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Based on the Hohai model, a creep constitutive model of viscoelastic-plastic soft rock with joint 
fracture damage is proposed to solve the rheological failure problem in soft rock tunnels surrounding 
rock. Based on the proposed creep model of rock with joint damage and the current analytical analysis 
method of circular tunnel, the analytical formulas of viscoelastic-viscoplastic stress and displacement 
of circular tunnel with joint damage surrounding rock are derived. ABAQUS finite element software is 
used to simulate the excavation of surrounding rock with different joint angles. The numerical solution 
is compared with the analytical solution to verify the accuracy of the theoretical formula. The results 
show that when the joint inclination is 45°, the displacement values of the two are 16.36 mm and 
16.87 mm respectively. The error of the two is 3.02%. The theoretical calculation is in good agreement 
with the numerical simulation results, verifying the rationality of the derived analytical formula of 
viscoelastic-viscoplastic stress and displacement of soft rock tunnel with joint damage.
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The joints in rock masses are common geological structure, which is an important factor affecting rock stability. 
The presence of joints affects the deformation characteristics, stress changes, and integrity of tunnel surrounding 
rock more complex.1–3 When a tunnel passes through weak surrounding rock with developed joints, it is highly 
prone to engineering disasters such as the large deformation of the surrounding rock, deformation and distortion 
of the steel frame, and cracking of the secondary lining.4 The existence of joints greatly reduces the strength of 
rock masses, and the factors affecting the strength of jointed rock masses are often related to factors such as joint 
inclination angle, joint spacing, penetration rate, and joint roughness.5 The existence of joints makes the creep 
characteristics of rock masses more complex. How to define joint damage considering the primary joint, load-
bearing joint and their mutual influence, which requires further research on the influence of joint damage on the 
stability of surrounding rock.

The creep effect of rock mass is an important cause of time-dependent deformation and even instability 
failure in tunnel engineering, mining engineering and slope engineering.6–8 It is crucial to establish a creep 
model that can describe the creep characteristics of rock mass throughout the entire process.9 The scholars have 
conducted research in this field and achieved a series of results in the viscoelastic plastic rheological constitutive 
model of rock masses. Steipi et al. described the viscoplastic parameters in the Nishihara model as a function of 
viscoplastic strain and proposed an improved Nishihara model.10 Gao et al. proposed a nonlinear rheological 
model that considers the effects of temperature and humidity.11 Xia et al. analyzed a unified rheological model 
containing four basic rheological elements.12,13 Although significant progress has been made in research,14,15 
there are still some shortcomings. For example, most of the current creep constitutive models only study the 
complete rock mass, and the influence of the structural plane existing in the rock mass is not taken into account. 
Moreover, the built models are not suitable for simulating the failure process of the rock mass joint plane.

For tunnel engineering, the primary concerning issue is the stability of the surrounding rock after tunnel 
excavation. When analyzing the stability of jointed rock tunnels, the focus is usually on the displacement, stress, 
size and distribution of plastic zones in the surrounding rock. Therefore, scholars have conducted in-depth 
research on the plastic zone of tunnel surrounding rock in combination with engineering background. Jing 
et al. derived the boundary equation of the plastic zone of surrounding rock under non-uniform field based 
on the Drucker-Prager criterion, converted the equivalent radius of non circular section tunnels, analyzed 
the shape of the plastic zone under different lateral pressure coefficients, and used the single factor method 
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to analyze the influencing factors of the plastic zone under different DP criteria.16 Taking Hualian high-speed 
Dongmachang No. 1 tunnel as an example, Nie et al. derived the invisible equation of the plastic zone radius of 
circular tunnel under non-isobaric conditions based on the Hoek–Brown strength criterion. The plastic zone 
radius was calculated using MATLAB mathematical software. Numerical simulations were conducted using 
FLAC3D finite difference software for comparative verification.17 Chen et al. introduced the nonlinear strength 
characteristics of rocks and established a logarithmic strain equation for the surrounding rock of deep buried 
tunnels. Considering the strain hardening characteristics of rocks, they proposed a finite strain analysis method 
based on the unified strain hardening strain softening and nonlinear shear dilation model for elastic–plastic 
coupling of surrounding rock.18 Bour et al. conducted a theoretical analysis on the stress distribution of the 
surrounding rock considering strain softening based on the variation law of the cohesive force of the borehole 
surrounding rock, and determined the theoretical formula for the plastic zone radius.19 So far, scholars have 
made significant achievements in the theoretical research of the plastic zone of surrounding rocks,20–22 but there 
are still some shortcomings: Firstly, a large number of studies only focus on solving the range of the plastic 
zone of the intact rock mass, and few studies have been done on the rock mass with joint cracks. The stress and 
displacement in the plastic zone of the tunnel have complicated changes with the joint dip angle, so further 
studies are needed. Secondly, when constructing the creep constitutive equation of rock mass, the joint damage 
characteristics of the rock mass are ignored, and only the classical constitutive model is used to solve the stress 
and displacement in the plastic zone of the tunnel. Its rationality needs to be discussed.

Therefore, building upon the current analytical method for circular tunnels, this study posits that the 
constitutive relationship of the surrounding rock adheres to the creep constitutive model of jointed damage 
rock. The analytical formulas for the viscoelastic plastic stress and displacement of circular tunnels containing 
jointed damage surrounding rock are derived and solved. The ABAQUS finite element analysis software is used 
for numerical simulation. The numerical solution is compared with the analytical solution to verify the accuracy 
of the theoretical formula calculation.

Derivation of viscoelastic plastic analytical formula for circular tunnels
Basic assumptions
Definition of joint damage variables
Assuming J0, Jβ , Js, J1, J2 represent the total number of joint damage elements, the original joint damage, the 
damage generated after being loaded, the damage caused by the interaction between the joint and the load, and 
the undamaged part, respectively.

The initial joint damage Dβ  is represented as the proportion of primary joint damage to total damage.

	
Dβ = Jβ

J0
� (1)

After being subjected to a load, if the joint expands or new joints are formed, the damage variable DS  of the 
jointed rock mass under load is defined as

	
DS = JS − J1

J0 − Jβ
� (2)

In summary, the total damage variable Dt of the jointed rock mass under load can be defined based on the final 
degree of damage to the rock mass,

	
Dt = JS + Jβ − J1

J0
� (3)

Substituting Eqs. (1) and (2) into Eq. (3) yields the relationship between primary joint damage, damage under 
load, and total damage,

	 Dt = DS + Dβ − DSDβ � (4)

According to Eq. (4), it can be seen that after the jointed rock mass is subjected to external loads, the stress 
concentration in the joint area accelerates the damage and failure of the rock mass, and the weakening caused by 
the coupling of joints and loads can be represented by DSDβ .

The elastic modulus, as a key parameter describing the elastic deformation stage of materials, indirectly 
evaluates the initial damage degree Dβ  by effectively measuring the initial loss of jointed rock masses,

	
Dβ = 1 − Eβ

E0
� (5)

where Eβ  represents the elastic modulus of rock masses with different joint angles.
Assuming that the strength of rock microelements follows the Weibull statistical distribution law, the variable 

of rock damage under load can be represented by Eq. (6).

	
Ds =

∫ P ∗

0
F (P ∗)dP = 1 − exp

[
−

(
P ∗

P0

)a]
� (6)
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where a and P0 are statistical distribution parameters that are related to the mechanical properties of the 
material. P ∗ is the statistical distribution variable of microelement strength.

	
Dt = 1 − Eβ

E0
exp

[
−

(
P ∗

P0

)a]
� (7)

According to the generalized principle of strain equivalence, the initial damage inside the jointed rock mass is 
regarded as the first damage state, and the total damage generated by the combination of joint damage and load 
damage is regarded as the second damage state. Therefore, the damage constitutive relationship of the jointed 
rock mass can be expressed as

	
σ = εEβ exp

[
−

(
P ∗

P0

)a]
� (8)

In order to make the joint damage model more specific and reflect the characteristics of joint damage, the joint 
damage model components are proposed as shown in Fig. 1.

Creep constitutive model
Through comparison and discussion with reference,23 it is found that the Hohai model can better describe the 
instantaneous deformation, attenuation creep, steady-state creep elastic aftereffect, and relaxation properties of 
rocks during rheological behavior. However, it do not consider the influence of joint damage on rock strength. 
Therefore, the creep constitutive model containing joint damage is obtained by combining as shown in Fig. 2.

The first part is joint damage elastic elements,

	
σ0 = ε0E0 exp

[
−

(
P ∗

P0

)a]
� (9)

The second part is about adhesive damage components,

	
σ3 = σs + η3 (1 − Dt)

dε3/dt

2t
� (10)

The third and fourth parts are all Kelvin model components,

	





σ1 = E1ε1 + η1
dε1

dt

σ2 = E2ε2 + η2
dε2

dt

� (11)

If the damage creep constitutive model satisfies the series parallel connection rule of the component rheological 
model, then

Fig. 2.  Schematic diagram of creep element model with joint damage, where E0, E1 and E2 are the elastic 
modulus of the elastic element and Kelvin model element. σ0, σs, σ1 and σ2 are the stress of the elastic 
element, viscous element, and Kelvin model element. η1, η2 and η3 are the viscosity coefficient of the Kelvin 
model element and viscous element. Dt is the joint damage.

 

Fig. 1.  Schematic diagram of joint damage element model.
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{
σ = σ0 = σ1 = σ2 = σ3

ε = ε0 + ε1 + ε2 + ε3
� (12)

When all components participate in the creep process, substituting Eqs. (9)–(11) into Eq.  (12) yields the 
constitutive relationship for joint damage creep,

	

ε̈ +
(

E1

η1
+ E2

η2

)
ε̇ + E1E2

η1η2
ε = 2 (σ − σs)

η3(1 − Dt)
+

(
E1

η1
+ E2

η2

)
2 (σ − σs) t

η3(1 − Dt)
+ E1E2

η1η2

(σ − σs) t2

η3(1 − Dt)

+ 1
E0 (1 − Dt)

σ̈ +
[

1
E0 (1 − Dt)

(
E1

η1
+ E2

η2

)
+ η1 + η2

η1η2

2t

η3(1 − Dt)

]
σ̇

+
(

E0 (1 − Dt) (E1 + E2) + E1E2

E0 (1 − Dt) η1η2

)
σ

� (13)

In the early stage of creep, i.e., t = 0 and σ0 < σs the initial condition is

	

{
σ̇ = σ̈ = 0
ε̇ = ε̈ = 0 � (14)

Substitute Eq. (14) into Eqs. (9) and (11), and perform Laplace transform to obtain

	
L(ε(t)) = σ

E0 (1 − Dt)
· 1

s
+ σ

(η1s + E1) · 1
s

+ σ

(η2s + E2) · 1
s

� (15)

The joint damage creep constitutive model obtained by performing inverse Laplace transform on Eq. (15) when 
t = 0 and σ0 < σs

	
ε = σ

E0 (1 − Dt)
+ σ

E1

(
1 − e

− E1
η1

t
)

+ σ

E2

(
1 − e

− E2
η2

t
)

� (16)

When σ0 ≥ σs, By combining Eqs. (9–14), it can be concluded that

	
ε = σ

E0
exp

[(
P ∗

P0

)a]
+ σ

E1

(
1 − e

− E1
η1

t
)

+ σ

E2

(
1 − e

− E2
η2

t
)

+ σ − σs

η3 (1 − Dt)
t2� (17)

where L(ε(t)) represents performing Laplace transform on ε(t), S represents the Laplacian variable.

The one-dimensional joint damage creep constitutive equation derived above is only applicable to uniaxial stress 
states. The physical component model is limited to representing the one-dimensional creep differential model. 
However, three-dimensional rheological models have complex stresses and it is difficult to express them using 
component models. Consequently, analogical methods are usually used to derive them from one-dimensional 
to three-dimensional.

According to the elastic–plastic theory, the stress tensor σij  can be decomposed into the spherical stress 
tensor σm and the deviatoric stress tensor Sij .

	

{
σm = 3Kεm

Sij = 2Geij
� (18)

The spherical stress tensor and deviatoric stress tensor of rocks under conventional triaxial stress state (σ2 = σ3
) are expressed as

	




σm = 2
3 (σ1 + σ2 + σ3) = 2

3 (σ1 + 2σ3)

Sij = 2
3 (σ1 − σ3)

� (19)

where εm is the spherical strain tensor, εm is the deviatoric strain tensor.

Substituting Eq.  (19) into Eq. (18) yields

	





εm = 2 (σ1 + 2σ3)
9K

eij = σ1 − σ3

3G

� (20)

Scientific Reports |        (2024) 14:30120 4| https://doi.org/10.1038/s41598-024-81540-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


For the viscoplastic model, the creep equation under three-dimensional stress state is

	




eij = 0,
(
(Sij)0

)
< σs

eij = Sij − σs

2η
t,

(
(Sij)0

)
≥ σs

� (21)

The constitutive equation of a nonlinear sticky pot model under three-dimensional stress state can be expressed 
as

	





eij = 0,
(
(Sij)0

)
< σs

eij =
(Sij)0
4ηL

t2,
(
(Sij)0

)
≥ σs

� (22)

By analogy with the one-dimensional form of Eq. (17), Eqs. (20) and (21) are substituted into Eq. (17). and σ 
in Eq. (17) is replaced by a constant deviatoric stress (Sij)0 in rock tests. Finally, based on the superposition 
principle, the deviatoric strain tensor of the joint damage creep constitutive equation under three-dimensional 
stress state can be obtained as

	




eij = σm

2G0 (1 − Dt)
+

(Sij)0
2G1

(
1 − e

− G1
η1

t
)

+
(Sij)0
2G2

(
1 − e

− G2
η2

t
)

,
(
(Sij)0

)
≥ σs

eij = σm

2G0 (1 − Dt)
+

(Sij)0
2G1

(
1 − e

− G1
η1

t
)

+
(Sij)0
2G2

(
1 − e

− G2
η2

t
)

+
(Sij)0 − σs

2η3 (1 − Dt)
t2,

(
(Sij)0

)
≥ σs

� (23)

Because strain tensors can be decomposed into spherical strain tensors εm and deviatoric strain tensors eij , 
substituting Eqs. (20) into (23) yields the total axial deformation of the rock,

	
ε1 = 2 (σ1 + 2σ3)

9K
+ σ1 − σ3

3G0 (1 − Dt)
+ σ1 − σ3

3G1

(
1 − e

− G1
η1

t
)

+ σ1 − σ3

3G2
(1 − e

− G2
η2

t) + σ1 − σ3 − σs

3η3 (1 − Dt)
t2� (24)

where ε3 = σ3/3K  can be obtained. Therefore, the total rock strain under principal stress (σ1 − σ3) can be 
transformed from Eqs. (24) to  (25),

	
ε1 − 2σ3

3K
= 2 (σ1 − σ3)

9K
+ σ1 − σ3

3G0 (1 − Dt)
+ σ1 − σ3

3G1

(
1 − e

− G1
η1

t
)

+ σ1 − σ3

3G2

(
1 − e

− G2
η2

t
)

+ σ1 − σ3 − σs

3η3 (1 − Dt)
t2� (25)

The total strain of the rock in the triaxial state is ε = ε1 + ε2 + ε3 = ε1 + 2ε3, and considering that the rock is 
positively compressed and negatively tensioned, therefore ε3 is negative, Eq. (25) can be written as

	
ε = 2 (σ1 − σ3)

9K
+ σ1 − σ3

3G0

1
(1 − Dt)

+ σ1 − σ3

3G1

(
1 − e

− G1
η1

t
)

+ σ1 − σ3

3G2

(
1 − e

− G2
η2

t
)

+ σ1 − σ3 − σs

3η3 (1 − Dt)
t2� (26)

The relationship between elastic modulus E, bulk modulus K , Poisson’s ratio µ, and shear modulus G is shown 
in Eqs. (27) and (28).

	 E = 3K (1 − 2µ)� (27)

	
G = E

2 (1 + µ) � (28)

When t = 0, the initial strain of the rock can be obtained according to Eqs. (26–28).

	

ε0 = 2 (σ1 − σ3)
9K

+ σ1 − σ3

3G0

1
(1 − Dt)

=
[

2 (1 − 2µ)
3E1

+ 2 (1 + µ)
3E3 (1 − Dt)

]
(σ1 − σ3)

� (29)

By combining Eqs. (17), (18) and (23) with the concepts of stress tensor and strain tensor, the total deformation 
of three-dimensional joint damage creep can be obtained as

	

ε =





2 (σ1 − σ3)
9K

+ σ1 − σ3

3G0

1
(1 − Dt)

+ σ1 − σ3

3G1

(
1 − e

− G1
η1

t
)

+ σ1 − σ3

3G2

(
1 − e

− G2
η2

t
)

, (σ1 − σ3) < σs

2 (σ1 − σ3)
9K

+ σ1 − σ3

3G0

1
(1 − Dt)

+ σ1 − σ3

3G1

(
1 − e

− G1
η1

t
)

+ σ1 − σ3

3G2

(
1 − e

− G2
η2

t
)

+ σ1 − σ3 − σs

3η3 (1 − Dt)
t2, (σ1 − σ3) ≥ σs

� (30)

Model parameters identification
In this study, the parameters of constitutive model are identified by the least square method, Levenberg–
Marquardt algorithm and curve decomposition method. Parameter identification of the creep constitutive model 
of joint damage can be divided into two parts, namely, joint parameter identification and creep model parameter 
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identification. The following text takes the joint dip angle of 45° as an example. The calculation formula for joint 
damage parameter P0 and a are as follows,

	
a =

[
ln

(
Eθεc

σc − 2µθσ3

)]−1

� (31)

	
P0 = E0εc

σc − 2µθσ3

[
α (σc + 2σ3) + 1√

3
(σc − σ3)

]
(a)

1
a � (32)

where σ3 is lateral nominal stress. E0 is the elastic modulus of intact rock. Eθ  is the elastic modulus of rock 
mass with joint dip angle θ. µθ  is the Poisson’s ratio of rock mass with joint dip angle θ. σc is creep stress. εc is 
creep strain.

The identification of creep model parameters is divided into two stages, namely the the pre-accelerated creep 
stage and the accelerated creep stage. For the pre-accelerated creep stage of carbonaceous shale, the least squares 
method can be applied to Eq.  (30) to determine the model parameters of the first three parts of the three-
dimensional constitutive model, For the accelerated creep stage curve, nonlinear least squares method is used 
to Eq. (30) to first determine modulus of elasticity K , shear modulus G0, G1 and G2, coefficient of viscosity 
η1 and η2. Then the least squares method is used to fit the second part of the creep test curve, finally obtaining 
the nonlinear clay pot parameter η3. The fitting curve is shown in the Fig. 3. The fitting equation is listed in the 
Table 1.

All parameters of the creep constitutive model for 45° joint fissures identified by parameter identification are 
shown in Table 2.

Mechanical model
Because the longitudinal length of the circular cavity is much larger than the size of the transverse section, the 
mechanical analysis of the circular cavity structure can be simplified to the plane strain problem. Due to the 

K/GPa G0/GPa G1/GPa G2/GPa η1/ (GPa · h) η2/ (GPa · h) η3/ (GPa · h) a P0
16.73 10.53 51.66 52.85 19.73 250.42 92.864 0.426 1586.54

Table 2.  Parameters of joint damage creep model.

 

Curve Fitting curve equation R2

Part I fitting curve equation ε = 0.23125 + 0.01226 × (1 − e−2.61837×t) + 0.00426 × (1 − e−2.56863×t) 0.9984

Part II fitting curve equation ε = 0.2041 + 0.00341 × t2 0.9979

Table 1.  Creep curve fitting equation.

 

Fig. 3.  Rheological curve fitting diagram for parameter identification of carbonaceous slate.

 

Scientific Reports |        (2024) 14:30120 6| https://doi.org/10.1038/s41598-024-81540-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


complex and changeable conditions of surrounding rock in practical engineering, it is necessary to simplify 
the theoretical analysis. The surrounding rock material is regarded as an ideal viscoelastic-plastic material. The 
following assumptions are made.

	(1)	� The surrounding rock is considered a continuous, homogeneous and isotropic medium.
	(2)	� Within the range of the plastic zone, the rock mass conforms to the Hoek Brown strength criterion.
	(3)	� The surrounding rock in the plastic zone after yielding complies with the flow law of rock volume expan-

sion.
	(4)	� The small elastic deformation caused by stress redistribution in the yielding surrounding rock can be disre-

garded.
	(5)	� The support resistance is assumed to be uniformly distributed radially.

Based on the above assumption, the calculation diagram of the circular tunnel model is shown in Fig. 4. Where 
ρ0 is the range of the circular tunnel, ρp is the range of the viscoplastic zone. σ0 is the original rock stress. When 
ρ0 < ρ < ρp, it is the viscoplastic zone. When ρ > ρp, it is the viscoelastic zone.

Stress solution in viscoelastic zone
In a polar coordinate system, its geometric equation is

	




∂uρ

∂ρ
= ερ

uρ

ρ
= εθ

� (33)

where uρ represents the radial displacement of the surrounding rock of the tunnel. ερ is the radial strain εθ  of 
the surrounding rock of the cavern. The tangential strain of the surrounding rock of the tunnel.

According to the theory of linear elasticity, the static equilibrium equation for elastic problems is

	
∂σρ

∂ρ
+ σρ − σθ

ρ
= 0� (34)

where ρ is the distance from any point around the cave to the center of the cave. σρ is the radial stress in the 
surrounding strata of the cave. σθ  represents the tangential stress in the surrounding strata of the cave.

The boundary conditions of the viscoelastic zone are

Fig. 4.  Calculation diagram of circular tunnel.
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{
ρ = ρp, σp

ρ = σe
ρ

ρ = +∞, σρ = σ0 � (35)

Due to the redistribution of surrounding rock stress caused by tunnel excavation, a secondary stress state 
develops. The radial stress of the surrounding rock tends to decrease from a distance to the center of the tunnel, 
and decreases to 0 at the tunnel wall. Considering that the radial stress of the surrounding rock is released when 
there is no support, the radial stress at any point in the surrounding rock can be expressed as

	 σρ = (1 − ξ) σ0� (36)

where ξ is the stress release coefficient of the surrounding rock, which is related to the range of influence of the 
palm face.

According to the rock creep curve, its elastic strain εe and creep strain εc together constitute the total strain of 
the viscoelastic zone ε, as shown in Eq. (37).

	 εe + εc = ε� (37)

For the creep constitutive plane strain problem considering joint damage, the elastic strain follows the generalized 
Hooke’s law. The radial and tangential elastic strains are shown in Eq. (38).

	




εe
ρ = 1 − ν2

E0(1 − Dt)
σρ − ν + ν2

E0(1 − Dt)
σθ

εe
θ = ν + ν2

E0(1 − Dt)
σρ + 1 − ν2

E0(1 − Dt)
σθ

� (38)

Assuming that creep only depends on the deviation part of the stress tensor and the volume is constant,24 the 
creep strain can be expressed as

	




εc
ρ = −σρ − σθ

4E1
f (t)

εc
θ = σρ − σθ

4E1
f (t)

� (39)

where f (t) = 1 − e
− E1t

η1 .

Therefore, the total strain of the surrounding rock before yielding can be represented by Eqs. (38) and (39) as

	




ερ = 1 − ν2

E0(1 − Dt)
σρ − ν + ν2

E0(1 − Dt)
σθ − σρ − σθ

4E1
f (t)

εθ = ν + ν2

E0(1 − Dt)
σρ + 1 − ν2

E0(1 − Dt)
σθ + σρ − σθ

4E1
f (t)

� (40)

According to the solution to the plane strain problem in the elastic zone proposed by Mitchell, combined with 
Eq. (36), the stress distribution solution of the surrounding rock in the viscoelastic zone can be obtained,

	




σρ =
(

1 − ξ
ρ2

0

ρ2

)
σ0

σθ =
(

1 + ξ
ρ2

0

ρ2

)
σ0

� (41)

Solution of displacement in viscoelastic zone
Substituting Eq. (41) into Eq. (40) yields

	




ερ = 1 − ν2

E0(1 − Dt)

(
1 − ξ

ρ2
0

ρ2

)
σ0 − ν + ν2

E0(1 − Dt)

(
1 + ξ

ρ2
0

ρ2

)
σ0 + σ0ξ

2E1

ρ2
0

ρ2 f (t)

εθ = ν + ν2

E0(1 − Dt)

(
1 − ξ

ρ2
0

ρ2

)
σ0 + 1 − ν2

E0(1 − Dt)

(
1 + ξ

ρ2
0

ρ2

)
σ0 − σ0ξ

2E1

ρ2
0

ρ2 f (t)
� (42)

Simplification can be obtained,
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



ερ = σ0

E0(1 − Dt)

(
1 − ν − 2ν2 − (1 + ν) ξ

ρ2
0

ρ2

)
+ σ0ξ

2E1

ρ2
0

ρ2 f (t)

εθ = σ0

E0(1 − Dt)

(
1 + ν +

(
1 − ν − 2ν2)

ξ
ρ2

0

ρ2

)
− σ0ξ

2E1

ρ2
0

ρ2 f (t)
� (43)

For the surrounding rock of a deeply buried tunnel in an isotropic and isobaric state, its Poisson’s ratio can be 
taken as 0.5. Therefore, the total viscoelastic strain in the viscoelastic zone of a circular tunnel is

	




ερ = −ξσ0

2

(
3

E0(1 − Dt)
− 1 − e

− E1t
η1

E1

) (
ρ0

ρ

)2

εθ = σ0

2

[
3

E0(1 − Dt)
− ξ

1 − e
− E1t

η1

E1

(
ρ0

ρ

)2
] � (44)

Stress solution in the viscoplastic zone
In the range of the viscoelastic plastic zone of a circular tunnel, when the boundary interface is the range of 
the plastic zone, i.e. ρ = ρp, the radial stress on the boundary interface of the viscoelastic plastic zone is equal. 
Combining the Hoek Brown criterion with the equilibrium equation, the following equation system is obtained,

	




∂σρ

∂ρ
+ σρ − σθ

ρ
= 0

σρ = σθ + σc

(
mσθ

σc
+ s

) 1
2

σp
ρ

∣∣
ρ=ρp = σe

ρ

∣∣
ρ=ρp =

(
1 − ξ

ρ2
0

ρ2

)
σ0

� (45)

According to Eq. (45), it can be concluded that

	




1
σρ − σθ

∂σρ = 1
ρ

∂ρ

σρ − σθ = σc

(
mσθ

σc
+ s

) 1
2

� (46)

According to the third equation in Eq. (45),25 it can be concluded that

	

∫ σρ

(
1−ξ

ρ2
0

ρ2
p

)
σ0

1√
mσρσc + sσ2

c

∂σρ =
∫ ρ

ρp

1
ρ

∂ρ� (47)

By solving Eq. (47), the radial stress within the viscoplastic zone of a circular tunnel can be obtained as

	
σρ =

(
1 − ξ

ρ2
0

ρ2
p

)
σ0 +

√
σ2

c
s +

(
1 − ξ

ρ2
0

ρ2
p

)
mσcσ0 ln

(
ρ

ρp

)
+1

4mσc

[
ln

(
ρ

ρp

)]2

� (48)

By substituting the radial stress within the viscoplastic zone into the Hoek Brown strength criterion, the 
tangential stress within the viscoplastic zone can be obtained,

	

σθ =
(

1 − ξ
ρ2

0

ρ2
p

)
σ0 +

√
σ2

c
s +

(
1 − ξ

ρ2
0

ρ2
p

)
mσcσ0 ln

(
ρp

ρ

)
+1

4mσc

[
ln

(
ρp

ρ

)]2

+1
2mσc +

√
sσ2

c
+ 1

4m2σ2
c

+ mσcσρ

� (49)

Solution of displacement in the viscoplastic zone
The strain of surrounding rock within the viscoplastic zone is composed of elastic strain εe

ρ, creep strain εc
ρ and 

plastic strain εp
ρ, as shown in Eq. (50).

	

{
ερ = εe

ρ + εc
ρ + εp

ρ

εθ = εe
θ + εc

θ + εp
θ

� (50)

According to the assumption (3), the flow rule of rock mass volume expansion is obtained by combining Eqs. 
(31) and (47),
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∂u

∂ρ
+ η

u

ρ
= εe

ρ + εc
ρ + η (εe

θ + εc
θ)� (51)

where η is the plastic expansion coefficient.

Since the elastic strain and creep strain of the surrounding rock do not occur volume strain before yielding, it 
can be obtained that

	

{
εe

ρ + εe
θ = 0

εc
ρ + εc

θ = 0
� (52)

Substituting Eq. (52) into Eq. (51) yields

	
∂u

∂ρ
+ η

u

ρ
= (η − 1) (εe

θ + εc
θ)� (53)

According to the creep constitutive Eq. (17) and the total strain Eq. (43) of the viscoelastic zone, the creep strain 
of the viscoplastic zone is

	




εc
ρ = −σρ − σθ

4E1

(
1 − e

− E1t
η1

)
− σρ − σθ

4E2

(
1 − e

− E2t
η2

)
− σρ − σθ − σs

2η3 (1 − Dt)
t2

εc
θ = σρ − σθ

4E1

(
1 − e

− E1t
η1

)
+ σρ − σθ

4E2

(
1 − e

− E2t
η2

)
+ σρ − σθ − σs

2η3 (1 − Dt)
t2

� (54)

For the model in this paper, it is assumed that the small deformation caused by stress redistribution has a weak 
influence on the elastic strain, so it can be ignored. At this time, the elastic strain in the viscoelastoplastic region 
has been completed, and it is considered that the elastic strain at the interface of the viscoelastic region and the 
viscoplastic region (i.e. ρ = ρp) is equal. Therefore, it can be concluded that

	
εe

θ = σ0

E0(1 − Dt)

(
1 + ν +

(
1 − ν − 2ν2)

ξ
ρ2

0

ρ2

)
� (55)

There is a positive proportional relationship between the principal stress difference and creep strain. In order to 
facilitate problem-solving, the average creep strain obtained from the difference between the creep strain outside 
the viscoelastic zone and the stress difference at the circular cavity wall is taken as an the approximate value for 
the creep strain of the surrounding rock in the viscoelastic zone.26

	

εc
θ = ξ

σ0ρ2
0

(
1 − e

− E1t
η1

)

4E1ρ2
p

+
σ0 (1 + ξ)

(
1 − e

− E1t
η1

)

8E1
+ σ0 (1 + ξ)

4η3 (1 − Dt)
t2

+
σ0 (1 + ξ) −

√
sσ2

c
− 1

2 m2σ2
c

log2 (ρp) + mσc

(
1 + ξ

ρ2
0

ρ2
p

)
σ0

4η2
t

� (56)

For the interface between the viscoelastic zone and the viscoplastic zone, both radial displacement and tangential 
strain are equal. By integrating Eq. (53), the solution for the tangential strain in the viscoplastic zone can be 
obtained.

	
εθ = η − 1

η + 1

[(
ρp

ρ

)η+1

− 1

]
(εe

θ + εc
θ) −

(
ρp

ρ

)η+1

A� (57)

where A = σ0
2

[
3

E0(1−Dt) − ξ 1−e
− E1t

η1
E1

(
ρ0
ρ

)2
]

. A is the solution for tangential strain in the viscoelastic 

region.

According to Eq. (56), the solution for radial strain in the viscoplastic zone is

	
ερ = σ0

2

[
3

E0(1 − Dt)
− ξ

1 − e
− E1t

η1

E1

(
ρ0

ρ

)2
] (

ρp

ρ

)η+1

+ η − 1
η + 1

[
1 +

(
ρp

ρ

)η+1
]

(εe
θ + εc

θ)� (58)
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Calculation of plastic zone range

The radial stress in the plastic zone at the inner boundary of the surrounding rock is σρ =
(

1 − ξe
ρ2

0
ρ2

)
σ0

, which conforms to the Hoek Brown strength criterion. It can be obtained by substituting it into the second 
equation of Eq. (45),

	
ξe = 1 − σc

√
s

σ0
� (59)

where ξe is the stress release coefficient of the surrounding rock with a viscoelastic boundary. The circumferential 
stress σθ  is 0.

For the surrounding rock within the plastic zone of a circular tunnel, the stress release coefficient ξ > ξe. When 
the stress release coefficient of the surrounding rock increases, the range of the plastic zone also correspondingly 
increases. The stress at the interface between the tunnel wall and surrounding rock is σρ |ρ=ρ0 = (1 − ξe) σ0
. By substituting the boundary conditions into the radial stress Eq.  (48) in the viscous plastic zone, it can be 
obtained that

	

(
1 − ξ

ρ2
0

ρ2
p

)
σ0 +

√
σ2

c
s +

(
1 − ξ

ρ2
0

ρ2
p

)
mσcσ0 ln

(
ρp

ρ0

)
+1

4mσc

[
ln

(
ρp

ρ0

)]2

− σc

√
s = 0� (60)

where ξ is the stress release coefficient of the surrounding rock. ρ0 is the excavation range of the tunnel. ρp is 
the range of the viscoplastic zone. σ0 is the initial stress. σc is the compressive strength of rock. m and s are the 
parameters for the Hoek Brown strength criterion. Equation (60) contains only one unknown range of plastic 
zone of surrounding rock. So the range of plastic zone of circular tunnel can be obtained by solving this equation.

Example analysis
Numerical model construction
In order to verify the feasibility of the theoretical calculation, the analytical solution based on the formula in 
the paper is compared with the numerical simulation numerical solution. ABAQUS finite element software is 
used to simulate and analyze the excavation of surrounding rock with joint inclination angles of 0°, 30°, 45°, 
60° and 90°, respectively. Taking the surrounding rock tunnel model with joint inclination angles of 0° and 
45° as an example, numerical models are established as shown in Fig. 5. The length, width and height of the 
surrounding rock model are 80 m, 80 m and 10 m respectively, The width and height of the tunnel excavation 
are 12.5 m and 9.5 m. The distance between the bottom of the tunnel and the ground surface is 40 m. To better 
simulate joint damage, the joint thickness is 40 cm and the joint spacing is 4 m. The material properties used in 
the surrounding rock are the material constitutive relationships developed for the secondary development of the 
joint damage creep model established. The parameters of the joint creep model are listed in Table 3.

Analysis of surrounding rock displacement
Figure 6 shows the displacement cloud maps of ABAQUS post-processing output joints with inclination angles of 
0°, 30°, 45°, 60° and 90° during excavation of surrounding rock with different joint damage. From Fig. 5, it can be 
seen that joint damage causes a stepped change in the displacement of the surrounding rock. The displacement 
of the surrounding rock shows a layered and symmetrical arrangement with the depth of the surrounding rock, 
and gradually increases from the surface downwards. The inner surrounding rock of the tunnel is subjected to 
greater load and more severe compression displacement deformation due to the superposition of the self weight 
of the outer surrounding rock. At the top of the tunnel arch, the displacement reaches its maximum value, 

Fig. 5.  Numerical simulation diagram of surrounding rock tunnel.
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which is due to the weak support caused by tunnel excavation and the increased settlement of the arch; The 
displacement of the surrounding rock gradually decreases from the bottom of the inverted arch downwards. This 
is due to the redistribution of stress in the surrounding rock caused by tunnel excavation, and the surrounding 
rock around the tunnel compresses each other, resulting in uplift at the bottom of the inverted arch. Therefore, 
the displacement at the inverted arch is greater than that of the surrounding rock below it.

Fig. 6.  Displacement cloud map of surrounding rock with different joint angles.

 

Joint inclination angle K/GPa G0/GPa G1/GPa G2/GPa η1/GPa·h η2/GPa·h η3/GPa·h a P0 R2

0° 29.67 18.67 82.89 79.66 44.92 214.65 17.48 1.90 1046.17 0.9956

45° 16.73 10.53 51.66 52.85 19.73 250.42 9.29 0.43 1586.54 0.9982

90° 25.15 14.37 132.88 131.65 56.74 1090.00 36.95 1.54 1106.48 0.9931

Table 3.  Parameters of joint creep model.
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The the vertical displacement of surrounding rock with five different joint angles are plotted in Fig.  7a. 
According to Fig. 7a, it can be seen that the displacement of the surrounding rock around the tunnel gradually 
decreases with the increase of joint inclination angle. When the dip angle of the joint is 0°, the displacement 
of the surrounding rock around the tunnel reaches its maximum. When the dip angle of the joint is 45°, the 
displacement of the surrounding rock around the tunnel has a minimum value or a stable trend of change. 
Taking the left arch shoulder as an example, draw the relationship curve between joint angle and displacement 
as shown in Fig. 7b. As shown in Fig. 7b, when the joint angle is 0°, the displacement of the left arch shoulder of 
the surrounding rock reaches its maximum value of 19.43 mm. When the joint angle increases, the displacement 
sharply decreases, reaching a minimum value of 17.72 mm at a joint angle of 45°. Subsequently, the displacement 
slightly increases with the increase of the joint angle, and finally stabilizes at a joint angle of 90°, with a 
displacement value of 17.93 mm.

Fig. 8.  Comparison between theoretical values and numerical simulations.

 

Joint angle 0° 45° 90°

Plastic zone range /m 24.08 9.49 22.92

Table 4.  Calculation results of plastic zone range.

 

Fig. 7.  Effect of different joint damage on tunnel displacement.
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Comparison of results
In order to verify the reliability of the joint damage rock creep constitutive model proposed in this paper, 
the analytical solution of plastic zone range of circular tunnels was compared with the numerical simulation 
solution. According to reference,27 the parameters m and s of the Hoek Brown criterion are determined. The 
remaining parameters are listed in Table 3. The range of the plastic zone with joint dip angles of 0°, 45° and 90° 
was calculated using the parameters of the joint damage creep model. The calculation results are listed in Table 4.

According to the calculation results of the plastic zone range, the displacement values of the corresponding 
positions of the model in the numerical simulation are extracted, and the numerical simulation results are 
obtained. The range of the plastic zone in Table 4 and the model parameters are substituted into Eqs. (44) and 
(56) respectively to calculate the theoretical values of plastic zone displacement.

From Table 4, it can be seen that as the dip angle of the joint increases, the range of the plastic zone shows a 
trend of first decreasing and then increasing. It is consistent with the study in reference.28 A small plastic range 
zone means that the stress on the surrounding rock of the tunnel is more concentrated. The support structure 
will bear greater pressure, which may cause local damage to the surrounding rock or premature damage or 
failure of the support structure, increasing the risk of tunnel collapse. Figure 8 shows the comparison between 
theoretical displacement values and numerical simulation results for the same plastic zone range. From Fig. 8, 
it can be seen that there is a negative correlation between displacement and joint inclination angle within the 
same plastic zone range. When the dip angle of the joint is 0°, the theoretical displacement value is 24.08 mm, 
the numerical simulation value is 22.31 mm, and the error between the two is 7.93%. When the dip angle of the 
joint is 45°, the displacement values of the two are 16.36 mm and 16.87 mm, respectively, with an error of 3.02%, 
which is relatively small. When the joint inclination angle is 90°, the theoretical displacement is 15.10  mm, 
and the numerical model displacement value is 14.48 mm, with an error of 4.28%. The results indicate that the 
established creep constitutive model with joint damage has good applicability.

Conclusion
This paper focuses on the creep constitutive plane strain problem of jointed damaged surrounding rock, 
and proposes a derivation and solution method for the analytical formulas of viscoelastic plastic stress and 
displacement in circular tunnels with jointed damaged surrounding rock. Based on the creep constitutive 
model of jointed damaged rock proposed in this article and the secondary development of UMAT subroutine, 
numerical simulation calculations of tunnel excavation are completed. The influence of different joint inclination 
angles on surrounding rock displacement is analyzed. The main conclusions are as follows:

	(1)	� On the basis of considering the damage of soft rock joints, the joint damage element model is reorganized 
with the improved Hohai model. A viscoelastic plastic creep constitutive model of soft rock containing joint 
crack damage is proposed. Based on the proposed constitutive model, combined with the generalized Hoek 
Brown strength criterion and the analytical method for circular tunnels, the viscoelastic viscoplastic stress 
and displacement calculation formulas for circular tunnels with joint damage surrounding rock are derived.

	(2)	� By embedding the creep constitutive model of joint damage surrounding rock into UMAT subroutine, AB-
AQUS finite element analysis software is used to numerically simulate the tunnel excavation of surrounding 
rock with joint inclination angles of 0°, 30°, 45°, 60° and 90°, respectively. It can be seen from the results 
that the displacement of surrounding rock presents a layered symmetrical arrangement with the depth of 
surrounding rock, and gradually increases from the surface down. When the joint inclination angle is 0°, 
the displacement of the left arch shoulder surrounding rock reaches the maximum value of 19.43 mm.

	(3)	� The analytical solution of the circular tunnel is compared with the numerical simulation results. When 
the joint inclination angle is 45°, the theoretical and analytical displacement values are are 16.36 mm and 
16.87 mm, respectively. The error of both is 3.02%, which is the smallest error. When the joint inclina-
tion angle is 90°, the theoretical displacement is 15.1 mm, and the numerical model displacement value is 
14.48 mm, with an error of 4.28%.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due [The subject 
needs further research and is inconvenient to be disclosed] but are available from the corresponding author on 
reasonable request.
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