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A phenome-wide association study of
tandem repeat variation in 168,554
individuals from the UK Biobank

Celine A. Manigbas 1, Bharati Jadhav1, Paras Garg1, Mariya Shadrina1,
William Lee1, Gabrielle Altman 1, Alejandro Martin-Trujillo1,2 &
Andrew J. Sharp 1,2

Most genetic association studies focus on binary variants. To identify the
effects of multi-allelic variation of tandem repeats (TRs) on human traits, we
perform direct TR genotyping and phenome-wide association studies in
168,554 individuals from the UK Biobank, identifying 47 TRs showing fine-
mapped associations with 73 traits. We replicate 23 of 31 (74%) of these asso-
ciations in the All of Us cohort. While this set includes several known repeat
expansion disorders, novel associations we found are attributable to common
polymorphic variation in TR length rather than rare expansions and include
e.g. a coding polyhistidinemotif inHRCT1 influencing risk of hypertension and
a poly(CGC) in the 5’UTR of GNB2 influencing heart rate. Fine-mapped TRs are
strongly enriched for associations with local gene expression and DNA
methylation. Our study highlights the contribution of multi-allelic TRs to the
“missing heritability” of the human genome.

Over the past two decades, thousands of genome-wide association
studies (GWAS) have been performed to identify genetic variants that
impact diverse human traits1. However, the almost universal reliance of
GWAS on genotypes of bi-allelic single nucleotide variants (SNVs)
creates certain limitations. Modern GWAS typically perform relatively
sparse genotyping of common SNVs and then infer additional geno-
types through statistical imputation, a process that relies on patterns
of linkage disequilibrium (LD) within the genome. As a result, a fun-
damental limitation of SNV-based GWAS is that they have reduced
ability to assay genetic variants that have low levels of LDwith flanking
SNVs. Accordingly, complex genomic loci that may include multi-
allelic variants that undergo recurrent or high mutation rates are
typically poorly assayed by GWAS, a fact which is believed to con-
tribute to the so-called “missing heritability problem”2.

One class of variant that has been proposed as a candidate to
explain the missing heritability of the genome are tandem repeats
(TRs)3,4. TRs represent a diverse class of sequence element character-
ized by multiple tandem copies of a DNA motif repeated in a head-to-
tail fashion, e.g. CAG-CAG-CAG, with ~1 million of these loci scattered

throughout the human genome. TRs are found within coding, genic
and intergenic regions and comprise a wide diversity of motif sizes,
ranging fromsinglenucleotide repeats, e.g. poly(A), at one extreme, up
to large macrosatellites at the other that are composed of repeated
motif units that can be several kilobases in size5,6. TRs represent some
of the most variable parts of the human genome, with some showing
extremely high levels of length polymorphism andmutation rates that
are typically several orders of magnitude higher than that of SNVs7.
Paradoxically, until the advent of large-scale genome sequencing and
specialized bioinformatic tools8–12, TRs were relatively poorly studied,
often being neglected due to a lack of technologies able to genotype
them at scale.

While extreme expansions of short tandem repeats (STRs) have
been known for >30 years as a cause of rare neurodegenerative and
congenital disorders13, recent studies have shown that common length
polymorphism of both STRs and TRs with larger motif sizes can exert
functional effects on the genome, contributing to inter-individual
differences in gene expression, splicing and DNA methylation14–20.
Studies of large TRs have demonstrated that variation in these can also
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modify human phenotypes21,22 and, for some diseases, TRs represent
the strongest known common genetic risk factors23. However, to date,
only a single published study has attempted to assess the global con-
tribution of STR variation with a small number of human traits24.

To address this knowledge gap, here we leverage available gen-
ome sequencing data to genotype a set of the most polymorphic
human TRs with motif sizes ranging from 2–20 bp in >168,000 indi-
viduals from the UK Biobank (UKB) and use these to perform a
phenome-wide association study (PheWAS), identifying dozens of TRs
that influencehuman traits. Our results highlight thepotential ofmulti-
allelic variants that aremissedby standard SNV-basedGWAS to explain
some of the “missing heritability” of the human genome.

Results
A phenome-wide association study of TRs in the UK Biobank
We identified a set of 48,913 TRs with (i) motif sizes ranging from
2–20bp, (ii) were either highly polymorphic or showed evidence of
rare expansion and (iii) preferentially overlapped either coding
regions, UTRs and regulatory elements or (iv) had high GC-content
(seeMethods). In brief, these had amedian heterozygosity rate of 71%,
97% had motif sizes between 2–6bp, 8% overlapped gene coding
regions or UTRs and 46% overlapped annotated regulatory elements.
Descriptive statistics of this set of TRs are shown in Supplementary
Fig. 1 and Supplementary Data 1.

We generated genotypes for these TRs in a set of 168,554 unre-
lated individuals of European ancestry from the UKB using
ExpansionHunter8 analysis of 150 bp paired-end Illumina genome
sequencing (GS) reads. To ensure that we retained only TRs with high-
quality genotypes, we also genotyped this same set of TRs in 1027
individuals from the All of Us (AoU) cohort that had both Illumina GS
and Pacific Biosciences (PacBio) HiFi GS. Using genotypes derived
from the long-readGSdata as a gold standard,we appliedqualityfilters
to remove TRs where the genotypes showed low technical reprodu-
cibility between the two different sequencing technologies (see
Methods), retaining a final set of 36,085 high-quality polymorphic TRs
(Supplementary Data 1) thatwere used for PheWASwith 30,291 binary,
quantitative and categorical traits in the UKB cohort (Supplemen-
tary Data 2).

Associating average allele size of each TR with every trait, in total
we observed 5378 pairwise TR:trait associations that passed a
Bonferroni-corrected significance threshold of p < 1.45 × 10−10 (Fig. 1)
(Supplementary Data 3 and 4). Genomic inflation was well controlled,
with λ = 1.061 (Supplementary Fig. 2). However, as a result of the LD
structure of the human genome that frequently results in multiple
variants within a locus co-segregating on a single haplotype, we con-
sidered that many of these signals were likely to be indirect associa-
tions resulting from linkage between the genotyped TR and other
causal variant(s) at the same locus. We therefore utilized two com-
plementary approaches to discern the subset of loci where the TR was
the most likely variant underlying the observed trait associations,
namely statistical fine mapping with CAVIAR and conditional analysis
applied to both TR and SNV genotypes.

For each of the 5378 significant TR:trait associations, we first
performed association analysis of the same trait with SNVs located
within ±500 kb of the TR. We then selected the most significant SNV
per TR:trait pair and repeated the association test between the TR and
trait after dividing the cohort based on genotype at the lead SNV.
Doing so identified 864 TR:trait pairs that retained Bonferroni-
significance and were considered as putative independent associa-
tions by conditional analysis (16% of the original set). For finemapping
analysis with CAVIAR, we analyzed the TR together with the top 100
most significantly associated SNVs per locus. Here, we observed 355
TR:trait pairs where fine mapping with CAVIAR ranked the TR as the
most likely variant at the locus and which were considered as putative
independent associations by fine mapping (6.6% of the original set).
Finally, to ensure we identified a stringent set of fine-mapped asso-
ciations, we took the intersection of both of these approaches, defin-
ing 101 TR:trait pairs (1.9% of the original set) that we considered as
high-confidence fine-mapped associations scored by two independent
methods (Supplementary Data 5).

Novel fine-mapped associations are driven by common poly-
morphic variation of TRs rather than extreme expansions
The set of high-confidence fine-mapped associations included eight
TRs that are known to undergo rare expansion to unusually large size,
including six that have been shown to cause dominant repeat
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Fig. 1 | Manhattan plot showing results of PheWAS between 36,085 TRs and
30,291 traits in 168,554 individuals from the UKB. Associations that exceed a
Bonferroni-corrected significance threshold of p < 1.45 × 10−10 (horizontal dashed
line) are shown as colored points. High-confidence fine-mapped variants, corre-
sponding to those identified by two independent methods, are shown as red-filled
points, while all other significant associations are shown as open orange circles.

Note the discontinuous y-axis and modified scale used to show results with −log10
p > 100, which was used to display strong association signals observed at several
loci. Full results are shown in Supplementary Data 3 and 4. P values were calculated
using linear and logistic regression implemented inREGENIE, applying a Bonferroni
correction based on 9531 independent traits and 36,085 TRs analyzed.
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expansion disorders (REDs) and two others (BCL2L11 and CBL) of
indeterminate pathogenicity13,25. For four of these six REDs, the asso-
ciated traits we identified by PheWAS were consistent with the known
phenotypic effects of extremeexpansions (Supplementary Fig. 3), thus
indicating that our analysis pipeline correctly identified true causal
relationships with TR length: “Huntington’s disease” associated with
increased length of a coding CAG repeat in HTT (p = 7.9 × 10−23)26,
“Death due to motor neuron disease” associated with a GGCCCC
repeat intronic within C9orf72 (p = 1.4 x 10−16)27,28, “Hereditary corneal
dystrophies” associated with a CAG repeat intronic in TCF4 (p = 6.3 ×
10−66)29, and “Myotonic disorders” associated with a CAG repeat in the
3′UTR of DMPK (p = 2.1 × 10−48)30.

In order to test whether the other fine-mapped associations we
identified were similarly attributable to rare expanded TR alleles, we
repeated the association test after removing individuals who carried
alleles in the top 5% tail of the allelic distribution at each TR. Results of
this analysis (Fig. 2, Supplementary Data 6) showed that while signals
for these four known RED loci were abolished, as expected, nearly all
other fine-mapped associations we detected by PheWAS retained sig-
nificance, thus indicating that all other TR associationswe detected are
attributable to common allelic variation rather than rare expanded
alleles. This includes novel associations between length of the TCF4
repeatwith impedanceof arm, leukocyte count and lymphocyte count.
Variations in these traits have not been reported in patients with the
RED Fuchs endothelial corneal dystrophy, and which all therefore
appear to be attributable to common allelic variation of this TR.
Similarly, for a polyglutamine TR in the AR gene, although rare
expansions of this TR cause spinal and bulbar muscular atrophy, the
associations we observed between polymorphic CAG repeat alleles
with “Balding pattern” in males are consistent with prior studies that
have demonstrated a role for polymorphism of this TR in male hair
loss31. Three other TRs in our fine-mapped set of associations (a
poly(GCC) motif in the 5′UTR of AFF2, a poly(CGC) motif in the 5′UTR
of BCL2L11 and a poly(CGG)motif in the 5′UTR of CBL) are all known to
undergo rare expansion causing allelic methylation, transcriptional
silencing accompaniedby folate-sensitive fragile sites25,32. In the caseof

AFF2, these expansions also cause the FRAXE RED33. However, our
analysis shows that, aswithTCF4, the associations of length variation in
these TRs with blood cell traits are not the result of extreme expan-
sions, but instead that common polymorphic variation underlies these
phenotypic effects (Supplementary Fig. 4).

Notable among the novel fine-mapped associations is a coding
poly(CCA) motif within exon1 of HRCT1, a gene of unknown function
but which in GTEx data shows the highest expression in arterial tissue
(Supplementary Fig. 5)34. This TR is extremely polymorphic and
encodes a histidine-rich amino acid tract that showeda strongnegative
association with incidence of high blood pressure (p = 4.1 × 10−24) and
use of blood pressure medications (p = 2.9 × 10−14) (Fig. 3). The risk
imparted by this TR is such that individuals carrying the shortest 5% of
HRCT1 TR alleles have, on average, an 11% higher risk of hypertension
than those carrying the longest 5% of alleles.

We also observed novel fine-mapped TRs that overlap genes with
prior evidence implicating themwith the same trait found by PheWAS,
providing circumstantial evidence to support a functional role for
these TRs. For example, we identified a poly(CGC) motif within the
5’UTR of GNB2 that associated with pulse rate (p = 9.6 × 10−14) (Fig. 4).
We found that individuals carrying the shortest 5% of GNB2 TR alleles
have, on average, a pulse rate that is 0.86 beats per minute lower than
those carrying the longest 5% of alleles. In agreement with this, a prior
study identifiedmissensemutations in GNB2 in sick sinus syndrome 4,
a disorder characterized by atrioventricular conduction defects35.
Similarly, we found a poly(AC) motif in the 3′UTR of WNT9A that
associated with standing height (p = 5.2 × 10−16) (Fig. 4). Here, indivi-
duals who carry the shortest 15% ofWNT9A TR alleles are an average of
3.8mm taller than those who carry the longest 15% of alleles, in
agreement with multiple studies in model systems that have shown a
key role for WNT9A in regulating synovial joint formation and chon-
drocyte differentiation36,37.

In order to provide further evidence in support of the TRs in our
high confidence set, we performed conditioning of local SNV asso-
ciations based on the TR genotype. In addition to results for HRCT1
(Fig. 3), other example plots before and after this conditional analysis
are shown in Supplementary Figs. 6 and 7. For 57 of the 101 high-
confident fine-mapped associations, while the TR was the most
strongly associated variant in the region, most loci also showed mul-
tiple SNVs that were significantly associated with the same trait.
However, after conditioning these SNVs based on the genotype of the
fine-mapped TR, in most cases, SNV associations in the region were
nullified, thus providing further evidence that the TRs we identified
represent the true fine-mapped variants at these loci. At loci where
local SNVs did remain significant after conditioning on the fine-
mapped TR genotype these SNVs were located in different LD blocks
to the TR, suggesting the presence of multiple independently asso-
ciated variants (Supplementary Fig. 7).

Investigating internal sequence variation within fine-
mapped TRs
Although our PheWAS only utilized TR length as the input genotype
and did not consider sequence, we investigated the prevalence and
distribution of internal sequence variants within each fine-mapped TR.
First, using data from 1027AoU individuals sequencedwith PacBioHiFi
GS, we assessed the prevalence of sequence variants deviating from
the annotated consensus motif using purity scores reported by
TRGT38. Most fine-mapped TRs we identified in our PheWAS showed
few internal sequence variants, with only four showing mean purity
scores <0.9 (Supplementary Fig. 8). To further characterize these
internal sequence variants, we extracted and performed multiple
sequence alignment of each fine-mapped TR using data from 90
haplotypes generated by the Human Pangenome Reference Con-
sortium (HPRC)39. Consistent with the data from 1027 AoU genomes,
most fine-mapped TRs showed length variation composed of variable

Trait associations caused 
by rare TR expansions

Trait associations caused 
by common allelic 
variation of TRs

Fig. 2 | Novel TR associations are driven by common allelic variation rather
than rare expansions. We repeated association analysis for each high-confidence
fine-mapped TR:trait pair after excluding any individual carrying a TR allele in the
top 5% of the allelic distribution. After excluding long alleles, association signals
that matched the known pathogenic effects of four known REDs disappeared (red-
shaded region). In contrast, nearly all other fine-mapped associations we identified
remained significant, indicating that these are attributable to common allelic var-
iation rather than rare highly expanded alleles. Colored points indicate eight TRs in
the set of high-confidence fine-mapped associations that are known to undergo
rare expansion. P values were calculated using linear and logistic regression
implemented in REGENIE.
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numbers of a single consensus motif, with very few or no intersper-
sions. However, notable exceptions were the exonic TR in HRCT1, the
TR intronic within PACSIN2 and the TR intergenic between ARHGAP19
and SLIT1. HRCT1 exhibited dozens of different alleles with frequent
and variable degeneracy from the consensus CCA motif. In contrast,
length variations in the TRat PACSIN2were causedbya combination of
polymorphic stretches of adjacent poly(TA) and poly(T) motifs, while
length variations of the TR atARHGAP19/SLIT1 similarly resulted froma
combination of adjacent poly(GT) and poly(AT) motifs that each
showed independent variation in copynumber (Supplementary Fig. 9).

Replication analysis in the All of Us cohort
We next sought to replicate the set of high-confidence fine-mapped
associations identified in our discovery PheWAS using the AoU
cohort40. We identified phenotypes available for AoU participants that
matched those in UKB and had sufficient sample size for replication
analysis for 31 of the 73 fine-mapped associated traits. We utilized TR
genotypes fromGS data from88,406 AoU individuals, comprising 58%
European ancestry, 25% African ancestry and 17% Latino/Native
American ancestry. Despite having an average available sample size in

AoU that was only 40% of that in the UKB, of the 31 fine-mapped
associations tested, 23 (74%) replicated with nominal significance
(p < 0.05) and the same direction of effect as observed in the UKB
discovery cohort (Fig. 5, Supplementary Data 7).

Fine-mapped TRs are strongly enriched for functional effects on
gene expression and epigenetics
To assess the functional effects of TR variants on local gene expression
and epigenetics, we genotyped the set of TRs used for PheWAS from
available GS data and compared these with DNA methylation and
RNAseq data for 49 tissues generated by the GTEx project41,42, identi-
fying TRs that act as expression or methylation QTLs (eQTLs and
mQTLs) (Supplementary Data 8 and 9). Considering all TRs that
showed significant trait associations by PheWAS in theUKB, thesewere
4.9-fold enriched versus the null for eQTLs (p = 1.5 × 10−193, two-tailed
Fisher’s exact test) and 3.5-fold enriched for mQTLs (p = 6 × 10−103).
Considering the subset of TRs that were deemed as high-confidence
fine-mapped variants for trait associations, these were 11.2-fold enri-
ched for eQTLs (p = 9.2 × 10−12) and 4.7-fold enriched formQTLs (p = 1.2
× 10−5) (Fig. 6).
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Fig. 3 | A highly polymorphic coding CCA repeat in HRCT1 is associated with
risk of hypertension. A Results of PheWAS for the TR inHRCT1. Traits are grouped
into physiological categories (x-axis) plotted against the −log10 Bonferroni-
corrected p value per trait (y-axis). Significant fine-mapped associations are indi-
vidually labeled and shown as filled red points to indicate negative directionality of
effect. P values were calculated using linear and logistic regression implemented in
REGENIE, applying a Bonferroni correction based on 9531 independent traits and
36,085TRs analyzed.BRelative riskof highbloodpressureversus average lengthof
the HRCT1 CCA repeat. Odds ratio per allele is shown by the black dot with vertical
lines representing the 95%confidence intervals.Odds ratios are basedon analysisof
167,533 individuals with both genotype and phenotype data, with each odds ratio
per andCI plotted per allele size calculated fromat least 54 individuals. The barplot

above shows the relative frequency of averaged TR alleles in the UKB cohort.
C Screenshot from the UCSC Genome Browser showing the location of the poly(-
CCA) motif within HRCT1. D Length of the HRCT1 CCA repeat (red dot) is the most
strongly associated variant in the region with high blood pressure. P-values were
calculated using logistic regression implemented in REGENIE. E Results after con-
ditioning the same SNVs as shown in (D) based on average genotype of the HRCT1
repeat. The horizontal dashed line indicates the Bonferroni-significance threshold
of p < 1.45 × 10−10. P values were calculated using logistic regression implemented in
REGENIE.F Fine-mapping analysis of variants in theHRCT1 locus with CAVIAR ranks
the poly(CCA) motif within HRCT1 (red dot) as the most likely variant underlying
risk of high blood pressure.
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For example, the coding poly(CCA) repeat in HRCT1 that is asso-
ciated with risk of hypertension showed both a negative association
with HRCT1 expression and a positive association with methylation
level of a CpG in the 3′UTR of HRCT1 (Fig. 6). Multiple other fine-
mapped TRs were also associated with expression level of the over-
lapping gene and/or other genes in cis, suggesting that themechanism
of action of many of the TR associations we identify is through altered
gene expression and/or epigenetics.

Discussion
Here, we performed the first phenome-wide analysis based on direct
genotyping of themost polymorphic and unstable TRs in the genome,
identifying many novel phenotype associations linked with length
variation in these TRs that have been overlooked in prior SNV-based

GWAS. In support of our results, our analysis identified both known
causal effects associated with several recurrent REDs and also repli-
cated effects of common TR variation at CBL and BCL2L11 that were
reported in a recent study that utilized imputation of TR alleles24.

Of note, our analysis identified effects on traits linked with com-
mon allelic variation at three TRs (TCF4, AR and AFF2), while rare
expansions of these same loci are known to underlie REDs which
manifest with completely different phenotypes. Thus, some TRs can
exertdivergent effects at different size ranges, with variation in shorter
polymorphic alleles acting to modify common traits while rare
extreme expansions of the same TR cause REDs with quite different
phenotypic features.

Performing PheWAS and fine mapping of multi-allelic TR variants
presents several challenges24. First, in order to perform PheWAS in a
computationally efficientway,weutilizedREGENIE. However, REGENIE
was originally designed to test associations with bi-allelic variants and
utilizes a two-stepmodel where input genotypes are initially portioned
into blocks in step 1, followed by association testing in step 243. To
verify the performance of REGENIE with multi-allelic variants, we re-
tested the set of fine-mapped TR associations we identified using
standard regression methods and found that most associations yiel-
ded very similarp-values between the two approaches (Supplementary
Fig. 10). Second, fine-mapping approaches such as CAVIAR44 assume
that all variants at a locus are genotyped. However, our analysis only
genotyped TR length and did not consider internal sequence variants
or motif variation, potentially violating this assumption. We note
though that our fine-mapping approach successfully identified TRs
that were identified in prior studies and/or that are known to be
pathogenic, including TRs at TCF4 with eye traits, HTT with Hunting-
ton’s disease, DMPK with myotonic dystrophy, BCL2L11 and CBL with
blood cell traits and AR with male balding. This replication of known
signals strongly indicates that, inour hands,CAVIARprovided accurate
results, even though internal sequence variationwas not considered as
an input. Despite theseobservations, it is possible that our definitionof
high-confidence fine-mapped TRs based on the intersection of two
approaches is overly conservative, and it is likely that some TRs that
have an influence on human traits do notmeet these stringent criteria.
For example, conditional analysis may yield false negatives when
multiple causal variants occur within a locus, while fine-mapping
approaches can have limited ability to resolve a single variant in
regions of extended LD. Indeed, several functionally compelling can-
didates were identified by fine mapping as the most likely variants
underlying the observed associations, but which did not meet Bon-
ferroni significance upon conditional analysis, e.g. a poly(GCGG) motif
in the 5’UTR of CHRNA3, a nicotinic acetylcholine receptor, that asso-
ciated with pack years of smoking. Future work using larger sample

poly(CGC) in 5’UTR of GNB2 (chr7:100,673,815-
100,673,860) associated with pulse rate, p=9.6x10-14

poly(AC) in 3’UTR of WNT9A (chr1:227,919,686-227,919,722) 
associated with standing height, p=5.2x10-16

poly(GCCGCTGCCGACCTCGCTGT) in 5’UTR of EIF4A3
(chr17:80,146,992-80,147,139) associated with 

reticulocyte percentage, p=1.0x10-17A CB
Relative allele 

frequency
Relative allele 

frequency
Relative allele 

frequency

Fig. 4 | Fine-mappedTR associations underlying quantitative traits in the UKB.
A A CGC repeat within the 5′UTR of GNB2 associated with pulse rate. B A 20mer
repeat within the 5′UTR of EIF4A3 associates with reticulocyte percentage. C An AC
repeatwithin the 3’UTRofWNT9A associateswith standing height. Bar charts above
each plot indicate the relative frequency of averaged TR allele sizes in the UKB
cohort. The regression slope is shown as a solid blue line and we show the trait

distributions per allele size. Within each violin, red circles show the medians; box
limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the inter-
quartile range from the 25th and 75th percentiles. P values shown were calculated
using linear regression implemented in REGENIE. Each plot shows data from a total
of between 160,365 and 168,173 individuals, with a minimum of 167 individuals
plotted per violin.

Sample size 
in All of Us as 
a fraction of 
UK Biobank

Fig. 5 | Replication analysis in the All of Us cohort. Using data from the AoU
cohort, we performed replication analysis for 31 high-confidence fine-mapped
associations identified in the UKB discovery cohort. The dashed horizontal line
indicates p =0.05 in the AoU cohort while the color of each point indicates the
relative sample size per trait in the AoU replication cohort compared to the UKB
discovery cohort. Full results are shown in Supplementary Data 7. P values were
calculated using logistic or linear regression implemented in REGENIE.
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sizes and incorporatingdiverse ancestrieswill yield improvedpower to
resolve additional effects of TR variants.

Our study has several potential strengths and limitations: (i) In
comparison to previous studies that have relied upon imputation-base
approaches to statistically infer TR genotypes21,24,45, we performed TR
genotyping directly from GS reads and thus our study likely had
improved genotyping of highly mutable loci and rare TR alleles that
typically have low imputation accuracy. (ii) We tested a limited set of
TRs with motif sizes between 2–20 bp, but which are highly enriched
for the most polymorphic and unstable TRs in the genome and which
preferentially overlap functional and regulatory elements. (iii) We
utilized average TR allele size in our association model, which can
result in conflation of different genotype states, e.g. a heterozygous
individual with alleles of 10 and 20 TR units was considered equivalent
to an individual homozygouswith two 15-unit alleles. Furthermore, use
of average allele size has reducedpower to identifymorecomplex non-
linear relationships. Despite this, we still identified associations with
several known REDs, where disease associations exhibit a threshold
effect13. (iv) Our analysis used only TR length as a genetic variable and
did not consider sequence variation of motifs within each TR, which in
some cases has been shown to influence trait associations46. (v) Due to
a limited sampling of diverse ancestries in the UKB, our discovery
PheWAS only utilized individuals of European ancestry and thuswould
likely miss associations that may be specific to non-European popu-
lations. (vi) By using ExpansionHunter, an algorithm that can provide
estimates of TR alleles that exceed the read length of GS, we were able
to identify associations with TRs that exhibit very long alleles, such as
those at HRCT1, EIF4A3 and at several RED loci where alleles are typi-
cally >150bp in size. (vii) We recoded many categorical traits into
quantitative scales (see section “Methods”) for input into association
testing with REGENIE, which may result in reduced power, bias or
inflated error rates compared to the use of specialized algorithms
developed for handling categorical variables47.

Our study highlights the contribution of multi-allelic TRs as a
potential contributor to the “missing heritability” of SNV-based GWAS,
emphasizing the importance of considering TRs in fine mapping
studies.

Methods
Ethics statement
Research performed in this study complies with all relevant ethical
guidelines and informed consent for genetic research was obtained

from all participants. Collection of UKB data was approved by the
Research Ethics Committee of the UKB obtained under application
32568 and protocols for UKB are overseen by The UKB Ethics Advisory
Committee, see https://www.ukbiobank.ac.uk/ethics/. Protocols for
the AoU cohort are overseen by the All of Us Institutional Review
Board, see https://allofus.nih.gov/about/who-we-are/institutional-
review-board-irb-of-all-of-us-research-program.

Genotyping of tandem repeats in the UK Biobank and All of Us
cohorts
Wederived a catalogof TRswithmotif sizes ranging from2–20bp that
we hypothesized would be enriched for functional effects and which
are either highly polymorphic or were observed to undergo rare
expansion in the human population using the following approach:
1. We utilized both a catalog of ~174,000 TRs with motif sizes ran-

ging from 2–20bp genotyped with ExpansionHunter (v5.0.0)8

(https://github.com/Illumina/ExpansionHunter), and a catalog of
798,697 TRswithmotif sizes ranging from 2–6 bp genotypedwith
hipSTR (v0.7)10 (see section “Data availability”). Using these two
tools, we performed genotyping of high coverage PCR-free
Illumina GS data for 2504 individuals from the 1000 Genomes
Project48. Basedon the resulting genotypes,we then extracted any
TR which showed either (i) ≥20 different alleles with either
genotyping tool, or (ii) ≥5 different alleles with either genotyping
tool for those TRs that overlapped candidate cis-regulatory
elements defined by ENCODE (“ENCODE cCREs” track from the
UCSC genome browser, based on ENCODE data released on or
before September 14, 2018), regulatory regions defined by
GeneHancer (“Enhancers and promoters from GeneHancer
(Double Elite)” track from the UCSC genome browser, v2 release,
January 2019), or genic regions defined as either exon, 5′UTR, 3′
UTR, upstream, downstream or splicing by ANNOVAR49 based on
Ensembl gene annotations.

2. As GC-rich TRs are strongly enriched for functional effects15,
based on TR annotations of the hg38 assembly using TRFinder50

(“Simple repeats” track from the UCSC genome browser, release
dateOctober 18, 2022), we additionally selected anyTRwithmotif
size between 2–10 bp composed purely of C and G bases.

3. We utilized both ExpansionHunter Denovo (v0.9.0)9 and STRetch
(v0.4.0)11 to screen a set of 22,579 individuals of diverse ancestry
with high coverage PCR-free Illumina GS data, comprising (i)
10,961 individuals from the TOPMed Women’s Health Initiative
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Fig. 6 | Length variation of fine-mapped TRs associates with local gene
expression and DNA methylation. A Fine-mapped TRs showed significant
enrichments for both eQTLs and mQTLs in the GTEx cohort and were often asso-
ciated with the same gene as which the TR was located within. Points at the center
of each error bar represent theQTL enrichment, while horizontal lines indicate 95%
confidence intervals. The eQTL and mQTL enrichments shown for PheWAS sig-
nificant TRs are based on 1573 and 1342 TRs, respectively, while for high confidence
fine-mapped TRs, enrichments shown are based on 44 and 37 TRs, respectively. P
values were calculated using a two-tailed Fisher’s exact test. B, C Results for an

exonic poly(CCA) motif in HRCT1 associated with both normalized HRCT1 expres-
sion (shown for aorta tissue) and DNA methylation of a CpG (cg21518683) in the 3′
UTR of HRCT1 (shown for transverse colon tissue).D A poly(CGC) motif within the
5′UTRofGNB2 associatedwithGNB2expression (shown for left ventricle tissue).EA
poly(GCCGCTGCCGACCTCGCTGT) motif within the 5’UTR of EIF4A3 associated
with EIF4A3 expression (shown for cultured fibroblasts). In B–E, p values were
calculated using linear regression, gray shading represents the 95% confidence
intervals for the regression slope.
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cohort, (ii) 9114 individuals from the TOPMed BioMe cohort, and
(iii) 2504 individuals from the 1000 Genomes Project. In each of
these three cohorts, we identified TRs showing long allele sizes.
We defined these as any TR with ≥3 in-repeat reads in at least one
individual as assessed by ExpansionHunter Denovo, or from the
output of STRetch, any TR that passed all of the following criteria
in at least one individual in any of the three cohorts: FDR q < 0.1,
locus coverage >0, allele size ≥15, allele size >99.5th percentile of
the cohort for that TR, allele size ≥5 above the cohort median for
that TR.

From these, we selected those TRs that had a span in the hg38
reference genome of ≤150bp, resulting in a set of 48,913 TRs located
on chr1-22 and chrX that we retained for further analysis (Supple-
mentary Data 1).

Prior to association analysis, we performed quality filtering of
genotypes generated by ExpansionHunter for these TRs using data
generated by the AoU project. AoU has released data from both
short-read GS with Illumina and long-read GS with PacBio HiFi
technology in 1027 individuals. We performed genotyping of the set
of 48,917 TRs in both the Illumina data using ExpansionHunter and
in the PacBio data using TRGT (v0.4.0)38,51,52, with identical TR
definitions used for both tools. We first quality filtered the TRGT
genotypes, removing individual TR genotypes supported by only a
single spanning read and those with purity scores <0.75. After
applying these quality filters, we then retained only those TRGT
genotypes in each sample where both alleles remained. First, we
removed 439 TRs that showed no variation in the genotypes output
by TRGT. Then, for each individual and TR, we calculated average
TR genotypes output by both ExpansionHunter and TRGT. For each
TR we performed Spearman correlation between genotypes gen-
erated by the two different sequencing technologies. For those TRs
with median purity scores from TRGT ≥ 0.75, we removed 5076 TRs
that showed Spearman R < 0.5 between the ExpansionHunter and
TRGT genotypes. In addition, we removed 7313 TRs that showed low
variation in the genotypes from ExpansionHunter profiling of UKB
samples, defined here as standard deviation <0.5. After these filters,
we used a final set of 36,085 high-quality, highly polymorphic TRs
that are enriched in genic and regulatory regions for PheWAS
(Supplementary Data 1).

PheWAS analysis in the UK Biobank
From the set of 200,000 individuals with Illumina 150bp paired-end
whole GS data, we defined 188,915 individuals of European ancestry
using an approach based on principal component analysis of a set of
~64,000 high-quality LD pruned SNVs with minor allele frequency
(MAF) > 5%22. In brief, GCTA (v1.93) was used to calculate the first 40
Principal Components (PCs), which were used to predict the ancestry
of each individual. Since only a small minority of individuals recruited
to the UKB cohort are of non-European ancestry and are, therefore,
highly underpowered in PheWAS, we focused our analysis on those
individuals of European origin. We first selected all samples predicted
as European ancestry and recalculated PCs without use of a reference
population using one-third of individuals, before projecting the
remaining two-thirds of individuals onto this. We removed outlier
samples using within group PCA. In addition, we kept only those
samples with self-reported ancestry as “White”, “British”, “Irish”, “Not
listed in table”, “Anyotherwhite background”, “Other ethnic group”, or
“Prefer not to answer”. Further sample-level filters were applied as
follows:
1. Using pairwise kinship coefficients provided by the UKB, for

samples with 2nd degree relationships or higher (kinship coeffi-
cient >0.0883) we retained only a single unrelated individual.

2. We removed 199 individuals with predicted sex chromosome
aneuploidy.

3. We removed 241 individuals who we were notified had withdrawn
their consent for inclusion in the UKB study.

After these quality control (QC) steps, we retained data for
168,554 unrelated individuals of European ancestry. Using the UKB
DNAnexus Research Analysis Platform, we performed genotyping of
36,085 TRs from the GS data with ExpansionHunter (v5) (Supple-
mentary Data 1).

In order to identify traits associated with the presence of TRs, we
utilized the mean TR genotype present in each sample at each locus in
association analysis. We utilized phenotype data for individuals in the
UKB derived from a total of 30,291 ICD10 codes and quantitative,
categorical and binary traits (Supplementary Data 2), accessed
through UKB application number 82094. Before performing associa-
tion testing, phenotype data were processed as follows:
1. For phenotypes with multiple categories, e.g. ICD10 codes, we

considered each category as a separate binary trait. If a subject
had multiple entries for the same category, they were assigned as
“1” (i.e. positive for that trait) if any of the instances were positive.
We removed fromanalysis any categories labeled as “Prefer not to
answer”, “Unsure” or “Do not know”.

2. ICD9 and ICD10 codes were merged into one using General
Equivalence Mapping (GEM) files downloaded from https://www.
cms.gov/Medicare/Coding/ICD10. We restricted controls to sub-
jects who did not have a positive diagnosis for that phenotype.

3. In addition to using each individual ICD code as a separate trait,
ICD codes were also grouped into higher level codes to yield
additional summary traits with increased sample size. For exam-
ple, the ICD10 code for Schizophrenia is F20, which is composed
of 10 different sub-codes (e.g. F20.0 “Paranoid schizophrenia:,
F20.2 “Catatonic schizophrenia”, F20.9 “Schizophrenia, unspeci-
fied”, etc.), with each subcategory containing between 4 and 894
individuals. Here, we created a new summary code for “Schizo-
phrenia_group” comprising all sub-categories under F20 which
included 1485 individuals who were positive for any subtype of
schizophrenia. Similar groupings were performed for any higher
level ICD code that comprised multiple subtypes.

4. For phenotypes with >2 categorical outcomes, each outcome was
assigned an integer value and these were analyzed as quantitative
traits. e.g. the phenotype “Alcohol intake frequency” included six
categories: “Daily or almost daily”, “Three or four times a week”,
“Once or twice a week”, “One to three times a month”, “Special
occasions only” and “Never”. Here, each sample was assigned an
integer value ranging from 1 to 6, with each value corresponding
to the six ordered frequencies for this phenotype. Categorical
traits with just two separate categories were considered as binary
traits.

5. For quantitative traits with integer values, where a subject had
multiple instances, we utilized the mean of all instances rounded
to nearest integer.

6. For quantitative traitswith continuous values, where a subject had
multiple instances, we utilized the mean of all instances.

For the 1349 quantitative traits analyzed, we applied a rank-based
inverse normal transformation and required aminimum sample size of
50 phenotyped individuals and standard deviation ≥0.001 to be
included in association analysis. For the 28,942 binary traits analyzed,
we required a minimum sample size of at least 10 individuals with the
trait to be included in the analysis.

Association analysis was performed using REGENIE (v3.1.3)43.
REGENIE implements a two-step approach, utilizing a whole-genome
ridge regression model in step 1 to generate predictions for each
phenotype, followed by association analysis in step 2. For quantitative
traits, REGENIE uses a linear regression model incorporating the pre-
dictors, and a logistic model for binary traits. For each sample at each
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TR locus, we calculated the average TR length from the diploid gen-
otypes output by ExpansionHunter for use in association analysis. For
example, if an individual had TR diploid genotypes of 20 and 26 at a
TR, this was converted to an average genotype of 23. In step 1 of
REGENIE, weutilized ablock sizeof 100TRs. Association testing in step
2 incorporated covariates of sex, age, age squared, GS insert size and
the top five PCs derived from analysis of SNVs to account for ancestry,
as summarized in the following formula:

y = Trait ~ Average Allele Size + Insert Size + Sex + Age +
Age2 + SNV_PC1 + SNV_PC2 + SNV_PC3 + SNV_PC4 + SNV_PC5

For binary traits, we utilized the Saddle Point Approximation
function to reduce the type I error rate. To avoid possible technical
effects on TR genotypes, associations were performed separately in
samples sequenced by deCODE and Sanger Center, before combining
results using z-score based meta-analyses in METAL (2018-08-28
version)53. To ensure that we only reported robust signals, we required
that associations showed the samedirection of effect andwith p <0.05
in both sub-cohorts. For loci on the X chromosome, samples were
separated by both sequencing center and sex and associations per-
formed separately in the four resulting sub-groups (sequencing center
+ sex) before combining results using METAL, requiring that at least
two of the four sub-groups met the minimum sample size require-
ments as stated above, at least two of the four sub-groups yielded
p <0.05 and all showed the same direction of effect.

We applied multiple testing corrections using both a Bonferroni
approach based on the number of TRs and independent traits ana-
lyzed. However, given that many phenotypes in the UKB are highly
correlated (e.g. neutrophil count and neutrophil percentage), it should
be noted that multiple testing corrections tend to be overly stringent.
While some approaches remove correlated phenotypes and e.g. retain
only a single trait with the largest sample size, we chose not to pursue
thismethod, as it will often lead tomissing the primary trait associated
with a variant. However, to estimate a better-calibrated Bonferroni
threshold in our analysis, we calculated the number of nominally
independent traits tested by performing a pairwise correlation
between all traits utilized in our PheWAS. Then, considering a thresh-
old of absolute value of R <0.5 between any two traits as indicative of
independence, we calculated the minimal set of independent traits
(n = 9531) used in our analysis. Based on this and considering the
36,085 TR genotypes that were used in PheWAS, we utilized an
adjusted Bonferroni correction threshold in our meta-analysis of
p < 1.45 × 10−10 (p =0.05/9531/36,085).

For creating plots of grouped PheWAS results, we assigned each
trait reported by the UKB into one of 22 different categories based on
shared physiological systems, tests or treatments. To create these
groupings, phenotype codes weremapped to ICD10 chapters as listed
in Supplementary Data 1 ofWang et al.54. Phenotypes that did not have
a category assigned with these annotations were further annotated
using categories provided within the UKB Data Showcase. Finally, we
applied manual curation, removing categories that were composed of
a very small number of traits andmaking reassignments to improve the
consistency of groupings.

Identification of high-confidence TRs using conditional analysis
and fine mapping
In order to assess whether TRs were independently associated with a
trait, we performed two separate analyses to determine a set of high
confidence fine-mapped variant(s) at each locus detected in our
PheWAS.

In the first of these, we performed conditional analysis by separ-
ating individuals by genotype state based on the lead-associated SNV
with the trait in question for each region. We utilized SNV genotypes
derived from GS data from UKB participants. We removed SNVs that
had eitherminor allele count <100,missingness rate >5%, HWE < 10−300,
quality score (QUAL) < 30, mapping quality (MQ) < 40, read depth

(DP) < 10, genotype quality (GQ) < 20, strand bias (SB) < 0.25 or >0.75
and allelic balance for heterozygous calls (ABhet) < 0.2. We extracted
all remaining SNVs within ±500 kb of each TR. For each TR:trait pair
that was significant in PheWAS, we performed association analysis
between that trait and all SNVs located within ±500 kb using REGENIE.
This was performed separately in each of the two sequencing sub-
cohorts, before combining p-values together using METAL. We con-
sidered TRs as potentially independently associated as those that
retained a Bonferroni-corrected association with the trait of p <0.05
after conditional analysis based on the minimal set of 9531 indepen-
dent phenotypes used (nominal p < 5.24 × 10−6).

For conditional analysis of each TR based on local SNVs, for each
TR:trait pair we selected the most significant SNV with MAF >0.01 and
then divided individuals into three groups based on their genotype at
this lead SNV (i.e. AA, AB and BB), whichwere further divided based on
the two sequencing sub-cohorts. In each of these six groups (genotype
at lead SNV × sequencing cohort), we required a minimum of 50
genotyped individuals with the trait for quantitative traits and 10
genotyped individuals with the trait for binary traits, utilized REGENIE
to repeat the association test with the TR:trait pair, and then merged
the resulting p values using METAL.

We also performed statistical fine mapping using CAVIAR (08-07-
2014)44 on the Sanger Center sub-cohort using the top 100 most sig-
nificantly associated SNVs per locus, as defined above. We calculated
LD between SNVs and TRs by pairwise correlation. P values from
REGENIE were converted into z-scores and CAVIAR run using para-
meters ρ =0.95, γ =0.01 and the maximum number of causal variants
was set to 2.

We took a conservative approach to define putatively fine-
mapped TRs based on the results of both conditional analysis and
fine mapping. High-confidence fine-mapped TRs were considered as
those that were both the top-ranked variant by CAVIAR and which also
retained a Bonferroni-corrected association with the trait of p <0.05
after conditional analysis based on the minimal set of 9531 indepen-
dent phenotypes used (nominal p < 5.24 × 10-6).

Conditional analysis of local SNVs based on TR genotypes
To gain additional evidence for TR associations, we performed con-
ditional analysis of SNVs based on TR genotypes at each locus con-
taining a high-confidence fine-mapped TR. Here, we divided
individuals into groups based on their average TR genotype, which
were further dividedbasedon the twosequencing sub-cohorts. In each
group, we removed SNVs with MAF <0.01, missingness >5% or Hardy-
Weinberg Equilibrium p < 1−300 and required a minimum of 50 geno-
typed individuals with the trait. For each remaining SNV, in each group
(genotype at fine-mapped TR x sequencing cohort), we utilized
REGENIE to repeat the association test of the SNV with the trait, and
then merged the resulting p-values across all groups per SNV
using METAL.

For some loci, we generated plots showing local recombination
rate and linkage disequilibrium (LD) between the TR and flanking
SNVs. LD was calculated from genotypes for the TR and each SNV
within ±500 kb by performing Pearson correlation using individuals in
the Sanger Center sub-cohort. Recombination rate data was obtained
from the UCSC genome Table Browser track “Recomb. deCODE Avg -
Recombination rate: deCODE Genetics, average from paternal and
maternal (mat for chrX)”.

Comparing the relative performance of REGENIE and regression
Given that REGENIE was originally developed for association testing
with binary genotypes and uses a complex two-step approach to
improve computational efficiency43, we tested the performance of
REGENIE on multi-allelic TRs. Here, we repeated the association ana-
lyses for the 92 fine-mapped autosomal TR:trait associations identified
with REGENIE using the lm and glm functions in R (v4.2.0) for
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quantitative (linear regression) and binary traits (logistic regression),
respectively. We used data derived from the 92,186 individuals whose
genomes were sequenced at the Sanger Center, included the same
covariates as used with REGENIE and performed rank-based inverse
transformation of quantitative traits to mimic REGENIE’s
methodology.

Investigating internal sequence variation within fine-
mapped TRs
To quantify the prevalence of internal sequence variants, we first used
the output of TRGT from genotyping the set of fine-mapped TRs in
PacBio HiFi sequencing data derived from 1027 AoU participants, as
described above. For each genotypedTR allele, TRGTprovides a purity
score, which is a value ranging between zero and one that represents
the fraction of bases within the TR that match the annotated TR con-
sensus motif. Thus, purity scores output by TRGT provide a global
measure of the prevalence of internal sequence variants within a
TR tract.

To characterize the distribution of sequence variants within each
TR in more detail, we used data generated from PacBio HiFi sequen-
cing of 90 haplotype assemblies released by the HPRC39. For each fine-
mapped TR, we extracted variants from the raw vcf file and performed
multiple sequence alignment of all variants observed per TR using
Clustal Omega55.

Assessing whether association signals result from common
allelic TR variation or rare expansion alleles
In order to assess whether fine-mapped associations were driven by
common variation in TR length rather than rare expansions, for each
fine-mapped variant we repeated association analysis after excluding
individualswho carried a TR allele that lay in the upper tail of the allelic
distribution at that locus. Allele length percentiles were calculated
separately per TR based on diploid genotypes in each of the two
sequencing sub-cohorts. For each TR, we excluded any individual who
carried an allele that was >95th percentile and then repeated associa-
tion analysis using the same method as described above.

Replication analysis in All of Us
We curated data for 27,660 traits for 245,394 individuals with Illumina
GS data in the AoU v7 release. These traits were derived from a total of
26,329 unique OMOP codes (v5.3.1) corresponding to binary, quanti-
tative, and categorical data. For ~94% (26,134/27,660) of these traits,
each mapped to a single OMOP code. The remaining 1526 traits were
derived from 195 duplicated OMOP codes (194 from the AoU domain
“Survey Questions” and 1 from the domain “Labs andMeasurements”).
Post-review and processing, all OMOP codes corresponding to cate-
gorical data were converted into either binary or quantitative traits
depending on the nature of the underlying data. Prior to association
testing, phenotype data were processed as follows:
1. The underlying data in the AoU domains “Conditions”, “Proce-

dures”, “Drug Exposures”, and “Devices” are by nature binary, so
all data generated from these domains were classified as binary
traits. An individualwas assigned “1” for a trait if theywerepositive
for it (i.e. had the condition, were exposed to the drug, etc.), and
“0” if not.

2. The underlying data in the AoU domains “Labs and Measure-
ments”, “Program Physical Measurements” and “Survey Ques-
tions” were treated as either quantitative or categorical traits.

3. Those traits with multiple quantitative values were treated as
quantitative traits. Where an individual had multiple values
recorded, presumably representing repeat measurements taken
at different times, we utilized the mean of all values. For the
majority of quantitative traits, individuals had data recorded in
multiple different units of measure, e.g. height was recorded as
either centimeters or inches in different individuals. For each such

trait, we only retained data for those individuals that were
recorded in the unit with the greatest number of unique indivi-
duals, excluding all cases where units were listed as “Nomatching
concept”, “No value”, and “NA”.

We observed that some traits had values that were not physiolo-
gically possible, suggesting the data were erroneous. For example,
body temperaturewas listed as either 0 or 100degreesCelsius in some
individuals. We therefore performed quality filtering to remove such
values, as follows:
1. For traits where the unit was “percent”, we set lower and upper

limits of 0 and 100, removing any values outside this range.
2. For traits recorded in other units, we identified 167 that had at

least one individual with a value > 10 standarddeviations from the
mean. For these traits, we manually set reasonable lower and
upper limits for each trait to ensure that all values remainedwithin
physiologically possible ranges based on published medical lit-
erature, removing any data points that lay outside these ranges.

For categoricali data with two possble outcomes (e.g., lab results
that could be either positive or negative), we considered these as
binary traits. Where an individual had multiple values recorded, we
considered them positive for that trait if any of the values were posi-
tive. For categorical data with more than two possible outcomes after
removing those such as “Prefer not to answer”, “Not sure”, etc., these
were converted to quantitative traits, Here, each outcome was
assigned an integer value in ascending order after sorting the possible
outcomes. e.g., the OMOP code “1586201, Alcohol: Drink Frequency
Past Year” included five categories: “Never”, “Monthly or less”, “2 to 4
per month”, “2 to 3 per week”, and “4 or more per week”. Here, each
individual was assigned an integer value ranging from 1 to 5, with
values corresponding to the five ordered frequencies for this trait.

Using tables provided by the UKB (data field 20142) we mapped
the set of traits associated with high-confidence fine-mapped TRs
identified in the discovery PheWAS to matching codes provided by
AoU. In addition to this automated matching, we also performed text
searching based on keywords and synonyms followed by manual
curation. In order to ensure sufficient statistical power for replication,
we only retained matching traits where the sample size in the set of
genotyped AoU samples with that trait was ≥20% that available in the
UKB cohort. This resulted in a final set of 31 matching TR:trait pairs,
corresponding to 20 unique traits, available in AoU for replication
(Supplementary Data 6).

For each of the high confidence fine-mapped TRs identified in our
discovery PheWAS we performed genotyping of 107,737 individuals
from the AoU v7 data release using Illumina GS data and Expansion-
Hunter. Where individuals were related, defined by AoU as those with
pairwise kinship scores >0.1, we randomly removedonememberof the
related pair. We also removed individuals with TR genotyping rate
<99%, predicted sex chromosome aneuploidy based on genome-wide
read depth analysis using mosdepth22 and those with ancestry defined
by AoU as East Asian, South Asian,Middle Eastern or Other. After these
filtering steps, we retained a total of 88,406 individuals, comprising
51,089 individuals of European ancestry (EUR), 22,248 individuals of
African (AFR) ancestry and 15,069 individuals of Latino/Native Amer-
ican ancestry (AMR).

For quantitative traits, where in each case data were available for
>20,000 individuals, prior to association analysis, samples were divi-
ded into twelve different groups based on both ancestry (EUR, AFR,
AMR) and sequencing center/sequencing date (Baylor, University of
Washington, Broad Institute prior to September 2019 and Broad
Institute post September 2019). In contrast, for binary traits where the
number of individuals positive for some traits was <100, to maintain
robustness, we performed association analysis using all ancestries and
sequencing centers combined as a single group. Associations were
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performed using REGENIE, incorporating the same covariates and
options as utilized for the discovery PheWAS in UK Biobank. For
quantitative traits, results for each of the 12 sub-groups were com-
bined using z-score based meta-analyses with METAL.

Identification of TR QTLs using GTEx data
To identify associations of TR length with variation in local gene
expression and DNA methylation, we utilized GTEx data (release v8)
downloaded from the GTEx portal. For the Illumina GS data, samples
marked as low quality by GTEx were removed. TR genotypes were
generated using ExpansionHunter with the same TR catalog as applied
above and converted to average repeat length. QC was performed
separately for each sequencingprotocol (eitherwithorwithout theuse
of PCR during library preparation).We removed outlier samples based
on genotype density and PCA plots. Additionally, 68 samples
sequenced on theHiSeq 2000 instrumentwere removed.We removed
TRs that did not pass default ExpansionHunter quality filters, had high
rates of missing genotypes (>5% for PCR-free samples, >10% for sam-
ples sequencedwith PCR)or showed low levels of variation in theGTEx
cohort (standard deviation <0.5). After these filtering steps, we
retained data for 52,855 TRs and 899 individuals, comprising 343
individuals sequenced using libraries prepared without PCR amplifi-
cation and 556 individuals sequenced using libraries prepared with
PCR amplification.

We utilized normalized and quality-filtered matrices of RNAseq
data and the corresponding covariates as released by GTEx, down-
loaded from the GTEx Portal (see section “Data availability”). The final
expression data contained 49 tissues with between 73 and 706 indi-
viduals and ~20,000 to 35,000 genes per tissue. Association analyses
between TR genotypes and expression level of each gene located
within ±500 kb were performed in two steps using the lm() function in
R, incorporating covariates based on the top five principal compo-
nents fromTRgenotypes, sequencing protocol (with PCRor PCR-free),
sex, age, GSmean insert size and additional PEER factors56 provided by
GTEx. First, we adjusted the expression data for covariates and
extracted the resulting residuals. Second, for any TR:gene pair with
≥60 samples available, these residuals were used as an input for linear
regression against average repeat length.We applied a False Discovery
Rate correction for multiple testing and considered associations to be
significant at 1% FDR (q <0.01).

We utilized normalized and quality-filtered matrices of DNA
methylation data generated using the Illumina MethylationEPIC array
and corresponding covariates released by GTEx, downloaded from the
GTEx Portal (see Data availability). From the nine tissues assayed, only
the four that had profiles from >60 samples were used for further
analysis. From these, we removed outlier samples based on PCA plots.
CpG sites that showed low levels of variation (standard deviation of
beta values < 0.01) within each tissue were removed. The final DNA
methylation data comprised four tissues with between 103 and 190
individuals and 540,000-590,000 CpG sites per tissue.

Association analyses were performed between average TR geno-
types and DNA methylation level of each CpG site located within
±50 kb using the lm() function in R, incorporating covariates based on
the top five principal components from TR genotypes, GS protocol
(with PCRorwithout PCR), sex, age, GSmean insert size and additional
PEER factors provided by GTEx. First, we adjusted the DNA methyla-
tion data for covariates and extracted the resulting residuals. Second,
for any TR:CpG site pair with ≥60 samples available, these residuals
were used as an input for linear regression against average repeat
length. We applied a False Discovery Rate correction for multiple
testing and considered associations to be significant at 1%
FDR (q <0.01).

We tested for enrichment of expression and methylation QTLs
with TRs using Fisher’s exact test. We considered a TR as being a
significantQTL if it showed a significant association (FDR q <0.01)with

a gene or CpG in any of the tissues available and tested for enrichment
of QTL TRs versus all TRs tested in both (i) the complete set of TRs that
reached Bonferroni significance in our discovery PheWAS and (ii) the
set of 47 fine-mapped TRs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ExpansionHunter TR catalog used in this study was obtained from
https://github.com/Illumina/RepeatCatalogs. The HipSTR TR catalog
used in this study were obtained from https://github.com/HipSTR-
Tool/HipSTR-references/. 1000 Genomes genome sequencing
data used in this study were obtained from https://www.
internationalgenome.org/data-portal/data-collection/30x-grch38.
NHLBI TOPMed: Women’s Health Initiative (WHI) genome sequencing
data used in this study were obtained from https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs001237.v2.p1. NHLBI
TOPMed - NHGRI CCDG: The BioMe Biobank at Mount Sinai genome
sequencing data used in this study were obtained from https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs001644.v2.p2. UKB data used in this study were obtained from the
UK Biobank Data Showcase, https://biobank.ctsu.ox.ac.uk/crystal/
search.cgi. AoU data used in this study were obtained from the All of
Us Researcher Workbench, https://www.researchallofus.org/data-
tools/workbench/. GTEx genome sequencing data used in this study
were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap
through dbGaP accession number phs000424.v7.p2GTEx DNA
methylation data used in this study were obtained from https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213478. GTEx normal-
ized expression level data used in this study were obtained from
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_
Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz. The tandem
repeat genotypes generated here are available to users with approval
to access the UK Biobank tier 3 data (https://www.ukbiobank.ac.uk).
Due to limitations imposed by the relevant Data Access agreement, we
areunable to share tandem repeat genotypes generated in theAll ofUs
cohort. Recombination rate data used in this studywere obtained from
https://hgdownload.soe.ucsc.edu/gbdb/hg38/recombRate/
recombAvg.bw. Human Pangenome Reference Consortium vcf file
used in this study was obtained from https://github.com/human-
pangenomics/hpp_pangenome_resources. All other data supporting
thefindings described in thismanuscript are available in the article and
its Supplementary Information files.

Code availability
Code used in this study is available at https://doi.org/10.5281/zenodo.
13984108.
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