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Abstract

Accurate and high coverage genome assemblies are the basis for downstream analysis of

metagenomic studies. Long-read sequencing technology is an ideal tool to facilitate the

assemblies of metagenome, except for the drawback of usually producing reads with high

sequencing error rate. Many polishing tools were developed to correct the sequencing error,

but most are designed on the ground of one or two species. Considering the complexity and

uneven depth of metagenomic study, we present a novel deep-learning polishing tool

named MetaCONNET for polishing metagenomic assemblies. We evaluate MetaCONNET

against Medaka, CONNET and NextPolish in accuracy, coverage, contiguity and resource

consumption. Our results demonstrate that MetaCONNET provides a valuable polishing

tool and can be applied to many metagenomic studies.

1. Introduction

Long-read sequencing technologies, led by Pacific Biosciences (PacBio) and Oxford Nanopore

Technologies (ONT) platforms, can provide reads ranging from 1000 bp to over 100,000 bp,

whereas the maximal read length for next-generation sequencing is around 300 bp [1–3]. With

longer reads, assemblers can generate longer contigs across a variety of problematic regions

like repetitive regions, which could be ambiguous referred by short read mapping tools. Thus,

genome assembly using long reads can increase the continuity, reduce the assembly gaps, and

fix the misassemblies such as translocations or inversions, making high-quality assembled

genome more approachable. However, long-read sequencing shows systematic errors in

between homopolymer sequences, thus introducing mismatches, insertions and deletions

(InDels) to assemblies [4, 5], which may lead to frameshifts, cause the incorrect translation to

protein sequences, and prevent the annotation and interpretation of assemblies [6].

Metagenomic assemblies polishing poses a significantly more complex challenge compared

to refining single-species genomes. Metagenomic datasets inherently encompass a diverse col-

lection of species with varying genome sizes, sequencing depths, and unique structural charac-

teristics [7]. These factors make the genome polishing more intricate and computational
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resource demanding. To date, many polishing tools utilizing different algorithms have been

developed for error correction. For example, Racon creates the consensus sequences with par-

tial order graphs [8–10]. NextPolish uses Kmer Score Chain (KSC) and heuristic rules to find

the consensus assembly, and short reads input is optional to improve the result [11]. Medaka

(https://github.com/nanoporetech/medaka) and CONNET [12] are neural network-based

tools to polish the assembly using only long reads [13, 14]. Despite the prevalence of well-

established polishing tools designed for single-species genomes, the scarcity of polishing tools

for metagenomics hinders the assembly and downstream analysis.

This neural network of CONNET contains two Bidirectional Recurrent Neural Network

(BRNN) [15] models sequentially to rectify mismatches and InDels within assemblies. This

model enables the capture of spatial relationship in sequences and yields superior accuracy

and fewer deletions compared to other polishing tools. However, CONNET is not suitable for

polishing of metagenomics for two reasons. First, CONNET’s models are trained on single-

species genomes (Escherichia coli and Human chromosome 1). This limited training data spec-

trum might restrict its capability to capture the full range of variations encountered in meta-

genomes. Since BRNN relies on training data to learn sequence context, a broader range of

species could significantly enrich the information captured by the model. Second, the current

window size of 100bp in CONNET might limit the amount of contextual information consid-

ered during polishing. This limitation could potentially impact the effectiveness of CONNET

on complex metagenomic assemblies.

To address these limitations and offer a comprehensive solution, we present MetaCON-

NET, a novel metagenomic polishing tool specifically designed to tackle the challenge of pol-

ishing the diverse and intricate metagenomic assemblies. MetaCONNET leverages the

strengths of a well-established neural network method from CONNET and incorporates sev-

eral enhancements. We conducted a rigorous evaluation of MetaCONNET, comparing its per-

formance against other prominent neural network-based methods (Medaka, CONNET) and a

state-of-the-art polishing tool, NextPolish. The results conclusively demonstrate that Meta-

CONNET delivers significant improvements in terms of accuracy and coverage for metage-

nomic assemblies.

2. Results and discussion

2.1 Overview of MetaCONNET

MetaCONNET incorporates the following enhancements (Fig 1). First, to enrich the model’s

ability of handling diverse metagenomic datasets, we curated a comprehensive training dataset

encompassing four mock metagenomic community datasets (ONT R9 data), including HMP

Microbial Mock Community B (HM-276D) [16], ZymoBIOMICS Mock Community Stan-

dards (Zymo10) [17], BMock12 Mock Community-12 isolates (Bmock12) [18], and Zymo-

BIOMICS gut microbiome standard (Zymo21) [14]; and one training dataset encompassing

the ZymoBIOMICS High Molecular Weight (HMW) DNA Standard D6322 (Zymo mock)

dataset (ONT R10.4 data) [19]. These datasets encompassing bacteria from a wide range of

Phyla and Orders, reflect the inherent variability observed in real-world metagenomic samples

and provide accurate reference sequences for training. Second, MetaCONNET employs a

larger window size compared to CONNET, enabling it to capture a broader sequence context

during polishing and enhance its effectiveness on complex metagenomic assemblies. Third,

MetaCONNET is further optimized to handle low-coverage genomes, a frequent challenge in

metagenomics, while maintaining efficient computational demands.
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2.2 Metrics for metagenomic polishing evaluation

Unlike most polishing tools tested on one or two representative species, we evaluated the per-

formance of MetaCONNET against Medaka, CONNET and NextPolish, for the metaFlye

assembly of three uneven microbial communities composed of up to 91 genomic microbial

strains DNAs (MOCK1, MOCK2 and MOCK3) [20]. We comprehensively evaluated polishing

tools’ performance on metagenomic data with five metrics, detailed list on Table 1 and shown

the overall performance in Fig 2.

Improving accuracy of assemblies is one of the main purposes of polishing tools. We first

assessed the performance of accuracy, using ONT sequencing data, in three synthetic uneven

DNA mocks (Table 2). Reducing the InDels error rate is crucial for nanopore sequencing pol-

ishing, due to homopolymer errors being the primary source of ONT sequencing errors [19].

MetaCONNET had consistently the best performance in InDels evaluation across the three

datasets, with an average of 595.19 InDels per 100Kb (Fig 2 and Table 2). NextPolish outper-

formed in mismatches evaluation, with an average of 237.22 mismatches per 100Kb. The

duplication ratio of NextPolish in MOCK3 is lower than in MOCK2 and MOCK1, which

explains the further reduction in mismatches per 100Kb in MOCK3. However, for MetaCON-

NET, the duplication ratio remains relatively constant from MOCK1 to MOCK3, so its accu-

racy level stays more consistent compared to NextPolish (S1 Table). The overall ranking of

accuracy is MetaCONNET (99.11%), NextPolish (99.10%), Medaka (99.03%) and CONNET

(99.02%).

Fig 1. Overview of metagenomic polishing tool MetaCONNET. The figure presents the workflow of MetaCONNET and its enhancement features

compared to CONNET.

https://doi.org/10.1371/journal.pone.0313515.g001

Table 1. Comparison of the polishing metrics of MetaCONNET, NextPolish, CONNET and Medaka.

Metrics Accuracy Genome fraction (%) Complete BUSCO score (%) Average NGA50 (bp) CPU hours

Unpolish 0.9892 47.95% 90.60% 463805 /

MetaCONNET 0.9911 51.76% 100.00% 465206 28.92

NextPolish 0.9910 43.16% 93.00% 462403 5.86

CONNET 0.9902 47.50% 94.33% 410661 46.62

Medaka 0.9903 49.72% 98.93% 465235 50.05

https://doi.org/10.1371/journal.pone.0313515.t001
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Fig 2. Performance of polishing tools (MetaCONNET, CONNET, Medaka and NextPolish) in five metrics. (A)

The radar plot illustrates the comparative performance of four polishing tools (MetaCONNET, CONNET, Medaka

and NextPolish) across five metrics on the total results of three datasets (MOCK1, MOCK2 and MOCK3). In the plot,

higher values indicate superior rankings across metrics including Accuracy, Genome fraction, Complete BUSCO score

[21] and NGA50. Conversely, lower CPU hour values signify higher rankings. MetaCONNET ranks top for Accuracy,

Genome fraction and Complete BUSCO score, ranks the second for NGA50 and CPU hours. (B) Average

performances of polishing tools across five metrics on three datasets.

https://doi.org/10.1371/journal.pone.0313515.g002
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Genome fraction and Complete BUSCO score can be used to assessing the completeness of

polishing result [21, 22]. Genome fraction is the total number of aligned bases in the reference

divided by the genome size [23], which indicates the completeness in genome level. Complete

BUSCO score is calculated as the proportion of complete genes in BUSCO markers, and higher

Complete BUSCO score indicates higher quality and completeness in gene level. MetaCON-

NET has a clear advantage in these two metrics and is the only tool with a value of over 50% in

genome fraction (51.76%). Genome fraction and Complete BUSCO score do not always agree,

as can be seen from the unpolished data, where the genome fraction ranked in the middle, yet

the complete BUSCO score is the lowest (Fig 2 and Table 1). MetaCONNET improved both

coverage in genome level (Genome fraction) and in gene level (Complete BUSCO score) com-

pared to unpolished data.

NGA50 is used to measure the contiguity of the assemblies, a reference-aware version of

N50 metric [23]. A higher NGA50 value indicates a better contiguity and correctness of the

assembly. MetaCONNET performs well on NGA50, which is much higher than CONNET

(Fig 2 and Table 1). CPU hours is an important metrics of computational resource consump-

tion. MetaCONNET has the best performance on CPU hours (28.92 h) among deep-learning

based polishing tools (Fig 2). Considering metagenomics datasets are often of large amount of

data, we optimized the computational performance through improved batch parallel design.

For CONNET, contigs are split to batches with equal sequence sizes and these batches are pol-

ished in parallel using bash Parallel. During the model prediction step, polished sequences are

still predicted sequentially instead of being processed in parallel. Therefore, we redesign the

batch parallel of CONNET. Now all the sequences are first split into batches of size 100,000 bp

and predicted in parallel using Python Multiprocessing package. The max process number is

provided by the user. These enhancements guarantee optimal parallelization and utilization of

resources during the polishing process, resulting in a further reduction in CPU hours.

Table 2. Mismatches, InDels and accuracy comparison of polishing tools.

Dataset Tool Mismatches per 100 kbp InDels per 100 kbp Accuracy

MOCK1 Unpolish 353.37 809.98 0.9884

MetaCONNET 320.73 624.08 0.9906

NextPolish 264.79 680.69 0.9905

CONNET 349.32 692.77 0.9896

Medaka 328.09 723.74 0.9895

MOCK2 Unpolish 343.00 781.19 0.9888

MetaCONNET 310.41 593.09 0.9910

NextPolish 264.75 681.29 0.9905

CONNET 343.38 675.33 0.9898

Medaka 316.56 690.82 0.9899

MOCK3 Unpolish 236.35 692.20 0.9907

MetaCONNET 241.28 564.99 0.9919

NextPolish 170.67 602.21 0.9923

CONNET 257.42 627.89 0.9911

Medaka 222.31 617.28 0.9916

Total Unpolish 315.00 764.69 0.9892

MetaCONNET 293.19 595.19 0.9911

NextPolish 237.22 657.92 0.9910

CONNET 318.39 665.99 0.9902

Medaka 292.57 680.25 0.9903

https://doi.org/10.1371/journal.pone.0313515.t002
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Among all the tools, MetaCONNET has the lowest absolute number of introduced mis-

matches and indels across all datasets (S2 Table). MetaCONNET may be the most balanced

choice among all tools, as it introduces fewer errors while improving accuracy in assemblies.

For R10.4 dataset, MetaCONNET leads in both the number of mismatches per 100 Kbp

and genome fraction (S3 Table). Compared to MEDAKA, MetaCONNET surpasses it in both

accuracy and genome fraction. Overall, these results are similar to those observed with the R9

datasets.

2.3 Species level comparison of accuracy and coverage among polishing

tools

The representative results of accuracy and genome fraction analyzed for each species

(MOCK1) by four polishing tools are displayed in Fig 3. The advantages of MetaCONNET in

terms of accuracy and genome fraction are demonstrated in most species in all three datasets

(S4 Table). Generally, polishing tools can improve accuracy and quality of assembled results.

However, for metagenomic sequencing data, the considerations are more complex. Microbial

identification at species level remains a significant challenge in metagenomic study. Table 3

show the recovered species number and gene number (>95% ORFs) with different polishing

tools. MetaCONNET and CONNET recovered most species number, total 170 in three testing

set. NextPolish has the worst performance, recovered only 151 species, although it performs

second best in the field of accuracy. In the part of recovered gene numbers, the advantage of

MetaCONNET is even more significant. Gene number of MetaCONNET (127,856) is 1.18

times more than the second best (Medaka: 108,104), and 1.52 times more than the least (CON-

NET: 83,860). Regarding error levels, MetaCONNET demonstrates the lowest error rates in

Fig 3. Microbial species (MOCK1) with genome fraction and accuracy. The line chart illustrates the values of Accuracy, Genome fraction, and Depth

across species for MOCK1 assemblies polished by four tools (MetaCONNET, CONNET, Medaka and NextPolish), as well as the unpolished condition.

Breaks in the lines indicating NA values. Species are arranged by depth from smallest to largest along the x-axis. Species with missing genome fraction

in all of the conditions have been excluded, resulting in a total of 56 species represented in the chart.

https://doi.org/10.1371/journal.pone.0313515.g003
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species identification and gene finding, as reflected by the Incorrect Species recovered and

Incorrect ORFs ratios in MOCK1-3, compared to CONNET, Medaka, and NextPolish (S5 and

S6 Tables).

2.4 Analysis of species with different sequencing depths

One challenge in metagenomic study is to obtain relatively accurate and as complete as possi-

ble information for each species at different depths. We analyzed the performance of polishing

tools at different depths in groups (Fig 4). It’s evident that across all four tools and in the

unpolished condition, the average genome fraction increases with depth, as does accuracy.

MetaCONNET consistently outperforms others in genome fraction across all depth ranges.

When considering NGA metrics, MetaCONNET has comparable performance with the com-

petitors, while CONNET consistently exhibits the lowest NGA values in the 0–5, 5–10, and

10–15 depth ranges. In terms of accuracy, MetaCONNET consistently performs best when the

species’ depths > 5× but displays lower values in the 0–5 depth range. This can be attributed to

the filters implemented within these two tools. CONNET employs a filter to eliminate low-cov-

erage regions (below depth 4), while NextPolish has a similar filter at depth 3 at long read

mode. These filters reduce the information load in low-depth species, leading to improved

accuracy. Nonetheless, sequence information remains crucial for low-depth species, as a short-

ened genome length makes them challenging to specify. Hence, we opt not to implement any

filter in our tool to maximize information retention for low-coverage species, albeit at the

potential expense of accuracy in the 0–5 depth range. In conclusion, we achieve higher accu-

racy at equivalent depths and retain more information at lower depths, resulting in higher

overall scores for both accuracy and genome fraction in metagenomic datasets.

2.5 Limitation and further improvement

Despite demonstrating significant promise in improving metagenomic assemblies’ accuracy

and coverage, MetaCONNET presents opportunities for further optimization. A key challenge

lies in its handling of insertion errors. During model training, insertions are inherently less fre-

quent than other types of errors, leading to an imbalance in the model’s ability to correct

them. Future iterations of MetaCONNET should prioritize enhancing its capacity to address

insertion errors with greater accuracy.

MetaCONNET falls short of NextPolish in terms of reducing mismatches in assemblies.

The pattern of mismatches errors is harder to be captured by the current model. In contrast,

NextPolish utilizes a distinct mechanism that incorporates base quality information to address

mismatch errors. To enhance MetaCONNET’s ability to classify mismatch errors effectively, it

will be essential to integrate additional features into its model.

Table 3. Recovered species number and gene number (>95% ORFs) among MetaCONNET, CONNET, Medaka and NextPolish.

Datasets Class MetaCONNET CONNET Medaka NextPolish Unpolish

MOCK1 Species 56 56 55 50 55

>95% ORFs 42,246 27,809 36,346 36,543 36,954

MOCK2 Species 60 61 59 52 59

>95% ORFs 47,687 31,149 38,674 32,030 32,231

MOCK3 Species 54 53 52 49 52

>95% ORFs 37,923 24,902 33,084 25,640 25,521

Total Species 170 170 166 151 166

>95% ORFs 127,856 83,860 108,104 94,213 94,706

https://doi.org/10.1371/journal.pone.0313515.t003
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Furthermore, while MetaCONNET leverages a diverse range of bacterial species for train-

ing, the remarkable taxonomic diversity of bacteria in real-world scenarios surpasses the cur-

rent scope of its training data. Consequently, generalizability to all prokaryotic species is not

guaranteed, necessitating further comprehensive testing and validation across a wider spec-

trum of organisms.

Additionally, MetaCONNET is mainly trained based on ONT R9 sequencing data. Recently

ONT released the R10 Kit, which improved sequencing accuracy with largely different error

characteristics [24]. We have tested all the four tools on R10 data as is discussed previously (S3

Table). Since R10 is a new Kit with limited publicly available data, there is not sufficient diver-

sity to fully test the performance of these models. Therefore, we would keep collecting more

R10 data and tune MetaCONNET to further improve the model’s performance in the future.

Finally, while MetaCONNET currently outperforms other neural network-based models in

terms of correction accuracy, a potentially synergistic approach could involve the integration

of multiple polishing tools. Integrating multiple tools can provide a more comprehensive view

of the data, ultimately enhancing the overall effectiveness of metagenomic analysis.

Fig 4. Genome fraction and accuracy according to sequencing depth by species. Boxplots summarize contig metrics for all available genomes across

three mock datasets, separated into four depth range groups. Depth is derived from the alignment of raw reads to the reference genomes and represents

the average depth for each genome.

https://doi.org/10.1371/journal.pone.0313515.g004

PLOS ONE A metagenomic polishing tool for long-read assemblies

PLOS ONE | https://doi.org/10.1371/journal.pone.0313515 December 3, 2024 8 / 13

https://doi.org/10.1371/journal.pone.0313515.g004
https://doi.org/10.1371/journal.pone.0313515


3. Conclusion

We introduced a novel polishing tool MetaCONNET, which is modified and retrained for

metagenomic studies with long-read sequencing data. MetaCONNET has the best overall per-

formance when evaluated across five metrics, especially on accuracy and genome fraction,

which recovered the most species number in species level and most gene number in gene level.

Meanwhile, MetaCONNET has good compatibility with other nanopore long-read sequencing

platform and outperforms CONNET on Axbio sequencing data (S1 File,S1 Fig and S7 Table).

By leveraging a tailored approach to training data, window size, and incorporating optimiza-

tions for low-coverage genomes and computational efficiency, MetaCONNET establishes itself

as a powerful and versatile tool for researchers working with long-read metagenomic sequenc-

ing data.

4. Materials and methods

4.1 Dataset

Information on dataset is summarized in S8 Table. We collected four mock community data-

sets with ONT R9 sequencing data for model training and three mock community datasets for

testing. The training mock datasets include HMP Microbial Mock Community B (HM-276D),

ZymoBIOMICS Mock Community Standards (Zymo10), BMock12 Mock Community-12 iso-

lates (Bmock12) and ZymoBIOMICS gut microbiome standard (Zymo21). Each training

mock community dataset is comprised with a variety of bacteria species covering different

Phylum and Order. We selected the mock datasets sourced from Meslier et al to validate and

benchmark MetaCONNET. These mock datasets are synthetic uneven DNA mock samples

and consist of three distinct samples MOCK1, MOCK2 and MOCK3, each with a different

composition of strains (71 strains for MOCK1, 64 strains for MOCK2 and 87 strains for

MOCK3), totaling 91 unique DNA strains mixed together [20]. For the R10.4 model, we used

ZymoBIOMICS HMW (High Molecular Weight) DNA Standard D6322 (Zymo mock [19])

sequencing data for training, and created a synthetic mock dataset by combining the separate

whole-genome sequencing data of four bacterial strains with uneven composition for testing

(S9 Table) [25].

4.2 Genome sequencing and assembly

We downloaded all the four ONT sequencing datasets from NCBI SRA database: HM-276D

(Accession: PRJNA630658 [16]), Zymo10 (Accession: PRJEB29504 [17]), Bmock12 (Acces-

sion: PRJNA496047 [18]) and Zymo21 (Accession: PRJNA804004 [14]). All the mock datasets

are sequenced using ONT R9 flow cell with SQK-LSK109 kit, according to the metadata of the

dataset from the Online Database. We use Porechop v0.2.4 (https://github.com/rrwick/

Porechop) to remove adaptors to get clean sequencing data in FASTQ format. The FASTQ file

of each mock dataset is assembled using Flye v2.9.1-b1780 using the parameter—meta—nano-

raw -g 4m [26]. To test the robustness of the tool we didn’t filter the data with Q score thresh-

old. The MOCK1-3 datasets were sequenced using MinION R9 flow cells with the

SQK-LSK109 kit and the EXP-NBD103 barcoding kit, then basecalled and quality-trimmed

with Guppy v2.3.1+9514fbc39 [20].

For R10.4 dataset, we downloaded the R10.4 PromethION sequencing FASTQ file from the

SRA database (PRJEB48692) and downsampled it to a 25X depth relative to the reference

length. The adaptors were removed using Porechop v0.2.4, and the 25X FASTQ data was

assembled using Flye v. 2.9.1-b1780. We then mapped the 25X sequencing reads to the assem-

bled contigs for use as the training sets and labeled the data according to the reference
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positions of the contigs. The training, validation, and testing datasets were divided in a 9:1:1

ratio. The R10.4 testing dataset was assembled using the same pipeline.

4.3 Model training

The input data for model training is made by aligning the sequencing reads to the draft assembly

to obtain a bam which get converted to the input tensor. We label the input data using the align-

ment from draft assembly to the reference. All four mock datasets training data are combined

and split to 10% as testing and 90% as training and validation. Training had run on a GPU for

200 epochs. We selected the models that has the best AUC performance on the training dataset

and the testing dataset as the MetaCONNET metagenomics polishing model (S2 Fig).

4.4 Polishing method

The polishing method of CONNET is designed with two steps: Correction and Recovery. The

correction step aims at fixing mismatches and insertions brought by sequencing or assembly

errors. The recovery step aims at fixing the deletion gaps in the draft assembly. Each step com-

poses of an alignment stage followed by one BRNN model prediction. We have not made

major changes to the workflow of CONNET but focus on improving the model by increasing

window size from 100 to 500 and using a larger dataset of metagenomic mock communities

for training (Fig 1). However, during the development process, we found that CONNET may

compromise the sequence information with rigorous filtering (depth > = 4) and incomplete

batch (<100bp) lost at the end of contigs. To improve performance on metagenomics datasets,

we removed the depth filter and re-predict the loss batch at the end of the contig and patch

back to the sequence to keep the most sequence information (Fig 1).

4.5 Genome polishing and assessment

We use three polishing tools (CONNET v1.0, NextPolish v1.4.1, Medaka v1.7.3) to benchmark

with our polishing model. All tools are run for two rounds of polishing and 12 core Intel(R)

Xeon(R) Gold 5220R CPU @ 2.20GHz CPUs and 100G RAM. CONNET is run using model

ecoli.R941 [12]. NextPolish [11] is set with task = best parameter. Medaka is run with model

r941_min_high_g351. For polished genome evaluation, Quast v5.2.0 [27] is run with parame-

ter—fragmented—min-alignment 500—min-identity 97—split-scaffolds—threads 12—min-

contig 500 –circos. BUSCO v5.3.0 was run with bacteria_odb10 database [21, 28]. The gene

prediction result of Prodigal [29] v2.6.3 is searched with the Uniprot 50 protein database using

Diamond v2.1.8.162 [30]. The count of the protein with match length over 95% is recorded as

>95% ORFs, which is an indicator of gene fragmentation. The software used for this project

was summarized in the table (S10 Table).

Supporting information

S1 Fig. MetaCONNET metrics comparing with CONNET based on Axbio sequencing data.

The radar plot illustrates the comparative performance of MetaCONNET, CONNET and

Unpolish conditions across 4 metrics on the AxiLona AXP-100 assembly data tests. In the plot,

higher values indicate higher rankings across all metrics. MetaCONNET demonstrates

enhanced assembly quality across all four metrics compared to the original CONNET, show-

casing its improved capability in rectifying errors in various Nanopore sequencing platforms.

(TIF)

S2 Fig. ROC curves show the performance of MetaCONNET and CONNET. The ROC

curve displays the true positive rate and false positive rate values at various threshold levels.
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The diagonal dashed line represents chance level or random guessing. For training, 10% of

labeled data is reserved as the testing set. Both MetaCONNET and CONNET are tested using

this dataset (MetaCONNET training, CONNET). Validation 1, 2, and 3 correspond to the

labeled data from the MOCK1, MOCK2, and MOCK3 datasets, respectively. The results of

MetaCONNET and CONNET validation are evaluated using these datasets (MetaCONNET

Validation 1–3, CONNET Validation 1–3).

(TIF)

S1 Table. Duplication ratio and total aligned length among Unpolish, MetaCONNET,

NextPolish, CONNET, Medaka in MOCK1-3.

(XLSX)

S2 Table. Introduced errors ratio among MetaCONNET, NextPolish, CONNET, Medaka

in MOCK1-3.

(XLSX)

S3 Table. Evaluation metrics of polishing assemblies using R10 models and R10 synthetic

mock dataset. The top-performing tool for each metrics is indicated in bold and italic. The

second-best tool is indicated in bold.

(XLSX)

S4 Table. Species level performance on accuracy and genome fraction of four polishing

tools.

(XLSX)

S5 Table. ORF analysis with MetaCONNET, CONNET, Medaka, NextPolish, Unpolish on

MOCK1, MOCK2, MOCK3 datasets.

(XLSX)

S6 Table. Species analysis with MetaCONNET, CONNET, Medaka, NextPolish, Unpolish

on MOCK1, MOCK2, MOCK3 datasets.

(XLSX)

S7 Table. Metagenomic assemblies polishing results comparison on Axbio sequencing

data.
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S8 Table. Dataset summary.
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S10 Table. Description of the software and version.
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