16 were joint
genotyped to assure consistent alignment and variant calls.
Sequencing reads in the form of FASTQ files were aligned
to the hg38 reference genome using Burrows-Wheeler
Aligner.17 SAMtools18 was used on individual bam files
to run quality control measures such as mapping quality and
to assess read depth uniformity. Read depth statistics were
calculated both in SAMtools and using the Genome Anal-
ysis Tool Kit.19 The median insert size for samples included
in the analysis was 413 bp.

SNV detection and annotation pipeline

Variant calling was performed with Genome Analysis Tool
Kit 4 Best Practices, and joint genotyping was carried out
on the entire integrated cohort comprising 149 cases and
149 controls. Subsequently, variant quality score recali-
bration was performed on the variant call sets to model the
data set profile and filter out potential variant artifacts.
Variant quality was evaluated and only variants that
included a “PASS” in the filter column were retained and
annotated utilizing Ensembl Variant Effect Predictor
v.95.20

CNV detection and annotation pipeline

For CNV calling and annotations, high-confidence custom
pipelines were deployed as previously detailed.11 Each
variant detection pipeline was deployed independently on
each case and control in our study using individual sample
bam files, as well as the additional input of unannotated SNV
calls. An optimized consensus filtering approach was per-
formed on the raw CNV outputs, and only high-confidence
CNV calls were retained for further analysis. Annotation of
detected CNVs was performed using AnnotSV.21 CNVs
were considered rare if they occurred with less than 1%minor
allele frequency according to population genetic databases
(gnomAD22 and DGV23). Visual validation and inspection of
genomic variants was conducted using samplot24 and
Integrative Genomics Viewer.25
Brain specific TFBS annotations and motif analysis

We leveraged tissue-specific TFBS regions as determined
by Funk et al.26 In brief, deoxyribonuclease treatment fol-
lowed by nucleotide sequencing footprinting provided
binding site predictions for transcription factors genome
wide, and by analyzing a compendium of ENCODE
deoxyribonuclease treatment followed by nucleotide
sequencing experiments, the chromosomal loci and tissue
specificity predictions for 1515 human transcription factors
for 27 tissue types were determined. We subset the rare
variants detected in our cohort with the variants that over-
lapped brain-tissue-specific TFBS regions and that had
Hmm-based IdeNtification of Transcription factor (HINT)
scores >200 on the flat files of the tissue-specific open
chromatin footprints. TFmotifView27 was used for further
analysis, including the motif-specific enrichments and vi-
sualizations of TFBS-rSNVs in our case and control cohorts.

Deep learning prioritization

After intersecting our rare variant call sets with brain
derived TFBS regions, we subjected our TFBS-rSNVs to a
deep learning prioritization framework using DeepSEA.28

DeepSEA was trained on 919 cell-type-specific epi-
genomic features, allowing its interpretation for any cell
type. For the TFBS-rSNVs in our call set, DeepSEA pre-
dictions were obtained using the online tool (http://deepsea.
princeton.edu/job/analysis/create). We assembled VCF files
comprising 370,556 rare TFBS-rSNVs, which were pro-
vided as input to DeepSEA and submitted in 10 batches.
The functional significance score distribution that was
associated with each of our detected TFBS-rSNVs were
computed as the product of the geometric mean E-value
across chromatin features and the geometric mean E-value
of the evolutionary conservation scores. We further binned
these functional significance scores into quartiles repre-
senting benign, uncertain, and likely expression-modifying
noncoding variation.

Target gene prediction and enrichment

To determine the target genes potentially transcription
modified and/or aberrantly expressed by rare binding site
disruption, we leveraged the GeneHancer29 database, which
includes chromosome conformation capture and expression
quantitative trait loci (eQTL) data to identify enhancer re-
gions in a gene-specific manner. We intersected the relevant
brain-specific footprints and TFBS in our annotation data
sets with the double elite enhancer regions from Gene-
Hancer, which maintain a more stringent level of enhancer
gene pairing, to assign a target gene for each of our TFBS-
rSNVs. For the detected TFBS-rSNVs in our SB cases that
have been classified as likely to alter gene expression
(LAGE)—with a functional significance score in the top
quartile—we evaluated the predicted target genes that were

http://deepsea.princeton.edu/job/analysis/create
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overrepresented in the SB cases compared with predicted
likely altered target gene expression from the matched
controls. These genes were used to further characterize the
biological signaling processes and pathways predicted to be
perturbed by TFBS-rSNVs underlying SB.

Functional module analysis

Brain-specific functional module prediction was conducted
utilizing the approach outlined by Krishnan et al.30 We
identified brain-specific functional modules by using the
overrepresented predicted target genes in our SB cases as
input in the Functional Module Detection query at https://
humanbase.flatironinstitute.org. Each gene list was clus-
tered using a shared nearest neighbor-based community-
finding algorithm to identify distinct modules of tightly
connected genes, and the resulting modules were then tested
for functional enrichment using genes annotated to Gene
Ontology (GO) biological process terms. The associated Q
values for each term were calculated using one-sided
Fisher’s exact tests and subsequent Benjamini-Hochberg
corrections to account for multiple testing.

GO and pathway analyses

Gene set enrichment and overrepresentation analyses were
performed using WebGestalt,31 EnrichR,32 and MonaGO.33

Genes or terms were ranked based on the adjusted P value
(Benjamini-Hochberg), and significantly affected gene sets
were selected based on an adjusted P value of <.05. In-
genuity Pathway Analysis and GeneAnalytics34 were used
to investigate the functional consequences of our enriched
and implicated gene sets.

TAD coordinates and boundaries

As a high-quality data set for relevant cell type genomic
organization derived using Hi-C interaction frequency data,
we utilized the TAD boundary designations from Dixon
et al,8 who mapped genome-wide chromatin interactions in
human embryonic stem cells and 4 human embryonic-stem-
cell-derived lineages. To improve the resolution and incor-
porate other cell type information in our analyses, we further
used preciseTAD,35 which uses a transfer learning model for
TAD boundary prediction and resolves the boundary to the
base-pair level.
Results

An integrative approach for rare regulatory
variation

All 298 samples passed initial preprocessing and quality
control checks (see Materials and Methods), and our
optimization of case-control ancestry pairing was based on
a mixed admixture model to control stratification as pre-
viously described.12 The methodology and approach used
in this study of regulatory element contributions to SB risk
leverages genome sequencing data from our study cohorts,
as well as a tissue-specific TFBS atlas26 and high-
resolution Hi-C and TAD maps (Figure 1). We restricted
our analyses to rare variation that was represented in
population databases at a threshold under 1% minor allele
frequency. We defined our subset of detected rSNVs that
overlap brain-specific transcription factor binding sites as
TFBS-rSNVs. Similarly, rCNVs that overlap hESC TAD
boundaries were termed TAD-rCNVs. Given the early
developmental dynamics of neural tube closure in the
neuroepithelium, we utilized TAD boundaries and chro-
matin related information from well-characterized hESC
lines. We postulate that stem cell data sets delineating
embryonic chromatin topology are better suited to our
study than brain tissue because neural tube closure occurs
before neuronal differentiation.

TFBS motifs are enriched in SB cases by rare single-
nucleotide variants

Our analysis uncovered 186,060 TFBS-rSNVs in SB cases
and 184,496 in controls. There was no significant burden
between our study cohorts (P = .639), and no recurrent
mutational hot spots were uncovered in this motif-
independent analysis. After cross-filtering between our SB
case and control cohorts to exclude redundant variants, we
quantified enrichments of individual motifs within each
cohort. This was calculated as a fold change of motif fre-
quency in SB cases vs controls, with an associated hyper-
geometric P value (Figure 2A). We display the binding
motifs that were the most statistically significant and
enriched in our SB cases in Figure 2B. Among the impli-
cated transcription factor motifs, the top 3 in terms of fold-
change enrichment were CTCF, KLF5, and BATF. CTCF
motifs were disrupted by rare variants in SB cases vs con-
trols—as assessed by our detected TFBS-rSNVs—at a ratio
of 2.17:1. KLF5 and BATF motif disruption were detected
in SB cases at 1.64-fold and 1.56-fold above matched
controls, respectively.

The detected TFBS-rSNVs in our cohorts were further
subjected to a deep-learning-based algorithmic framework,
DeepSEA, to computationally predict functional effects on
chromatin and ultimately prioritize our identified rare reg-
ulatory variants. DeepSEA’s algorithmic framework, which
has been trained on large-scale chromatin profiling data,
provides functional significance scores that are computed on
the basis of chromatin effect predictions, evolutionary-
derived information, and can accurately predict over 2000
chromatin features. When applied to our set of TFBS-
rSNVs, we were able to generate deep learning derived
functional significance scores for our TFBS-rSNVs. The
TFBS-rSNVs were subsequently binned for each cohort by

https://humanbase.flatironinstitute.org
https://humanbase.flatironinstitute.org


Figure 1 Regulatory genome sequencing analyses. Rare single-nucleotide variants that overlap brain-specific transcription factor binding
sites were interrogated and subjected to deep learning analyses. Predicted gene targets were analyzed on the level of pathways as well as
brain-specific functional networks. Rare copy-number variants were analyzed for their proximity to human embryonic stem cell topologically
associating domain boundaries.
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quartiles according to their functional significance scores,
which is analogous to assigning predicted interpretations or
classifications of benign, uncertain, and LAGE.

Furthermore, by leveraging aggregated chromosome
conformation capture assay and eQTL information from
GeneHancer, we were able to predict the gene targets of our
detected TFBS-rSNVs; that is, which genes may be tran-
scriptionally dysregulated because of the disruption of
transcription factor binding to its site. If they were not in the
promoter region of a gene, TFBS-rSNV coordinates were
intersected with high-confidence enhancer regions to predict
transcriptionally associated target genes of the detected
TFBS-rSNVs. The target genes were sought from our pre-
dicted LAGE TFBS-rSNVs in SB cases, and the comparison
of the chromosomes harboring these gene targets for both
expected and observed distributions are displayed in
Supplemental Figure 1. Potential hot spots and chromo-
somal enrichments of target genes are evident for SB cases
vs controls (P = 1.6E−07). These predicted target genes that
were overrepresented in SB cases vs matched controls were
used to pinpoint which pathways or functional modules may
be ultimately affected by these rare variants (Figure 3). The
target genes most prevalent in SB cases, encompassing 107
genes in total, are listed in Supplemental Table 1.



Figure 2 Transcription factor binding site motifs affected by rare single-nucleotide variants in spina bifida cases showing statis-
tically significant enrichment over matched controls. A. Scatterplot displaying the significance of transcription factor motif occurrences in
genomic regions of spina bifida cases compared with control regions. B. Top 5 transcription factor motifs with the corresponding fold-change
enrichment and logo representation for the most significant motif enrichments in cases vs controls.
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Figure 3A displays dynamic clustering of GO terms
related to biological processes for our predicted gene targets
of LAGE variants that are overrepresented in SB cases. The
top statistically significant gene set ontologies include
neural tube closure, transcriptional regulation, neural tube
formation, and skeletal system morphogenesis, which point
to relevant NTD pathophysiology. Importantly, we did not
observe statistical significance with any of the putative
target gene sets implicated in controls due to rare noncoding
variants. Figure 3B illustrates the core pathway modules
perturbed by our predicted TFBS-rSNVs. Among the major
pathways are Wnt/ß-catenin signaling, retinoic acid re-
ceptors (RAR), and protein kinase A signaling. Further
machine learning analysis facilitated prioritization of these
variants and genes to ultimately obtain core networks
potentially affected in SB cases. This analysis used a shared
k-nearest neighbor approach of our overrepresented gene
target set to point to brain-specific functional modules,
which yielded 5 statistically significant modules encom-
passing protein transmembrane transport, cilia organization,
and central nervous system development (Figure 3C).
Representative Q values for each term were calculated using
one-sided Fisher’s exact tests and Benjamini-Hochberg
corrections to account for multiple tests. By comparing the
LAGE target genes from our SB cases with those from
controls, we were able to assess and predict which protein
classes may be most affected by TFBS-rSNVs, as well as
the potential imbalances between cases and controls. Ulti-
mately, this analysis identified gene-specific transcriptional
regulators and RNA metabolism proteins that were signifi-
cantly more affected in SB cases by LAGE TFBS-rSNVs
than in controls (Supplemental Figure 2).

Visual representations of the regulatory variation pre-
dicted using our computational approach are shown in
Figure 4. Figure 4A illustrates—at the genome-wide lev-
el—the TFBS-rSNVs that we detected, as well as their
functional significance predictions using DeepSEA. The
distribution of these functional scores on chromosome 19 in
Figure 4B highlights these variants and their functional
impact on the chromosomal level. This example illustrates a
cluster of regulatory variants found at this chromosome.
Figure 4C displays a higher resolution and nucleotide-level
perspective of the LAGE regulatory variation detected near
the FUZ gene, which encodes the Fuzzy Planar Cell Polarity
protein. The high-impact TFBS-rSNVs, which are posi-
tioned to affect CTCF and SP1 binding sites, are displayed
with vertical bars, as well as corresponding genomic tracks,
including conservation metrics and epigenetic marks. We
did not observe LGD variants overlapping FUZ exons in our
SB cases; however, several high-impact TFBS-rSNVs pre-
dicted to modulate FUZ were identified in our SB cases.
Rare CNVs localize to relevant functional regulatory
elements

Additionally, we analyzed rCNVs in our cohort, following a
high-confidence ensemble approach and pipeline previously
described.11 In brief, we deployed a suite of 5 structural
variant calling algorithms and used a consensus-based
workflow leveraging the read depth, split-read, and read
pair information in an optimized fashion. This approach was
benchmarked on both real and simulated genomes to
maximize both recall and precision for genome-wide
deletions and duplications that are at least 1 kb in size. On
a genome-wide level, the tally of rare CNVs was
not significantly different between SB cases and controls
(P = .0863) (Figure 5A). However, when we focused on
rCNVs with relevant regulatory features—particularly
rCNVs that overlap with TAD domain boundaries and
brain-specific enhancer elements—we found statistically
significant associations (P = .0126 for TAD boundaries and
P = 8.548 × 10−4, for brain enhancer elements) (Figure 5B
and C). The TAD boundary enrichment seen in our SB cases



Figure 3 Enhancer gene targets from transcription factor binding sites (TFBS)-rSNVs point to regulatory machinery and path-
ways affected in spina bifida (SB). A. Gene Ontology analyses on our overrepresented target gene set in SB cases include biological
processes of neural tube closure and skeletal system morphogenesis, as well as gene subsets that are also associated as transcriptional
regulators. B. Ingenuity Pathway Analysis of our overrepresented target genes. C. Brain-specific functional module prediction of our SB
overrepresented target genes.
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was also supported using other relevant TAD boundary
coordinates, including H9 hESCs (P = .0145), a progenitor
cell type known for their neuronal differentiation capability.
We further tested the association between the rCNVs
observed in our cohort with TAD boundary elements of SK-
N-SH, a human neuroblastoma cell line that exhibits dys-
regulated neural crest cell differentiation. This association
also proved to be significant (P = .0164) and is consistent
with the relative stability of TAD boundaries in different cell
types

Moreover, using a recently derived multiomic data set for
differentially active enhancers during human brain devel-
opment with clinical relevance,36 we also observed a sig-
nificant increase in the rCNVs in SB cases that overlapped
these putative critical regions compared with controls
(P = .0053) (Supplemental Figure 3). This orthogonal data
set further supports the brain enhancer association we found
in our SB cases. We did not see a similar effect among rare
SNVs. That is, the total number of rare SNVs overlapping
brain enhancer regions were not significantly different be-
tween SB and controls in our study, on average 3807 rare
SNVs per genome in SB cases and 3748 rare SNVs per
genome in controls (P = .140) (Supplemental Figure 4).

We further investigated the target genes affected by
rCNVs that overlap brain enhancer regions in our SB cases
by using the same target gene prediction framework as in
our TFBS-rSNV analyses in which 107 target genes were
identified. This rCNV target gene set, provided in
Supplemental Table 2, points to 2 statistically significant
biological pathways: RHOJ guanine trinucleotide phos-
phatase cycle and CDC42 guanine trinucleotide phospha-
tase cycle. These are known regulators in biological



Figure 4 Genomic view of representative high-impact TFBS-rSNV in spina bifida cases. A. Circos plot depicting the TFBS-rSNVs
detected in our cohort along with the deep learning prioritization scores represented as disease impact scores. B. Chromosome 19 and its
TFBS-rSNVs are shown. C. Gene browser level visualization from the University of California Santa Cruz Genome Browser depicts rare
regulatory variation, as well as conservation and epigenetic marks.

Figure 5 Rare copy-number variants (<0.01 MAF) localize preferentially to functional regulatory elements in spina bifida. A. A
global analysis across the genome did not suggest a statistically significant burden of rare copy-number variation. B and C. Human embryonic
stem cell topologically associating domain boundaries and brain-specific enhancer regions, however, did suggest a significant localization
pattern. D. Biological pathways affected by rare brain enhancer copy-number variants.
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pathways that affect cytoskeletal architecture, gene
expression, and progression of the cell cycle. Within the
significant pathways identified, genes predicted to be
affected by the rCNVs include DOCK8, PREX1, RAB7A,
FNBP1, DOCK10, SCRIB, SPATA13, andWWP2. The total
set of 226 genes predicted to be affected by enhancer-
associated rCNVs shows an enrichment in protein-protein
interactions (P = 1.09 × 10−6), suggesting a potential
disruption of functional networks on the protein level
(Supplemental Figure 5). When restricting our analyses of
rCNVs to those located within genomic promoter regions,
we detected a statistically significant enrichment in the an-
notations that include methylation-dependent chromatin
silencing and covalent chromatin modifications
(Supplemental Figure 6), further underscoring the potential
contribution of DNA topology and accessibility.

Figure 6 illustrates typical wild-type genomic organiza-
tion with regard to TAD insulation features (ie, CTCF
binding), as well as aberrant organization leading to po-
tential miswiring of enhancer-promoter contacts
(Figure 6A-C). Typically, enhancer-promoter contacts are
spatially restricted to TAD compartments, as shown in
Figure 6 Topologically associating domain-rare copy-number varia
interactions in spina bifida cases. A-C. Schematic depicting miswiri
element variants. D. Hi-C interaction frequency map of human embryonic
rare deletion represented in Integrative Genomics Viewer that was detec
Figure 6A, in which an enhancer modulates the expression
only of a gene within the same TAD. We have identified
statistically significant enrichments in our SB cases in which
rCNVs overlap brain-specific enhancer regions. This sce-
nario is depicted in Figure 6B and shows a plausible
mechanism of genomic regulatory variation that can have
transcriptional consequences within the particular domain.
Figure 6C illustrates another scenario that we observed in
our SB cases in which a rCNV disrupts a relevant TAD
boundary element, which is often demarcated by CTCF
binding. This event may interfere with the insulation prop-
erties at the boundaries and further promote ectopic
enhancer-promoter contacts across TAD regions. A repre-
sentative example of this phenomenon is depicted in
Figure 6D, which includes a Hi-C matrix and empirically
derived interaction frequencies across chromatin regions in
hESCs. A rare 30-kb deletion overlaps the TAD boundaries
as shown and may fuse these adjacent TADs because of the
loss of CTCF insulation. This would promote ectopic reg-
ulatory crosstalk among the enhancers and promoters within
each TAD and provide a putative mechanism for tran-
scriptional dysfunction underlying SB.
nts are positioned to perturb 3-dimensional regulatory genomic
ng of enhancer-promoter contacts due to enhancer and boundary
stem cell topologically associating domains and shown alongside a
ted in an spina bifida case.
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Discussion

In this report, we devised a computational genome-wide
approach to interrogate the potential effects that rare vari-
ants (both SNVs and CNVs) may have on the regulatory
genome of human SB cases. Although rare variation across
the entire genome was found equally in both cases and
controls, SB cases displayed significant enrichment of
rSNVs at the level of known transcription factor binding
motifs. Within the set of statistically enriched motifs in SB
cases, CTCF, KLF5, and BATF were the most significant.
Of particular interest, KLF5 is a crucial transcription factor
that controls the expression of multiple downstream target
genes and can regulate cell stemness and differentiation,
proliferation, and apoptosis.37 In addition, CTCF motifs
delineate insulation marks in the 3-dimensional genome and
indicate sub-TAD boundaries. CTCF, as a chromatin factor,
is increasingly studied in the context of neurological dis-
orders.38 An enrichment in CTCF motif disruption among
SB cases compared with controls suggests a potential
contribution from a dysregulated sub-TAD genomic orga-
nization. TAD fusions and neoTADs can form to contribute
to genetic disorders and have been linked with other struc-
tural birth defects, such as limb malformations, including
brachydactyly and F-syndrome.39 Further implicating the
contribution to SB of perturbed 3D genomic organization,
our quantitative assessment of TAD-rCNVs detected an
enrichment of observed rare CNVs overlapping hESC TAD
boundaries in SB cases, consistent with the notion that
rCNVs in regulatory motifs can contribute to SB patho-
physiology. Our data suggest that a 3-dimensional gene
regulatory perspective will inform the understanding of rare
CNVs that fall near TAD boundaries.

Based on our untargeted genome-wide approach, the
estimated LAGE TFBS-rSNVs in SB cases are predicted to
modulate the expression of genes belonging to pathways
involved in neural tube closure and associated biological
signaling. Several of the putative target genes found here,
such as planar cell polarity protein, PRICKLE1, and tran-
scription factor, MAX, were previously associated with
increased NTD risk.12 Furthermore, our regulatory pathway
analyses from predicted TFBS-rSNV targets converges with
the genes and pathway analyses we observed in our likely
gene-disrupting (LGD) studies. Several novel genes may
warrant further investigation, such as transcription factor,
PREX1, for which Prex1−/− mice have recently been
shown to display autism spectrum-like features.40

Because regulatory dynamics are often cell type specific
and temporally derived, there are inherent limitations to this
study. To mitigate these limitations and not overreach in
our attempt to link regulatory variants with target genes, we
restricted our analyses to only high-confidence enhancers.
We also used genomic viewers to visually validate each
variant (rSNV and rCNV) that was computationally pre-
dicted to alter gene expression. It is likely that emerging
tools (eg, Sei, Enformer, EUGENe, and GraphReg)—that
will leverage larger training sets of chromatin features and
diverse cell types to predict variant impact on gene
expression—will allow for the expansion and reinforce-
ment of the SB associations with the genomic regulatory
elements observed here.

Multiomic investigations utilizing not only genome
sequencing but also RNA-sequencing and Hi-C will be
needed to independently correlate aberrant chromatin
changes and genomic organization with SB genomic risk.
Future functional studies probing the regulatory networks
underlying SB will include genetic editing of in vitro stem
cell and in vivo animal models to further test this compu-
tational interrogation. The integration of these computa-
tional and functional assays will no doubt further advance
the accuracy of a personalized approach to genetic coun-
seling with regard to SB and other neural tube defect
recurrence risks and leverage knowledge of the variant
composition in SB affected individuals to inform develop-
mental prognosis and optimize treatment.
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