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Abstract Over the last three decades, human genetics has gone from dissecting high- penetrance 
Mendelian diseases to discovering the vast and complex genetic etiology of common human 
diseases. In tackling this complexity, scientists have discovered the importance of numerous genetic 
processes – most notably functional regulatory elements – in the development and progression of 
these diseases. Simultaneously, scientists have increasingly used multiplex assays of variant effect to 
systematically phenotype the cellular consequences of millions of genetic variants. In this article, we 
argue that the context of genetic variants – at all scales, from other genetic variants and gene regu-
lation to cell biology to organismal environment – are critical components of how we can employ 
genomics to interpret these variants, and ultimately treat these diseases. We describe approaches 
to extend existing experimental assays and computational approaches to examine and quantify the 
importance of this context, including through causal analytic approaches. Having a unified under-
standing of the molecular, physiological, and environmental processes governing the interpretation 
of genetic variants is sorely needed for the field, and this perspective argues for feasible approaches 
by which the combined interpretation of cellular, animal, and epidemiological data can yield that 
knowledge.

Introduction
As a consequence of stunning technological advances – especially in DNA- sequencing – current data-
bases hold hundreds of millions of human single- nucleotide variants, with nearly 5 million in the tiny 
portion of the genome that encodes protein sequence (Figure 1). Yet our knowledge of the functional 
effects of all this variation is vanishingly small: even for the changes that result in amino acid replace-
ments, only about 2% have been clinically interpreted, and about 80% of those have been interpreted 
as ‘variants of uncertain significance’ (Fayer et al., 2021; Starita et al., 2017; Figure 1). Breaking 
through this interpretative bottleneck constitutes a central challenge for human genomics research.

Multiplex assays of variant effect (MAVEs) experimentally assess the effects of single- nucleotide 
variants at scale. Here, a single open- reading frame, exon, or regulatory region is saturated with all 
possible single- nucleotide changes, and a single property is measured via coupling this property to 
the number of DNA sequence reads of each variant before and after a functional selection (Esposito 
et al., 2019; Findlay, 2021; Kinney and McCandlish, 2019; Starita et al., 2017). We and others have 
shown that the resulting functional data can reveal whether and how each variant alters function, and 
that the functional data empower the interpretation of variants of uncertain significance (Fayer et al., 
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2021; Scott et al., 2022; Starita et al., 2017; Sun et al., 2016; Tabet et al., 2022; Weile et al., 2021; 
Wu et al., 2021; Yang et al., 2017). For example, the integration of multiplex functional data for 
cancer- related genes led to the reinterpretation of ~70% of variants of uncertain significance in TP53, 
~50% in BRCA1, and ~15% in PTEN (Fayer et al., 2021). Spurred on by these and other results, the 
first generation of MAVEs is being deployed widely (Da et al., 2021; Esposito et al., 2019; Fowler 
et al., 2021; Rubin et al., 2021), and comprehensive variant effect maps for easy- to- measure cellular 
properties, such as growth, are within reach for many clinically relevant human genes.

Despite this success, we are far from being able to reliably interpret the organismal effects of all 
human genetic variation, much less to use genetic information to accurately predict individual pheno-
type and disease risk. For one, MAVEs have not been extended to structural variation, copy number 
variation in repetitive DNA, and other large and complex variants that are likely numerous and highly 
impactful (Manolio et al., 2009; Miller et al., 2021; Mitra et al., 2021; Press et al., 2014; Press 
et al., 2019). To make such complex variation accessible for phenotyping in high throughput, new 
experimental and computational approaches are needed. Yet even for single- nucleotide variants for 
which MAVEs exist or can be envisioned, major challenges for accurate variant effect interpretation 
remain. Existing MAVEs generally do not account for genetic, environmental, or tissue/developmental 
context (Figure 2). Assessing and perturbing this context is essential for fully characterizing the effect 
of a genetic variant (Claussnitzer and Susztak, 2021). This lack of context constrains the utility of 
MAVEs for understanding how variants interact with genetic background, affect non cell- autonomous 
phenotypes, and alter organismal phenotype in interplay with environmental factors. Here, we explore 
the importance of each of these contexts for understanding single- nucleotide variants and describe 
a next generation of MAVEs, applicable to both coding and regulatory variants, and computational 
approaches that, together, can generate contextually informative variant effect maps and predict 
individual disease risk.

Variant effect mapping in genetic context
Onset, severity, and even incidence of disease can differ widely among carriers of a given disease- 
associated variant. This is particularly true for small and moderate effect variants that are associated 

Figure 1. Only a small number of coding variants have annotations that can guide diagnosis and treatment. As exome and whole- genome sequencing 
becomes commonplace in the clinic, the number of variants of uncertain significance is likely to increase.

https://doi.org/10.7554/eLife.88231
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with common diseases through genome- wide association studies (GWAS). The heritability explained 
by GWAS variants tends to be small, and these variants typically have little power to predict the 
disease risk of individuals (Eichler et al., 2010; Gibson, 2012; Khera et al., 2018; Manolio et al., 
2009). This ‘missing heritability’ of common diseases and the differences in variant expressivity among 
patients with highly penetrant, rare Mendelian disorders are commonly attributed to uncharacterized 
non- additive genetic interactions, among other factors (Eichler et al., 2010; Gibson, 2012; Manolio 
et al., 2009).

Non- additive genetic interaction, or epistasis, describes the phenomenon that the combined effect 
of alleles at two or more loci deviates from the sum of their individual effects (Fisher, 1919; Mackay, 
2001). The importance of non- additive genetic interactions, in particular for complex traits, has been 
the subject of a long- standing debate (Fisher, 1930; Hivert et  al., 2021; Wade and Goodnight, 
1998; Wright, 1931), and the importance of epistasis across the allele frequency spectrum is not well 
understood. Model organism research has identified many examples of non- additive genetic inter-
actions affecting a wide variety of morphological and quantitative traits in fungi, animals, and plants 
(Costanzo et al., 2019; Forsberg et al., 2017; Mackay, 2014; Press et al., 2014). These genetic 
interactions often reflect functional relationships such as those among genes coding for subunits of 
a multimeric protein complex or proteins functioning in a common pathway (Costanzo et al., 2019; 
Miller and Piccolo, 2020; Narasimhan et al., 2017; Ni et al., 2017; Pamplona- Cunha et al., 2020). 
Quantitative genetics theory and empirical data for human and crop traits show that additive genetic 
models can explain over half of the total genetic contributions to complex traits (Darnell et  al., 
2022; Dudley, 2007; Hivert et al., 2021; Sheppard et al., 2021; Visscher et al., 2008). However, 
accounting for non- additive genetic effects, and particularly epistatic interactions, can lead to more 
accurate phenotype predictions (Carlborg et al., 2006; Forsberg et al., 2017; Lachowiec et al., 
2015; Matsui et al., 2022). Methods that examine genetic ancestry and portability can also improve 
prediction and estimation in the presence of these effects (Brown, 2016; Park et al., 2018; Patel 
et al., 2022).

Because a large majority of disease- associated GWAS variants reside within or in linkage with 
accessible chromatin regions, complex diseases are assumed to arise through the additive action of 
many regulatory variants (Maurano et al., 2012; Meuleman et al., 2020). The enrichment of GWAS 
variants in or near regulatory regions, their large numbers, and their small contribution to heritability 
and disease risk were conceptualized in the ‘Omnigenic’ model (Boyle et al., 2017; Liu et al., 2019). 
This theoretical framework posits that ‘core genes’, which are functionally related to a phenotype of 
interest, carry common, small- effect, significantly trait- associated variants that together contribute 

Figure 2. Multiplex assays of variant effect (MAVEs) in context. (A) MAVEs in cell lines can assay many variants for simple phenotypes like cell growth. 
Models like organoids and mice allow for measuring complex multicellular phenotypes like proportions of cell types but are currently limited to assaying 
only a few variants at a time. (B) Gene–gene interactions are examined in different models at different levels of phenotype complexity. Gene–gene 
interactions suggested for prioritization include compound heterozygotes, combinations of common and rare variants in a given locus in cis and trans, 
and experiments testing variants on different genetic backgrounds. (C) Gene–environment interactions are examined at different levels of phenotype 
complexity. Three broad categories are suggested to model the complexity of environmental context in the laboratory: abiotic stress, challenges to 
immunity, and metabolism.
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little to heritability while the bulk of heritability is contributed by a huge number of common ‘periph-
eral’ variants with individually tiny effects that ultimately affect core gene expression. Peripheral 
variants are uniformly distributed over the genome, with each chromosome contributing to trait heri-
tability according to its size, reminiscent of Fisher’s Infinitesimal model (Barton et al., 2017; Walsh 
and Lynch, 2018). The Omnigenic model is not universally accepted (Connally et al., 2022; Sohail 
et al., 2019), but it offers an explanation for the missing heritability conundrum and is supported by 
recent empirical studies (Sinnott- Armstrong et al., 2021; Smith et al., 2022). If most heritability is 
not located at genes or regulatory regions directly altering the phenotype of interest, how can we 
use experimental variant effect mapping in context to understand disease risk? In any case, there 
are several ways that experimental variant effect mapping in context can be applied to understand 
disease risk.

An obvious approach is systematically studying compound heterozygotes (Figure 2B). There are 
many recessive variants of unknown molecular or cellular functional consequence in disease- associated 
genes, even amongst the thousands of genes that play a role in highly penetrant Mendelian disorders. 
Examples abound of cases in which individuals carry different alleles of a gene that together – as a 
compound heterozygote – alter gene activity enough to cause disease. These alleles may act addi-
tively or non- additively, enabling valuable mechanistic insights on disease origins, a first crucial step 
toward future therapy. Another promising approach is assaying combinations of common, disease- 
associated GWAS variants with all possible other variants in the same gene and regulatory region 
(Figure 2B), a likely scenario by which the penetrance and expressivity of a common variant may be 
altered. To address both of these scenarios, variants of a given gene or regulatory region will need to 
be assessed in pairwise fashion. Executing such experiments in human cells across all possible variant 
pairs will require some innovation in variant barcoding, genome engineering, and sequencing strate-
gies to unambiguously link both variants with a cell’s phenotype. However, the systematic evaluation 
of compound heterozygotes and of combinations of GWAS variants with rare variants affecting the 
same locus will yield actionable information for genetic counselors, physicians and patients.

Experimentally addressing the consequences of more complex genetic interactions (Figure 2B) will 
require sophisticated technological innovations and novel data analysis methods. For example, variant 
libraries could be introduced into many different cell lines, including induced pluripotent stem cells 
(iPSCs) derived from diverse individuals, thereby testing the consequences and interactions of many 
different genetic variants, including structural variants. Identifying causal additive or non- additive 
genetic interactions in this scenario will be a formidable challenge. Alternatively, variant libraries 
could be introduced into cells carrying programmed genetic perturbations such as gene deletion, 
knockdown, or overexpression. Most ambitious, variant libraries for a disease- associated core gene 
could be introduced into cell lines carrying common variants in other core genes for the same trait, 
testing some assumptions of the Omnigenic model empirically. If it were possible to conduct variant 
effect mapping in whole animals, genetic crosses and high- throughput phenotyping could be used to 
interrogate the phenotypes of many different combinations of variant libraries with each other, other 
variant libraries, or possible modifier loci.

Most importantly, these experimental efforts must go hand in hand with innovative theoretical 
studies to enable predictions of variant effects in genetic context. For example, combining existing 
variant effect maps of disease- associated genes with genome- wide polygenic risk scores is one 
approach to investigate the Omnigenic model. Such a modeling approach could leverage the growing 
resources of biobanks and human phenotype data to identify modifier loci and refine variant effect 
maps (Schiabor Barrett et al., 2022; Tabet et al., 2022). Similarly, taking advantage of the multi-
tude of high- quality GWAS, one could systematically explore loci that are significantly associated with 
different disorders; these loci represent candidates for genetic modifiers that alter the penetrance 
and expressivity of other variants (Lehner et al., 2006; Queitsch et al., 2012). One such locus is 
known: the major histocompatibility complex (MHC), which encodes cell surface proteins that are 
essential for the adaptive immune system by virtue of their ability to ‘display’ a cell’s repertoire of 
contained peptides to the immune system. The fact that different MHC alleles display different sets 
of variant peptides offers avenues for MHC variation to alter the penetrance and expressivity of many 
other variants. Stratifying existing GWAS by outliers, for example, focusing on individuals with the 
most and least severe disease phenotypes, might also identify genetic modifiers of variant pene-
trance and expressivity, where they exist (Gibson, 2009; Lehner et al., 2006; Queitsch et al., 2012). 

https://doi.org/10.7554/eLife.88231
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Although there is limited evidence for dominance in human genotype–phenotype mapping and epis-
tasis remains difficult to quantify genome- wide thus far, we anticipate that understanding epistatic 
effects at individual genes will yield valuable insight into the extent of these epistatic interactions and 
their phenotypic consequences.

Variant effect mapping in cell, tissue, and developmental 
contexts
Although variants in some genes affect all cell types similarly across development, variants more often 
exert their effect in specific tissues, and at specific stages of development. For example, pathogenic 
germline variants in BRCA1 and BRCA2 genes, which play a fundamental role in DNA repair, confer a 
greatly increased risk of some, but not all, types of cancer (Welcsh and King, 2001). Variants affecting 
metabolic or neurodevelopmental disorders like atypical pantothenate kinase- associated neuro-
degeneration and schizophrenia can show effects in specific tissues and/or developmental stages 
(Immonen et al., 2017; Kurian and Hayflick, 2013). Moreover, different variants in the same gene 
can affect different tissues and cause different diseases. For example, pathogenic germline variants 
in LMNA most often cause cardiomyopathy, but can also cause muscular dystrophy, lipodystrophy, or 
the premature aging syndrome progeria (Novelli and D’Apice, 2003). This complexity only expands 
with regulatory variants at a given locus, where enhancer elements are able to activate multiple genes 
(Hu and Tee, 2017), causing pleiotropic effects on tissue specificity. While recent approaches have 
dramatically improved the linkage of regulatory variants to target genes (Andersson et al., 2014; Dey 
et al., 2022; Gschwind et al., 2023; Nasser et al., 2021; Kundaje et al., 2015), this remains an area 
of substantial ongoing work. Even so, numerous existing studies have begun to tackle the application 
of MAVE technologies to regulatory regions (Gasperini et al., 2016; Gordon et al., 2020; Kircher 
et al., 2019; Klein et al., 2018; Morova et al., 2023; Vockley et al., 2015). These studies rely on the 
same assumptions as coding variant MAVEs, namely that there is a direct link to the phenotype being 
selected and that variants have variable effects on that phenotype in the cell type being screened.

Tissue- and developmental stage- specific effects cannot be addressed in human cell lines that 
lack the expression programs, proteomes, and cellular structures found in fully differentiated cells. 
However, most MAVEs have been executed in human cell lines and have focused on easily scre-
enable phenotypes like cell growth, protein abundance, or protein–protein interactions. Recent 
efforts to develop MAVEs based on rich phenotypes like cell morphology or transcriptional programs 
have demonstrated the potential of investigating these more complex phenotypes (Hasle et  al., 
2020; Martin- Rufino et al., 2023; Ursu et al., 2022; Xu et al., 2023). Disentangling the relation-
ships between phenotypes is challenging, primarily as a result of pleiotropy (Solovieff et al., 2013). 
However, MAVEs test the entire set of possible alleles in a gene or regulatory region, allowing us to 
determine the full spectrum of allele- specific effects on phenotypes that can be modeled in a scalable 
assay.

Moreover, researchers have begun to explore iPSC- derived differentiated cells to model variant 
effects (Bajpai et al., 2021). However, owing to the challenges in engineering iPSC genomes, MAVEs 
in these cells are in their infancy (Lv et  al., 2018). A potentially more powerful approach would 
be to isolate specific primary cell populations from individual patients (Claussnitzer et  al., 2015; 
Shifrut et al., 2018), introduce variant libraries, and ascertain variant effects on cellular phenotypes. 
Complementing these efforts with other approaches like base or prime editing (Erwood et al., 2022; 
Hanna et al., 2021) could lead to the characterization of large variant libraries in the correct cellular 
context. Successful proof- of- principle studies demonstrate the potential of this approach (Martin- 
Rufino et al., 2023). However, these approaches are predicated on knowing the correct cell type(s) for 
the phenotype of interest. This information is often not available, but deriving robust cell type–disease 
associations is the subject of significant ongoing work (Tabet et al., 2022; Jones et al., 2022). Recent 
computational methods have also opened the possibility of accurate estimation of cell types of action 
in silico (Jagadeesh et al., 2022; Yu et al., 2022).

However, even differentiated cells do not recapitulate cell–cell interactions found in human tissues, 
much less the complex ballet of interactions required for normal development (Dorrity et al., 2022; 
Saunders et al., 2022). To model cell–cell communication will require multicellular models. Organ-
oids, especially those derived from patient cells, offer a possible solution as they can model various 
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types of tissues (Hendriks et al., 2021; Meng et al., 2022). The main challenges here are developing 
genome engineering approaches that can yield a large set of clonal organoids while accounting for 
the sometimes large phenotypic variation among organoids of the same type generated with the 
same protocol; such efforts are in progress (Sockell et al., 2022).

Model organisms are another option. Multicellular model organisms from worms to mice have 
proven extraordinarily useful in probing the tissue and developmental effects of individual genetic 
variants. However, to map variant effects at large scale in a model organism, it must produce large 
numbers of offspring to allow for adequate coverage of variants and high- throughput phenotypic 
screens of developmental or behavioral traits; The ideal organism would offer strong conservation of 
genes and pathways affected in human disease. Model organism approaches are particularly powerful 
when paired with single- cell transcriptomic readouts, as was used to investigate the consequences of 
23 genetic perturbations affecting the development of cell lineages in zebrafish (Danio rerio) (Saun-
ders et al., 2022). Leveraging single- cell transcriptomics, large numbers of replicates, and sophisti-
cated statistical analysis, this study ascertained the consequences of a particular perturbation on the 
variance in cell type abundance organism- wide and detected the perturbation- dependent effects 
on cell type composition relative to wild- type embryos. Theoretically, single- cell genomics could be 
applied to a large number of small animals, each expressing a single variant or variant combinations, 
to similarly determine the consequences of genetic variants on cell type composition, gene expres-
sion, chromatin accessibility, protein abundance, and other single- cell phenotypes.

However, to enable MAVEs in whole animals, new technology is needed. The biggest challenge is 
that variant libraries must be introduced into animals such that thousands or more variants are repre-
sented across many thousands of animals. Germline editing is preferred to generate distinct, clonal 
recombinant animals, avoiding mosaicism and easing phenotype interpretation. Considering currently 
available genetically tractable models and their offspring numbers, the few in which such technology 
development seems worthwhile include Caenorhabditis elegans, Drosophila melanogaster, and Danio 
rerio. These animal models lend themselves readily to ascertaining the phenotypes of compound 
heterozygotes and variant combinations in different genes through crosses. However, it remains a 
formidable, unsolved challenge to successfully introduce large variant libraries into an animal germline 
such that each genome contains just one variant, each variant is present in many animals for replica-
tion of variant effects, and each variant is expressed at the same level.

Variant effect mapping in environmental context
Environmental context (gene–environment interactions) plays a large role in variant penetrance and 
expressivity, particularly for variants associated with common diseases such as diabetes, asthma, 
depression, and cardiovascular disease. Their incidence has risen sharply in recent decades in the 
United States and elsewhere (Bingley and Gale, 1989; Cockram, 2000; Ebrahim et  al., 2010; 
Gibson, 2009; Harsanyi et al., 2022; Rewers et al., 2018; Sørensen, 2000). Because human genetic 
makeup has not fundamentally changed in the last 50  years, changing environmental context has 
either altered the genetic contributions of a subset of polymorphisms or shifted the liability threshold 
for these disorders. Fundamental recent changes to environmental context include altered pathogen 
exposure and microbiomes through increased hygiene, refrigeration, and antibiotics; radical dietary 
shifts toward industrially produced food; and environmental stress through artificial light, house dust, 
and harmful chemicals. Although we posit that environmental context is more crucial than genetic or 
developmental context for understanding variant penetrance and expressivity, environment is also the 
hardest context to fully define and measure in the laboratory.

The challenges of exploring environmental context in humans are well illustrated by the TEDDY 
study (The Environmental Determinants of Diabetes in the Young) (Rewers et al., 2018). The study 
followed ~9000 children who carry high- risk alleles for type I diabetes for 15 years, collecting clin-
ical metadata (e.g., diet, household exposures, medications, pre- and perinatal exposures, psycho-
social stressors, among many others), and the results of many ‘omics’ analyses (e.g., whole- genome 
sequencing, metabolomics, microbiome, lipidomics, transcriptomics, proteomics). One challenge was 
participant dropout (26%) due to the high participation effort (Johnson et al., 2011; Johnson et al., 
2014). Another was the relatively small number of children who ultimately developed type 1 diabetes 
(~300). These logistical challenges limited the study’s power to detect gene–environment interac-
tions. The published results suggest little effect of many environmental factors such as breastfeeding 
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(Hummel et al., 2021), early antibiotic treatment (Kemppainen et al., 2017), vaccinations (Elding 
Larsson et al., 2018), and maternal exposures (Johnson et al., 2021b; Johnson et al., 2021a; Silvis 
et al., 2019), while a few studies report evidence for possible risk factors (infection) (Lönnrot et al., 
2017; Vehik et al., 2019) or interventions (vitamin D, probiotics) (Norris et al., 2018; Uusitalo et al., 
2016).

While it may be difficult to pinpoint relevant gene–environment interactions across large human 
populations, these studies nevertheless hold much promise, in particular when considered together 
with the results of experimental variant effect maps. For example, a dense variant effect map for a 
particular gene or regulatory region produced in a single condition could be supplemented with 
human phenotype data for carriers of particular variants. These individuals will have experienced a 
large range of environmental conditions, beginning in utero and continuing after birth. To estimate 
their gene–environment interactions, one would have to account for (potentially non- additive) genetic 
background, which can be accomplished through sibling study designs, kinship analyses, or use of 
polygenic risk scores (Mostafavi et  al., 2020). The ever increasing size (i.e., sample number) and 
sophistication (i.e., inclusion of multiple traits, ancestries, and environmental exposures) of today’s 
GWAS make such an approach imminently feasible, though the approach might still be insufficient 
for traits with large epistatic components in their genetic architecture. Large sibling and twin cohorts 
collected over many decades may also aid in computational efforts to decipher the effect size of 
gene–environment interactions and the variants most affected. As siblings and twins share (to varying 
degrees) both their genome and their environment, increasing concordance of disease incidence 
and severity would be expected for relatives carrying genetic variants associated with moderate or 
low disease risk in GWAS and implicated as pathogenic or likely pathogenic in functional assays. If 
gene–environment interactions have changed, family studies will allow extrapolation of gene–envi-
ronment effect size, if not necessarily identification of responsible environmental factors. The same 
approach can be applied in reverse using migration studies and other approaches for causal effect 
estimation from the social sciences to further isolate gene–environment effects (Lea et  al., 2023; 
Figure 3). This can include direct approaches for modeling gene–environment interactions (Kerin and 
Marchini, 2020; Marderstein et al., 2021; Moore et al., 2019), as well as integration of causal effect 
size estimation using quasi- experimental approaches (Barcellos et al., 2018; Barcellos et al., 2021; 
Davies et al., 2018; Plotnikov et al., 2020; Abdellaoui et al., 2019; Ebrahim et al., 2010; von Hinke 
and Sørensen, 2023).

Efforts to determine gene–environment interactions with MAVEs are nascent. An example is a 
recent collection of variant effect maps for MTHFR, encoding a key enzyme in folate metabolism. 
MTHFR deficiency can be severe, with diverse early- onset consequences of a massive accumulation of 
homocysteine in the blood, or relatively mild, with later- emerging thromboembolism. Milder MTHFR 
deficiency can be remediated for some patients by increasing folate levels. Still milder effects result 
from homozygosity of the common Ala222Val variant (30% global minor allele frequency), for which 
there is a risk of neural tube defects that is entirely remediated by sufficient dietary folate. Thus, 
the pathogenicity of variants is dependent on environmental context. This dependency of variant 
effect on the environmental context of folate levels (and on the genetic context of an A222V variant) 
was captured for nearly every MTHFR missense variant (Weile et al., 2021). Other examples include 
efforts to account for proteotoxic stress, for example, by evaluating transcription factor variants at 
elevated temperature or in response to chaperone inhibitors (Dorrity et al., 2018; Morton et al., 
2020). None of these examples yet captures the full complexity of environmental context given that 
only a few environmental variables were each altered one at a time.

Addressing environmental context has to grapple with the overwhelming number of possible envi-
ronmental factors that could alter a variant’s impact. For some genes, relevant environmental factors 
are known and these factors can be directly incorporated into multiplexed assays, as for MTHFR. 
Even for MTHFR, however, there is evidence that levels of riboflavin, as well as folate, can also reme-
diate the effects of the common Ala222Val variant (Jarrett et  al., 2022; McNulty et  al., 2006), 
and the interactions across the broader set of MTHFR variants alone or in combination with folate 
and Ala222Val remain to be explored. More broadly, the profound changes in environmental context 
in the last 50–100 years suggest a focus on three broad categories: environmental factors altering 
metabolism, causing abiotic stress, and challenging the immune system. These broad categories can 
be modeled (with increasing degrees of difficulty) in the laboratory and studied both individually and 
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Figure 3. Environmental context is key to trait interpretation. (A) Adapted from Figure 1 of Ebrahim et al., 2010, age-, factory-, and occupation- 
adjusted percent prevalence (95% CI) of diabetes by type of migrant and sex, Indian migration study 2005–2007. Diabetes is prevalent in urban residents 
and residents who migrated to urban areas and resided there for more than 10 years. (B) Gene–environment interactions will affect an organismal trait 
at the level of genes, cells, tissues, and whole organisms. Extending the Mostafavi et al., 2022 model to incorporate environmental context captures 
more relevant biology, and hence facilitates variant effect interpretation. As shown, a variant (red allele) affects a gene’s function within a particular 
cellular context. Cells affected by the red allele function exist within the context of the organism, here a light- gray mouse as compared to a dark- gray 

Figure 3 continued on next page
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in combination. Combinatorial studies are essential as responses to individual perturbations are often 
not predictive of responses to combinations, at least in model organisms (Ammeux et al., 2016). We 
envision environmental perturbations in cell lines, organoids, and even model animals carrying variant 
libraries (Figure 2C).

In addition to variant effect mapping across a range of external conditions, the internal conditions 
of the cells and organisms carrying variants can be drastically changed. The relative importance of 
external versus internal cellular environments is much debated (Billman, 2020). Here, an approach to 
induce mistranslation across the entire proteome for a given codon (Berg et al., 2019; Cozma et al., 
2022) can manipulate internal cellular environments and allow their effects on individual variants to 
be measured. Similarly, one may consider manipulating splicing, protein folding, protein turnover, 
or mitochondrial function as general measures to affect cellular environment as it occurs in human 
aging (Johnson et al., 1999; Leutert et al., 2023). Analogously, pharmacological perturbation of key 
cellular processes could be applied to alter cell–cell interactions and niche formation to understand 
intra- organismal (i.e., organism- autonomous) effects of genetic variants.

Quantifying gene–environment effects on an organismal trait must consider prior knowledge of 
variant effects on gene function, the consequences of perturbed gene function on cellular function 
within the context of the whole organism, and an organism’s environmental exposures (Figure 3B). 
These multiple unknown factors are difficult to disentangle without acquiring knowledge of each 
component, but data from MAVEs enable us to do so systematically. Similar to pleiotropy (Solovieff 
et al., 2013), gene–environment interactions will affect an organismal trait at the level of genes, cells, 
tissues, and whole organisms (Figure 3B). Under the simplifying assumption that most genetic effects 
are due to variants acting on genes or their products, we can separate variant effects on a trait into 
two components, the contribution of that variant to the target gene and the effect of that gene on the 
trait of interest (Mostafavi et al., 2022). Incorporating environmental context into this model makes it 
substantially more complicated, but more reflective of biological reality, and hence more predictive of 
variant effects and disease risks (Figure 3B). The scale and highly controlled nature of MAVE- derived 
variant effects will make it possible to disentangle the contributions of environmental interactions 
from the two components as defined above.

Multiplex assays of variant effect in context to decipher 
mechanisms, improve disease risk predictions, and facilitate 
prevention and treatment
In the clinic, the individual matters. Each of us has our private set of common and rare variants and our 
unique environmental exposures that together determine our disease risk and prognosis. We argue 
that MAVEs in genetic, developmental, and environmental contexts will allow a systematic character-
ization of the relative importance of each context for variant effect as well as the characterization of 
variants particularly impacted by a given context or context combination. Moreover, as MAVEs that 
can measure phenotypes more complex than cell survival or cell fitness are deployed widely, we will 
begin to gather mechanistic insight on variant function at large scale and in response to multiple 
environmental perturbations. Current approaches to decipher biological mechanisms of specific vari-
ants through variant- to- function analyses remain laborious and highly specialized (Claussnitzer and 
Susztak, 2021; Tabet et al., 2022). As we must pursue mechanistic insights into variant effects to 
separate confounding from causal association, conducting MAVEs in context offers the promise of 
scale and systematic analysis. The more contextual multiplex variant functional data becomes avail-
able, the more modeling approaches that rely on vast datasets such as machine learning and artifi-
cial intelligence can be used to infer variant- specific and context- dependent biological mechanisms, 
thereby informing individualized predictions of disease risk for rare and common diseases and facili-
tating their prevention and treatment.

mouse that does not carry the red allele. Mice with or without the red allele are exposed to environmental factors, symbolized by the cheese as a dietary 
factor challenging metabolism. Note that one of the mice carrying the red variant is not exposed to this environmental challenge (light gray, clipped 
ear). In the example shown, environmental context determines the trait value (obesity, big light- gray mouse) for mice carrying the red variant.

Figure 3 continued
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A key question is which genes and regulatory regions are most likely to yield the most useful 
information for precision medicine, and therefore should be the focus of MAVEs in context. A simple 
answer is to focus on the genes that contain many variants of uncertain significance and that are 
actionable with existing prevention and treatment options. This approach, however, will exclude many 
of the regulatory and coding GWAS variants associated with common disease for which context, in 
particular environmental context, will likely matter the most. If we are to understand complex common 
diseases, experimentalists and theoreticians will need to come together to innovate and develop 
strategies to study human variants at genome scale and in multiple contexts.
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Appendix 1
Glossary of the terms used herein
Variant of uncertain significance
A genetic variant that has been identified but whose significance to disease etiology and health of 
an individual is not known. These variants cannot guide diagnosis or treatment.

Heritability
An attribute of a quantitative trait in a population that expresses how much of the observed total 
phenotypic variation is due to genetic variation. Narrow- sense heritability describes the fraction 
of phenotypic variation due to the additive effects of genes. Broad- sense heritability captures the 
fraction of phenotypic variation due to genetic values that may include non- additive effects.

Dominance
In human genetics, this usually refers to alleles that manifest their phenotype in the heterozygous 
state.

Epistasis
In human genetics, this usually refers to non- additive genetic interaction and describes the 
phenomenon that the combined effect of alleles at two or more loci deviates from the sum of their 
individual effects.

Pleiotropy
Describes the phenomenon in which a single gene is responsible for a number of distinct and 
seemingly unrelated phenotypic effects.

Liability
A term used to collectively describe all the genetic and environmental factors that contribute to 
the development of a complex disease or trait. A large number of factors are summed to yield a 
'liability' curve with a threshold marking a binary outcome (e.g., unaffected or affected by a disease). 
Phenotypic outcome is determined by whether an individual’s liability is smaller or greater than the 
threshold.

Variant penetrance
Refers to the proportion of individuals carrying a particular genetic variant with the expected 
phenotype(s) commonly associated with that variant.

Variant expressivity
Refers to the range and severity of phenotypes associated with a given genetic variant in different 
genetic and environmental contexts.

Rare genetic variants
Defined as variants with a minor allele frequency of less than 0.01.

Common genetic variants
Defined as variants with a minor allele frequency of 0.01 or greater.

Mendelian disease
Disease that follows Mendelian patterns of inheritance due to alterations in one gene or regulatory 
region inherited from one (dominant disorder) or both parents (recessive disorder). Mendelian 
diseases are often highly penetrant; although many such disorders are individually rare, together, 
they affect an estimated 5% of the world’s population (Rahit and Tarailo- Graovac, 2020).
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Common complex disease
Common complex diseases lack simple Mendelian patterns of inheritance. These disorders are 
thought to be a consequence of genetic variation in many loci and environmental factors, whose 
interplay remains little understood and difficult to study.

https://doi.org/10.7554/eLife.88231

	Understanding genetic variants in context
	Introduction
	Variant effect mapping in genetic context
	Variant effect mapping in cell, tissue, and developmental contexts
	Variant effect mapping in environmental context
	Multiplex assays of variant effect in context to decipher mechanisms, improve disease risk predictions, and facilitate prevention and treatment
	Acknowledgements
	Additional information
	Competing interests
	Funding
	Author contributions
	Author ORCIDs

	References
	Appendix 1
	Glossary of the terms used herein
	Variant of uncertain significance
	Heritability
	Dominance
	Epistasis
	Pleiotropy
	Liability
	Variant penetrance
	Variant expressivity
	Rare genetic variants
	Common genetic variants
	Mendelian disease
	Common complex disease




