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The promise of AI to alleviate the burdens of grading and potentially enhance writing instruction is 
an exciting prospect. However, we believe it is crucial to emphasize that the accuracy of AI is only one 
component of its responsible use in education. Various governmental agencies, such as NIST in the 
US, and non-governmental agencies like the UN, UNESCO, and OECD have published guidance on the 
responsible use of AI, which we have synthesized to come up with our principles for the responsible 
use of AI in assessments at ETS. Our principles include fairness and bias mitigation; privacy & security; 
transparency, explainability, and accountability; educational impact & integrity; and continuous 
improvement. The accuracy of AI-scoring is one component of our principles related to educational 
impact & integrity. In this work, we share our thoughts on fairness & bias mitigation, and transparency 
& explainability. We demonstrate an empirical evaluation of zero-shot scoring using GTP-4o, with an 
emphasis on fairness evaluations and explainability of these automated scoring models.
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Constructed-response (CR) items, also known as open-ended questions, is a common question type in 
educational assessment. Some examples include writing an essay, summarizing information, or providing 
explanations or evidence reasoning. CR items allow learners to demonstrate a spectrum of writing competencies 
ranging from low-level skills, such as grammar, word usage, and sentence structure, to high-level skills including 
argument articulation and critical thinking. The key difference of CR items from multiple-choice (MC) 
or selected-response (SR) items is that the scoring of CR items is generally not amenable to exact-matching 
approaches because the specific form(s) and/or content of the correct answer(s) are not known in advance1. This 
study concerns of the most common CR item type - essays.

Essay task is considered an integral component of writing assessments under a wide range of assessment 
contexts, from low-stakes classroom-based writing assessment to large-scale, high-stakes assessments. An essay 
task can measure important skills that are not adequately assessed by MC or SR items and thereby encouraging 
teachers to include essay writing in daily classroom practice2. Traditionally, if essays were included in an 
assessment, they were scored by human raters. However, evaluating thousands of essays can be labor-intensive, 
time-consuming, and expensive3,4. A possible solution to this efficiency problem is to score essays automatically 
using computers. The rapid advance of artificial intelligence (AI) technology, in particular the past 20 years, has 
made machine scoring of text a realistic option.

Earlier days of AI scoring
AI scoring (also called automated scoring) of text responses in educational assessments can be dated back to 
the 1960s5 for the benefits of quick score turnaround, instant feedback, cost-saving related to human scoring, 
and arguably greater scoring accuracy and score reliability6–9. Earlier work formulated the AI scoring task as a 
prediction of human ratings based on text features or a comparison of text similarity between student-submitted 
answers and reference answers (e.g.,10–12). Responses are represented as vectors consisting of hand-crafted 
features such as lexical complexity, syntactic relations, and character or word n-grams; those vectors are then fed 
into various prediction or classification models to generate a score that best predicts what a human rater would 
assign to a given response13–17.

Bejar et al.18 argued that, for automated scoring, explicit evidence must be identified, quantified, and then 
aggregated by the systems. In the early days of automated scoring, several systems were well-known, such as 
Project Essay Grade (PEG), Intelligent Essay Assessor, and e-rater, which we will describe next. Some of the 
systems are still being used operationally today but might have been updated to the latest AI techniques. Those 
systems, in their earlier versions as reported in the literature, tended to extract well-defined NLP features to 
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clearly quantify the construct of measurement (e.g., academic writing skills) and/or apply mathematical or 
statistical models that are easy to interpret.

Take Project Essay Grade (PEG) as the first example. It is one of the earliest automated scoring systems, 
initially developed by Page5 during the 1960s in the U.S. In developing PEG, Page19 coined two important 
terminologies: trins and proxes. Trins are intrinsic variables that cannot be directly computed from an essay 
(e.g., fluency, diction, sentence structure, grammar, punctuation, construction); proxes are observable variables 
that can be computed to approximate the trins. For example, fluency can be approximated by the number of 
words, diction can be approximated by the variance of word length, and sentence structure can be approximated 
with counts of prepositions and relative pronouns19,20. Although most features used by PEG were originally 
surface features21, since its introduction in 1966, PEG’s developers made progress on narrowing the gap between 
the proxes and the trins20. A multiple linear regression model was trained using pre-scored essays that can be 
used to predict human ratings20, and a final scoring model often contained 30 to 40 proxes21.

Intelligent Essay Assessor (IEA), as reported for its earlier version, applied a matrix-based latent semantic 
analysis (LSA) method to detect the lexical semantic similarity between texts22,23. Assuming that the meaning 
of the text is derived solely from the words, LSA analyzed the similarity of words, terms, passages, and essays 
by placing them in a latent semantic space24. When the IEA system received a to-be-scored essay, the system 
evaluated the essay in terms of its location in a reduced multi-dimensional semantic space. The essay was first 
converted to a vector in the space. Next, the IEA system searched for ten pre-scored essays that had the smallest 
angle to the to-be-graded essay at the origin24,25. The angle reflected the similarity of information in the to-be-
scored essay to those reference essays, which was an indication of the quality regarding content-relevance. Then, 
the average of the human scores on the ten pre-scored essays was weighted by the cosine value of the magnitude 
of the average angle, which constitutes an essay’s content score22. In addition to the content score, the IEA system 
also extracted two other essay feature scores: “corpus-statistical writing-style” (e.g., grammar) and “mechanics” 
(e.g., punctuation)26. The final score of a to-be-graded essay was computed using a linear regression in which the 
human ratings were regressed on the content, style, and mechanics scores, with the content feature always being 
constrained to have the highest weight in the model24.

Finally, for e-rater, it was initially developed at Educational Testing Service in the late 1990s. e-rater relied 
heavily on natural language processing (NLP) techniques. NLP is an AI area concerned with processing human 
language using computers27, by essentially translating ambiguous natural-language text into unambiguous, 
quantifiable internal measures. NLP allows for analysis of large bodies of text from which knowledge structures 
can be derived28. e-rater differed from other automated essay scoring systems in its use of a small set of linguistic 
features extracted using NLP techniques that allowed for constructing more understandable scoring models29. In 
their 2019 study, Yao et al.9 reported nine e-rater features, which included measurement of grammar, mechanics, 
word usage, text organization, development, etc. Employing a corpus-based approach6, e-rater scoring models 
were empirically trained on essays from a particular prompt or bundle of prompts within a genre. The system 
first processed a sufficient number of training essays and computed the feature values. Next, human ratings were 
regressed on the feature values, resulting in a multiple regression model that could be used to predict a score that 
a human grader would assign to a given essay30. The weights, or contributions, of each feature are traceable from 
the model and can be used for validating and interpreting the resulting automated scores.

As can be seen from the examples above, earlier days of AI scoring tended to apply white- or grey-box 
statistical or machine learning models to predict scores using construct-relevant, well-defined meaningful 
information extracted from the text responses. The landscape is changing with the rise of generative AI and 
transformer-like architectures.

Present AI scoring landscape
More recent work on AI scoring, which is still rapidly emerging as of this writing, started to adopt deep neural 
networks and transformer-based models for scoring (e.g.,31–35). Several well-attended public competitions on 
AI scoring (e.g., Automated Essay Scoring and Short-Answer Scoring Kaggle competitions organized by the 
Hewlett Foundation in 2012, NAEP Automated Scoring Challenge for reading assessments organized by the U.S. 
Department of Education in 2021, and Automated Essay Scoring 2.0 Kaggle competition organized by Learning 
Agency Lab in 2024) reflected this trend from using more explainable models such as linear regressions with a 
smaller number of hand-crafted meaningful features to using deep learning methods with LLMs that estimate 
billions of parameters simultaneously.

For an assessment, the choice of the modeling approach is highly contextually dependent on the purpose and 
characteristics of the assessment and the specific task to be scored. Researchers generally agree that while these 
very complex black-box models tend to outperform white- or grey-box models for prediction tasks in terms of 
accuracy, they are much less transparent and interpretable36,37. Figure 1, taken from36, demonstrates the inverse 
relational pattern between model complexity and interpretability.

We could not find a study that compares white-box to black-box models using the same set, but we can 
perhaps gain some idea from different studies that all used K-12 students responses (similar to the ones used 
in this study). For essay scoring, Zhang and Deane38 reported an R-squared of 0.694 (converted to a correlation 
coefficient of 0.833) between human and AI scores by using the (white-box) multiple linear regression model 
on 10 e-rater features (Table 8 in the referred publication); Sinharay et al.39 reported a correlation coefficients 
of 0.838 and 0.772 between human and AI scores by using the (grey-box) gradient boosting with the same 10 
features (Table 6 in the referred publication); two of the winners from the 2012 ASAP Automated Essay Scoring 
Kaggle competition disclosed their codes: one used K-Nearest Neighbors and the other used Neural Networks 
as scoring models. We are not able to pinpoint the exact places on the public leader board for those two winners, 
but the quadratically-weighted kappa (QWK) ranged from 0.783 to 0.801 among the winners. The gold winner40 
in the 2024 Kaggle essay scoring competition obtained a QWK of 0.772 between human and AI scores using 
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fine-tuned DeBERTaV3 model. It is noted that the data set in the 2024 Kaggle competition partially overlaps 
with the data set analyzed in this study. For scoring of short-response text, Heilman and Madnani41 reported 
relatively low QWK values ranging from 0.438 to 0.708 across various scoring tasks from K-12 assessments using 
support vector regression models, which can be considered grey-box models, on extracted features such as word 
unigrams and word bigrams (i.e., sequence of adjacent words) (Table 4 in the referred publication). Later, using 
the same scoring model – support vector regression – with a similar feature set, Yao et al.42 reported a 0.717 as 
the highest median QWK value the authors could obtain across different scoring tasks (Table 5 in the referred 
publication). The 1st place winner of the 2021 NAEP Automated Scoring Challenge reported a QWK of 0.888, 
and their model “extract features combined with Latent Semantic Analysis (LSA), the generation of N-gram 
vectors, Latent Dirichlet Allocation (LDA), passage similarity metrics, and deep neural network embeddings to 
train the best ensemble model from a series of classifier and regression models”43.

So, although not based on an ideal comparative analysis, gaining prediction accuracy with complex black-
box models appeared to be the case in the AI scoring context for short-response items where the evaluation of a 
text response is focused on content, but not so much for long essays where the evaluation of a text response may 
be more about writing conventions such as grammatical accuracy and correct use of vocabularies. Even though 
the content certainly matters in long essays, such as the logical structure of an argument, unlike extracting 
features that indicate writing mechanics, it has been very challenging to design and extract manual features that 
can fully capture the content quality and the nuances in the content. Deep learning models, such as those based 
on transformer architecture, however, can generate extremely nuanced contextual representations of a text and 
can deal with the complexities and ambiguities in human language reasonably well44. Therefore, those black-box 
models may be more suitable and leading to higher prediction accuracy, when scoring for content-based short-
response items. But, while one can potentially gain some prediction accuracy with the use of complex models, 
a lack of interpretability can be a serious issue when using these black box models in educational assessments 
especially for when bias in scoring is detected, it can be extremely difficult or even impossible to pinpoint what 
is causing the bias and to mitigate bias.

Presently, as mentioned earlier, with the rising popularity and promises of open-source large language 
models (LLMs), researchers around the world are conducting timely studies to investigate the potential of 
leveraging pre-trained LLMs for the purpose of AI scoring. Often researchers finetune pre-trained LLMs such 
as BERT, LLaMa or GPT for the downstream tasks. In terms of AI scoring, such downstream tasks typically 
involve predicting human ratings on a prompt, for which the process still requires labelled data (e.g., human 
ratings). LLMs have been shown to entail and criticized for “pervasive issue of bias”45 for population groups 
differing in age, gender, color, ethnicity, geographic location, language and cultural background, political 
affiliation, disability status, etc. (e.g.,46–49). These biases are originated from the composition of the enormous 
training corpus of the LLMs50–52. For example, the original BERTBASE model was pre-trained on Wikipedia 
English data and BookCorpus data53, and the pre-training of DeBERTaV3 model used data from Wikipedia, 
Bookcorpus, CC-News, Stories and OpenWebText combined54. As a result, a LLM would reflect the writing 
styles and linguistic characteristics demonstrated in its pre-training data. Previous research has cautioned that 
large corpora used to train language models “overrepresent hegemonic viewpoints and encode biases potentially 
damaging to marginalized populations”55. So in the context of scoring, these inherent biases in LLMs will be 
carried over and/or further exacerbated in the downstream tasks, for instance, if there exists algorithmic biases 
(of the same direction) in the downstream AI scoring applications.

Statement of research problem
The principle of fairness is foundational to responsible AI and a key standard of educational testing. As 
highlighted by researchers like56, generative AI solutions like ChatGPT show some promise in terms of their 

Figure 1. Illustration of the balance between accuracy and interpretability. The need for high model accuracy 
and interpretability is emphasized. Models with high accuracy need additional explainability, while models 
with low accuracy are simpler to comprehend but useless in many cases. The grey-box models represent the 
transition between black-box and white-box models. The number represents the year in which it first appeared 
in the field of AI research. (Graph and caption taken from36 without modification.).
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accuracy; however, there is still a risk that biases exist in their outputs. For example, differences in language usage 
or cultural references made by students in their writing could lead to biased scoring, disadvantaging certain 
groups of students while advantaging other groups. Various governmental agencies, such as NIST in the US, and 
non-governmental agencies like the UN, UNESCO, and OECD have published guidance on the responsible use 
of AI, which we have synthesized to come up with our principles for the responsible use of AI in assessments57. 
Our principles include fairness and bias mitigation; privacy & security; transparency, explainability, and 
accountability; educational impact & integrity; and continuous improvement. The accuracy of AI-scoring is one 
component of our principles related to educational impact & integrity.

Published research so far on using deep learning and transformer-based models has very little empirical work 
and discussion on fair use of AI for scoring; if at all, this type of discussion only appears briefly in the discussion 
section. Prediction accuracy tends to be prioritized in the use of LLM for AI scoring. All the aforementioned 
Kaggle competitions, including the most recent one that concluded in June 2024, only considered prediction 
accuracy as measured by quadratically-weighted kappa for ranking the competitors. We argue that it is critically 
important that AI systems in education evaluate, mitigate, and work to eliminate biases to foster an inclusive 
learning environment. This involves meticulous attention to the data used in training the generative AI models 
and ensuring the evaluations of the AI scoring represents diverse student backgrounds and abilities.

There is not much work that has been done in terms of using pre-trained LLMs under zero-shot condition 
for automated scoring purposes, with few exceptions (e.g.,58–61. A zero-shot scoring can better expose biases 
inherent in the pre-trained LLMs which might otherwise be hidden or overcome through finetuning. We can 
therefore better gauge their direct impact on scoring. Based on our knowledge, none of the published works 
analyzed the AI scoring potential under zero-shot condition from a fairness perspective. With fairness being a 
central concern in educational assessment, our work intends to fill this gap in the literature.

What if bias is detected? And how to mitigate bias? Explainability or interpretability is critical to ensure that an 
AI scoring model assigns accurate scores for valid reasons, which will, in turn, build people’s trust and confidence 
in fair use of AI. Explainability is a serious challenge in developing and evaluating AI scoring capabilities. The 
problem gets even more complex when the model output is incorrect, biased, or not obviously wrong due to 
the size and complexity of the models. There is a growing body of research around explainable AI (XAI) that 
proposes methods to interpret such complex models as deep neural networks (see37,62 for summaries). Many of 
those XAI techniques have achieved meaningful results in explaining the model outputs and have open-sourced 
their codes. For example, Modarressi et al.63 proposed a method that works specifically well with transformer-
based deep learning models. But, to apply any existing XAI methods requires knowing the actual scoring model, 
which is un-accessible in the case of GPT. To tackle this problem, we directly investigate the predictability of the 
sensitive attributes that we try to ensure fairness (i.e., race/ethnicity) using the same embedding input that is 
used to predict scores. We describe, in more details, the rationale of this approach in the next section.

To summarize, we attempt to address two specific research questions in evaluating zero-shot scoring using 
GTP-4o: 

 1.  What is the scoring accuracy of zero-shot scoring using GPT-4o? And is it fair for different ethnicity groups?
 2.  If a lack of fairness is detected, can we explain it?For the remainder of this paper, we first describe our 

approach to evaluating AI scoring in terms of accuracy, fairness and explainability, followed by the actual 
zero-shot GPT-4o scoring experiment and results. We conclude with a discussion of the findings and the 
limitations of this study.

Our approach to evaluating AI scoring
How to evaluate AI scoring is generally well established in the literature, although new challenges do emerge 
with the use of LLMs. Overall, we followed the best practice guidance suggested in64 to evaluate the scoring 
accuracy and fairness. Some specifics are given below.

Evaluating accuracy
Haberman65 defined prediction accuracy as measuring the ability to predict one variable by use of one or more 
other variables. Beyond the scope of discussion in current study, the author also made a distinction between 
prediction accuracy and agreement where Cohen’s kappa66, for example, is a form of agreement metric. In 
evaluating accuracy, we calculated percentage agreement between AI and human scores, Cohen’s unweighted 
and quadratically weighted kappa, disattenuated correlation, as well as proportional reduction in mean squared 
error (PRMSE) for predicting the human true score65,67.

Evaluating fairness
The most straightforward way to evaluate fairness is to compare the raw mean differences between human and 
AI scores for each demographic group. In this study, we also computed an adjusted mean score difference that 
conditioned on human true score. Technical details of this metric can be found in68,69.

Explaining results
As mentioned earlier, without knowing the actual scoring model, we chose to use the embeddings to predict 
demographic group membership. This can be thought of as similar to the statistical concept of canonical correlation 
and a technique called “BIOT” (Best Interpretable Orthogonal Transformation70), where multidimensional text 
embeddings are on one side of the equation and external variables such as score or sensitive attributes to fairness 
(e.g., ethnicity) on the other side. The predictive relations are revealing from a fairness perspective in that, for AI 
scoring applications, it would not be desirable for the same input being predictive of not only performance, but 
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also one’s group membership which is considered as construct-irrelevant. If so, it would suggest that the scoring 
model that takes the same input may capitalize on construct-irrelevant information that contains bias.

Results of an evaluation of zero-shot essay scoring
To evaluate the accuracy, fairness, and explainability of zero-shot generative AI scoring, we had GPT-4o score 
the entire database of 13,121 independent essays in the Persuade 2.0 database71,72. The essays were responses to 
written in response to one of eight prompts, and were answered by students in grades eight through twelve, with 
the vast majority of essays written by eighth (61.3%) and eleventh (23.5%) grade students. The gender of the 
writers was nearly evenly split between female (50.03%) and male (49.97%) writers. The race/ethnicity of writers 
is also included in the data set, with 42.8% identified as White, 23.0% identified as Hispanic/Latinx, 20.8% 
identified as Black/African American, and 9.0% identified as Asian/Pacific Islander. The essays ranged in length 
from 146 words to 4855 words, with a median of 407 words, and first and third quartiles of 286 and 564 words, 
respectively. Other investigators have used the same data set for research on AI scoring, such as56 that sampled 
from the same corpus to create sample #3 in their paper.

To generate scores, we used OpenAI’s Batch API service (OpenAI, 2024) to request GPT-4o to produce 
holistic ratings of each essay. We prompted the AI to score the essays by first passing the text of the “Holistic 
Rating Form” for independent essays available on the Persuade 2.0 GitHub page71 as the system message and 
then asking GPT-4o to score the essay by passing the following user message,

score the essay that follows using the holistic scoring rubric: give only the numeric score. do not write anything 
other than the number. The essay is:

Specific student essays were appended to this prompt after a line break. A prototype entry in the JSONL file 
passed to the Batch API is shared in Appendix A.

Accuracy results
We found that GPT-4o scored the essays poorly. On average, the AI scores were 0.9 points lower than the human 
ratings, matched only about 30 percent of the time, and were within one point of the human rating only 77 
percent of the time. The classification table appears in Table 1 below.

It is clear from the classification table that our zero-shot prompt generated AI scores tended to be too low 
across much of the distribution. For example, essays where humans assigned scores of 3, were most likely to be 
scored as 2’s by the GPT-4o. Similarly essays receiving human ratings of 4, 5, and 6 had modal generated scores of 
3, 3, and 4, respectively. Indeed, the mean scores generated by GPT-4o, reported in Table 2, were on average 0.9 
points lower than the human ratings on the same essays; the 95% confidence interval for the difference is (0.875, 
0.922). The standard deviations of scores were also lower. The difference is drastic if we look at the marginal 
distributions. GPT-4o is much harsher than human raters: GPT-4o only assigned scores 6 and 5 to 3 and 300 
responses, respectively, whereas in contrast humans assigned 6 and 5 to 732 and 2458 responses, respectively.

Cohen’s unweighted kappa and quadratic weighted kappa (QWK) and their confidence intervals, calculated 
with the cohen.kappa function from the pscyh package73 in R, are 0.082 (0.073, 0.091) and 0.437 (0.387, 0.487) 
respectively. These are both well below standard thresholds typically used to evaluate the agreement of parallel 
scores. In fact, the proportion reduction in mean squared error (PRMSE) for predicting the human true score65,67 
is:

 
P RMSE = 1 − E[(H − G)2]

ρH · Var(H) = −0.617

Rater Mean Std.Dev

Human 3.69 1.12

GPT-4o 2.79 0.81

Table 2. Summary statistics for the human and GPT-4o assigned scores.

 

GPT-4o Generated score

Human 1 2 3 4 5 6

1 43 38 1 0 0 0

2 155 1546 283 2 0 0

3 52 2075 1562 70 0 0

4 10 1001 2470 608 15 0

5 1 158 1221 960 118 0

6 0 7 179 376 167 3

Table 1. Classification table comparing the scores assigned by humans and GPT-4o. Bold values indicate 
where there is exact agreement between humans and GPT-4o
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where H is the random human score, G is the generated score, and ρH  (set to 0.75 based on71) is the inter-
rater reliability among randomly sampled human raters. This large negative value indicates that one would do 
substantially better assigning every essay the mean human score of 3.69 instead of the GPT-4o generated score, 
as the mean squared error for the GPT-4o generated scores is 61.7% larger than the mean squared error if we had 
simply assigned the mean human rating to all essays.

While the GPT-4o scores tended to be too low on average, they did tend to be higher when the humans gave 
higher scores. The disattenuated correlation (assuming human rater reliability of 0.75) is 0.757 and the squared 
disattenuated correlation is 0.574. The discrepancy between what the disattenuated correlation suggests, and 
what kappa, QWK, and PRMSE suggest is because correlation ignores the differences in means and the scaling 
of the AI-generated scores. So, if all one needs to do is rank order the essay writers, and the overall scale and 
location of the scores are not important (e.g., the holistic scoring guide descriptions are not important), the AI 
generated scores would be OK for low-stakes purposes of rank ordering students. However, if we want the scores 
to have some meaning, as suggested by the holistic scoring guide, then QWK and PRMSE should be metrics we 
use for evaluation, not disattenuated correlation.

Race/ethnicity fairness results
When AI scores are not accurate, or at least highly correlated with human ratings, there is an increased chance 
that they are differentially biased against specific demographic groups. Table 3 reports the means of the human 
ratings, the means of the GPT-4o ratings, their differences, and adjusted differences based on errors-in-variables 
regression74,75 that adjust for the randomness in the human ratings68,69.

In our example, for instance, we found that GPT-4o scoring negatively impacted essays labeled as written by 
Asian/Pacific Islander students. The adjusted difference for Asian/Pacific Islander students was -1.16. Compared 
to the overall mean difference of -0.90, the essays written by Asian/Pacific Islander students were an extra one-
quarter of a point lower on average, even when adjusting for overall performance (see Adj. Diff column). Clearly, 
this does not seem fair.

Transparency and explainability
So, why is GPT-4o giving scores that are too low overall and particularly low for essays written by Asian/Pacific 
Islander students? The truth is it is tough to say. AI systems like ChatGPT are huge black-box algorithms defined 
by billions or trillions of parameters. These algorithms operate in ways that are often not fully understood 
even by their own developers. This lack of clarity makes it immensely difficult to explain why AI makes certain 
decisions, thereby undermining trust in the system.

While gaining a deep understanding of why an AI system like ChatGPT assigns one score or another is 
probably not possible at this stage, we can carry out some explorations. Given that the GPT-4o scoring algorithm 
appeared to be treating different race/ethnicity groups differently, we wondered if it would be able to predict the 
race/ethnicity of the essay writers, and if that prediction was also related to the score it gave.

We prompted GPT-4o to predict the raceethnicity of each essay writer by selecting from a list of the six groups 
in the original database. Once again, we utilized the OpenAI Batch API service (OpenAI, 2024). Appendix B 
shows a prototype entry in the JSONL file. The following system message was passed:

The race ethnicity of the writer of the essay below is one of: (1) American Indian/Alaskan Native; (2) Asian/
Pacific Islander; (3) Black/African American; (4) Hispanic/Latino; (5) Two or more races/Other; (6) White. 
I want you to predict the race ethnicity of the author. The essay is:

The student’s essay was then appended to the end of the system message, and a user message was issued to 
request the AI to do the following:

Provide your prediction of the race ethnicity using the numeric codes above. Do not write any words in your 
response to me.

The classification table appears in Table 4. The first thing to note is that GPT-4o responded with a predicted 
race category of “(”. This is likely an artifact of our specific prompt, where we labeled the racial groups with 
numeric codes in the format(n) and requested a single token in the GPT response. In these cases, the model 
likely predicted that a response in the same format (e.g., (3) instead of 3) would have been optimal. While this 
behavior could likely be corrected with further prompt engineering, we decided to keep it as is as a reminder of 

Sample size Human GPT-4o Diff.
Adj. 
Diff

American Indian/Alaskan Native 52 3.37 2.54 -0.83 -0.77

Asian/Pacific Islander 1193 4.25 3.19 −1.05 −1.16

Black/African American 2725 3.55 2.62 −0.93 −0.90

Hispanic/Latino 3022 3.41 2.52 −0.89 −0.84

Two or more races/Other 516 3.94 3.04 −0.90 −0.95

White 5613 3.77 2.92 −0.85 −0.87

Table 3. Mean scores assigned by humans and GPT-4o and their differences by subgroup.
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how prompts can affect results.In terms of exact agreement, GPT-4o did a better job predicting race/ethnicity 
(49% exact agreement, 51% when ignoring “(” responses), than it did scoring the essay (30% exact agreement). 
While this may seem impressive, it is mostly because a larger proportion of essays were predicted to have been 
written by White students, who make a large proportion of the sample. Cohen’s kappa, which accounts for 
chance agreement, is 0.26 in this case after removing the “(” generated responses compared to 0.08 for the scores; 
the 95% confidence interval for kappa for the race guess is (0.25, 0.27) compared to (0.07, 0.09) for scores.

Furthermore, we found that, as shown in Table 5, even after adjusting for overall performance differences, 
essays that GPT-4o predicted were written by Asian/Pacific Islander students were scored half a point lower 
on average (adjusted difference -1.42 compared to average difference of -0.90); essays predicted to be Two or 
more races or Other were scored to three-tenths of a point higher (adjusted difference -0.58 compared to mean 
difference of -0.90).

In summary, the black-box model in GPT-4o can better predict the ethnicity of a writer than to predict 
a score on an essay. This suggests that we cannot rule out the possibility that GPT-4o infers, captures, and 
uses (construct-irrelevant) race/ethnicity information from the essays for the scoring task. Writer’s ethnicity 
background should not be considered in determining essay quality. Given the biases reported in Table  3, it 
appears that whatever aspects of the essay that are used to predict race/ethnicity are also associated with the 
aspects that cause fairness issues. Unfortunately, it is difficult to determine exactly what those aspects are. Future 
research is needed.

Discussion
While AI technologies like ChatGPT hold great promise for easing the grading burden and enhancing 
educational practices, their responsible application requires a holistic approach. Ensuring fairness, transparency, 
explainability, and continuous improvement are critical to fostering an inclusive, reliable, and effective 
educational environment. The principles outlined in standards for responsible AI and in literature related to the 
problem of scoring, such as1 and64 offer valuable frameworks for addressing these challenges. Prior work76,77 on 
formulating validity arguments for automated scoring in educational assessment is still relevant today that “it’s 
not only the scoring.” As we continue to integrate AI into education, it is our collective responsibility to safeguard 
these principles to truly benefit all students and educators.

In this work, we set out to examine the zero-shot scoring capabilities of GPT-4o with a primary focus on the 
three key facets of responsible AI: accuracy, fairness, and explainability. Our specific experiment looked at the 
viability of providing holistic scores for the sample of independent essays available in the Persuade 2.0 data set71 
and found a number of issues that should make one think twice about zero-shot approaches for scoring essays 
without careful evaluation.

We addressed two research questions. For the first research question, we found that the zero-shot AI 
generated scores were not accurate when compared to the human ratings in the data set. On average the AI-
generated scores were almost a point lower and came nowhere close to meeting industry standards for quality of 
automated scores. In fact, the evaluation metrics PRMSE suggests you would be better off simply assigning the 
mean score to every student. Additionally, we found that scoring discrepancies were not consistent across race/
ethnicity groups. Compared to other essays, those associated with Asian/Pacific Islander students were more 
biased (relative to human ratings) than the other race/ethnicity groups. For the second research question, we 

GPT-4o Predicted race Human GPT-4o Diff.
Adj. 
Diff

( 3.55 2.68 −0.87 −0.84

Asian/Pacific Islander (2) 4.13 2.82 −1.31 −1.42

Black/African American (3) 3.19 2.21 −0.98 −0.86

Hispanic/Latino (4) 3.22 2.14 −1.08 −0.97

Two or more races/Other (5) 3.06 2.33 −0.73 −0.58

White (6) 3.96 3.06 −0.90 −0.96

Table 5. Mean human and GPT-4o ratings by GPT-40 predicted race/ethnicity.

 

Reported Race/Ethnicity ( 2 3 4 5 6 Recall %

American Indian/Alaskan Native (1) 2 0 7 3 6 34 0.0

Asian/Pacific Islander (2) 81 62 54 35 108 853 5.2

Black/African American (3) 90 6 950 46 421 1212 34.9

Hispanic/Latino (4) 79 5 302 709 571 1356 23.5

Two or more races/Other (5) 8 3 55 9 39 402 7.6

White (6) 150 7 198 52 514 4692 83.6

Precision % – 74.7 60.7 83.0 2.4 54.9

Table 4. Classification of GPT-4o’s race/ethnicity predictions.
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also found that zero-shot AI was able to better predict one’s race/ethnicity than it was to predict the correct score, 
and that those predicted races were associated with the scores that GPT-4o produced, even after accounting for 
true human score differences. This result strongly suggests the possibility of GPT-4o capturing and utilizing 
race/ethnicity information from the essays for the scoring task, for which information should be irrelevant to 
the construct of measurement.

These findings highlight the importance of rigorously evaluating automated scoring methods, no matter 
the approach taken. Automated scoring must be evaluated, not only for accuracy, but also for fairness and 
explainability. Explicit efforts are needed to mitigate bias in AI models. Using zero-shot generative AI approaches 
makes it difficult to mitigate bias, given one does not necessarily have access to the inner workings of the model. 
It may be possible to improve performance using clever prompt engineering approaches, but more research is 
needed.

Furthermore, transparency and explainability are essential. Stakeholders, including students, educators, and 
administrators, must understand how AI algorithms arrive at their conclusions. Transparency helps to foster 
trust and accountability. It also enables users to identify potential problems and biases. One potential approach 
to explainable AI in the context of generative AI automated scoring is the self-explanation, where, in addition 
to asking the AI for a score, you also ask for an explanation for the score. However, just as the scores need to be 
evaluated for accuracy and fairness, so too should these explanations. Future research is encouraged to explore 
how to leverage LLMs to extract meaningful features, which will improve the explainability of the AI scores. 
As a related possibility, one may combine a set of hand-engineered, construct-relevant features with a “score” 
from black-box models to generate a final writing score. The resulting scoring models not only will be more 
explainable but may also lead to comparable or even better prediction accuracy than pure black-box models. 
It is worth noting that if features (as implicit or explicit indicators of text quality) are problematic introducing 
construct-irrelevant information associated with group membership, the models will be biased whether it is 
a white-box or a black-box models. Related to bias detection and mitigation, previous research has proposed 
fairness-constrained models, e.g., in68 and9, where a penalty multiplier was introduced to algorithmically control 
the differences in scoring model performance on the subgroup population level. Though, those methods were 
developed for simpler scoring models (e.g., best linear predictor78 or least square regression) that used a small 
set of theory-driven, hand-engineered features. More research will be needed to scale up those previous work to 
non-linear models with a very large number of parameters. Algorithms also exist in the broader AI field, such 
as79, that deal with complex algorithms but more research will be needed to evaluate and adopt those methods 
for AI scoring under the educational assessment context.

While this study examined some of the critical issues related to the use of generative AI for scoring in 
educational assessment, it is not without limitations. For one, we did not do prompt engineering to find a prompt 
that produced the best results possible. We used a single prompt that we thought was reasonable and tweaked it 
a little to get out numeric scores to simplify analysis. It is perfectly possible that a different prompting strategy 
might produce different results. Second, we only focused on a single zero-shot generative AI approach. Few-shot 
generative AI approaches and/or fine-tuning approaches would likely yield better results. However, the goal of 
this paper was to focus more on how to evaluate scores, rather than how to best use AI for scoring and optimize 
performance. Finally, because we do not have access to the inner workings of GPT-4o, we were limited in what 
we could do to try and explain results. Attempting to predict the sensitive attribute that one wants to ensure 
fairness - in the current study, the race/ethnicity of the student, was one approach to try and see if the AI model 
were capturing features associated with race and ethnicity, but there could be others.
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