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To accommodate China’s electricity market reforms integrating medium and long-term (MLT) 
transactions and spot transactions, and to boost renewable energy consumption through the spot 
market, this paper proposes an optimized cross-provincial electricity trading strategy model based 
on a two-layer game framework. The proposed model incorporates an MLT green certificate contract 
decomposition method, enabling nested optimization of green certificate contracts and scheduling 
plans for cross-provincial power transactions. To encourage broader participation, a bilateral green 
certificate trading framework is established, which globally optimizes green certificate allocation to 
increase benefits for market participants. A Nash-Stackelberg game model is introduced to address 
complex game interactions among multiple participants under the green certificate mechanism and 
the limitation of assuming complete rationality. The game model combines supply and demand sides 
with an embedded demand-side evolutionary game. Additionally, an improved Aquila optimization 
algorithm (IAOA) is developed to accurately calculate electricity supply and demand. The algorithm 
integrates a Circle chaotic map, Sobol sequence, random walk strategy, and filtering technology to 
enhance optimization capabilities and manage complex constraints. The algorithm is then embedded 
with a distributed iterative approach to achieve equilibrium strategies. A real-world case study was 
conducted to validate the feasibility and effectiveness of the proposed model. The results demonstrate 
that the proposed approach effectively achieves equilibrium, optimizes trading strategies, and fosters 
win-win, coordinated development among participants in the cross-provincial electricity market.

Keywords MLT transactions, Tradable Green Certificate, Cross-provincial transaction, Nash-Stackelberg 
game, Evolutionary game, Aquila optimization algorithm

Abbreviations
MLT  Medium and long term
TGC  Tradable green certificate
AOA  Aquila optimization algorithm
IAOA  Improved Aquila optimization algorithm
RPS  Renewable portfolio standard
List of symbols
T  Scheduling cycle
Vsell  Retail price of electricity
PL,i,t  Load demand of receiving area i in time period t
NG  Number of conventional units in the receiving area
VG,g   Generation cost coefficient of the g-th unit in the receiving area
PG,g,i,t  Generation power of the g-th unit in the receiving area i during time period t
Vcost  Cost coefficient of renewable energy units (photovoltaic, wind power)
Prenewable,i,t  Generation power of renewable energy units in receiving area i during time peri-

od t
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Vbuy  Power purchase price of renewable energy power
Pbuy,i,t  Renewable energy power purchase
VTGC  TGC price
PTGC,i,t  Number of TGCs purchased
Vpunishment  Penalty coefficient
indexRA  Quota coefficient of the receiving area
Plong,i,t  The MLT transaction volume of receiving area i at time period t
PG,g,i,min,PG,g,i,max  Lower and upper limits of conventional unit power in the receiving area i

ωup
g,t,ωdown

g,t   Power climbing rate of conventional unit g
T on

g ,T off
g   Continuous start-up and shutdown hours of conventional unit g

Tu,g ,TD,g   Minimum start-up and minimum shutdown hours of thermal power unit g

P
dc
L ,P dc

F   Lower and upper limits of tie-line power transmission

P
dc
down, P dc

up   Climbing rate of transmission power of tie-line
tn  Minimum maintenance time of tie-line power
PTGC,i,min,PTGC,i,max  The upper and lower limits of TGC purchase

ηG,ηr,ηbuy,ηL  Transfer distribution factor of conventional units, renewable energy units, and 
renewable energy power purchase and load

Pl,i,max  Line l transmission power limit
Eh  Daily executive power obtained by decomposition
Γh  The tolerance of daily completed power deviation of MLT trading units is deter-

mined according to the completion of unit contracts
Qsell

i,j,t  Sales volume from sending area i to receiving area j
Msell

j,i,min,Msell
j,i,max  The upper and lower limits of the price for purchasing electricity

MTGC
j,i,min,MTGC

j,i,max  The upper and lower limits of the purchase price of TGC

indexSA  Quota coefficient of sending area
H  Number of units with an MLT electricity contract
x  Number of planned dates
∆  Deviation of allowable power completion progress between units

E
max
h,x ,Emin

h,x   Upper and lower limits of daily decomposition energy of unit

E
trade
h   Monthly Contract Energy of Unit

E
o
h,x−1  The unit has completed the contract power before the planned date

lh,x,lx  The completion progress of the unit as of day h of the contract power and the 
average completion progress of all units

E
plan
x   Total contract energy to be completed by each unit on the planned date

PL,x  Planned daily electricity demand
month  Total number of days per month

 A new phase of power market reform in China was catalyzed by the issuance of the Implementation Opinions on 
Advancing Power Market Construction, issued by the National Development and Reform Commission and the 
National Energy Administration in November 20151.

This round of reform explicitly proposes that China’s power market construction should integrate both 
MLT contract transactions and spot market transactions2. The goal is to gradually establish a market system 
that manages risk through MLT contracts while optimizing the allocation of power resources through spot 
transactions, thereby uncovering true price signals3. Therefore, effectively establishing a spot market that 
considers MLT transactions has become the key to deepening the reform of the power system.

Numerous studies have been conducted on MLT transactions. In terms of trading strategies of market 
players, Reference4proposed a mixed integer programming model based on portfolio theory to describe the 
trading strategies of large power users in spot and MLT markets. Reference5described the negative correlation 
between wind power generation and electricity price through the time-varying copula model and proposed 
a research method for the transaction strategy of long-term wind power contracts. Reference6proposed a 
stochastic optimal scheduling model considering long-term power transactions in the wind power integrated 
energy system and introduced the power contract decomposition into the day-ahead optimal scheduling 
planning process. Reference7proposed an optimization model considering the monthly electricity imbalance 
and the uncertainty of competitors’ bidding strategies to deal with the problem of electricity imbalance in MLT 
transactions. In terms of the interaction effect between the MLT market and the spot market, Reference8provided 
a comprehensive analysis of both MLT and spot trading markets from a risk perspective, concluding that MLT 
transactions can avoid certain risks. Reference9proposed a transaction risk control model for power retailers, 
employing conditional risk return and value theory to assess the risk of MLT and spot transactions and to 
minimize such risk through market integration. Reference10proposed an equilibrium model based on the supply 
function and conducted an equilibrium analysis on the day-ahead market and the MLT trading market. The 
results showed that the price of the MLT contracts would follow the mathematical expectation of the day-ahead 
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market price. Reference11presented a cobweb model, concluding that the introduction of MLT trading markets 
would be conducive to reducing the volatility of electricity prices, but other factors such as investment lag might 
lead to periodic fluctuations in electricity market prices. The above-mentioned studies have comprehensively 
analyzed and discussed the strategic behavior of market players in MLT and spot transactions, along with the 
effect of the two transaction markets. However, as power market reforms progress, the imperative to establish a 
unified national power market for the comprehensive coordination and optimal allocation of power resources 
has become increasingly evident12. The establishment of cross-provincial and cross-regional markets has become 
an important technology to improve the utilization rate of renewable energy, address the difficulties of renewable 
energy development, and achieve emission reduction goals. Therefore, research on MLT and spot transactions 
in the cross-provincial and cross-regional markets is crucial for China to construct a complete market system 
framework. The above-mentioned studies are all about the analysis and discussion of MLT transactions in a 
single area. Currently, there is a lack of analysis on the multi spatial scale power purchase and distribution 
of cross-provincial and cross-regional markets and intra provincial markets. Moreover, there is also a lack of 
cross provincial MLT transactions and joint research between cross provincial spot transactions. The influencing 
factors of MLT trading units and trading participants, such as the deviation of MLT contract completion of units 
and the daily load conditions of participating trading areas (trading participants in this paper) have been often 
overlooked in the relationship between MLT and spot transactions. Furthermore, the external monetary value 
of renewable energy power generation is ignored, and the actual national policies and mechanisms should be 
combined to promote the market to promote the consumption of renewable energy.

To further tap the potential of renewable energy consumption, researchers believe that a reasonable market 
mechanism can facilitate the development of a sustainable power market. The government introduced market 
mechanisms into resource allocation13, and transformed renewable energy subsidies from government behavior 
to market behavior, forming a trading system with Renewable Portfolio Standard (RPS) as the framework14, and 
Tradable Green Certificate (TGC) mechanism as the supporting mechanism15. Reference16proposed an inter-
provincial hybrid energy dispatching model based on the TGC trading mechanism. Reference17established a 
comprehensive planning model consisting of a multiple regression model and a linear programming model 
to promote the optimization of renewable energy resource allocation through the inter-provincial distribution 
of renewable energy and the combination of RPS and TGC trading mechanism. Reference18discussed the 
role of the TGC trading mechanism in balancing the grid-connected price of photovoltaic power generation. 
Reference19proposed a mixed complementarity, multi-region partial equilibrium model that clears both 
electricity and green certificate markets, assuming Nash-Cournot competition. Reference20proposed a two-
stage joint equilibrium model, based on the oligopoly competition equilibrium theory and the TGC trading 
mechanism, to provide insights for power market design. Reference21employed game theory to assess six 
potential TGC scenarios, enabling decision-makers to design and select the best TGC scenario to improve the 
effectiveness of interaction between the TGC system and the power market. Reference22compared the costs 
of two EU member countries under different policies and demonstrated that TGC transactions can ensure 
the cost-effectiveness of renewable energy power generation. Reference23proposed an equilibrium model for 
cross-regional TGC transactions to reduce part of the power generation costs. Reference24proposed a bi-level 
mathematical model to derive the optimal trading strategy for a strategic renewable energy aggregator in the 
joint auction-based electricity and green certificates market. Reference25proposed a simple linear programming 
mathematical framework to derive the optimal portfolio management and trading strategy for a renewable 
energy aggregator in the electricity, hydrogen, and green certificates markets. Currently, extensive research has 
been conducted on the TGC trading mechanism, providing a solid foundation for the implementation and 
theoretical exploration of RPS. However, China’s TGC transactions have shortcomings such as discontinuity 
and low trading volume, and the degree of marketization in China remains limited, with weak market awareness 
among all participants. A mandatory trading system is crucial for the effective implementation of market-
oriented transactions and dynamic balancing of TGCs26. With the continuous development of the power grid 
form, the extensive access of large-scale new energy, and the continuous opening of the power market, the 
competition pattern of multiple market players has been accelerated27. Most of the above-mentioned research has 
examined the effect of TGC transactions, and some studies have investigated the equilibrium model and market 
design of TGC transactions. However, these studies have not considered the enthusiasm of participants in TGC 
transactions and the transaction environment (such as the transaction environment with limited rationality and 
limited information). Moreover, in the actual cross- provincial and cross-regional trading market, the interests 
of each subject are interactive and coupled. Scientific operation modes and reasonable planning methods need 
to be used to solve the complex relationship between participants and ensure the effective consumption of new 
energy and the stability and flexibility of the power supply. The model proposed in this paper considers the above 
factors, overcomes the defect of complete rationality of market participants in current research, and urges more 
market participants to participate in TGC transactions.

Game theory is an important theoretical tool to solve the above problems. It can effectively balance the 
conflicts of interest between different subjects. Different game models have significant differences in application 
scenarios and participant composition. To better illustrate the application areas and applicability of these 
models more clearly, Table 1compares some recent game models. Reference28established the Stackelberg game 
relationship between energy service providers and energy consumers to analyze the impact on the energy supply 
and consumption behavior of both parties and the economy of the system planning scheme. Reference29proposed 
a single-leader multi-follower Stackelberg game model that includes safety checks for the distribution 
system, considering the discrete characteristics of capacitor banks and substation transformer tap ratios. 
Reference30constructed a Nash-Stackelberg game model to analyze the bidding behavior of multiple distributed 
energy resource aggregators in the day-ahead electricity market. Reference31analyzed the relationship between 
revenue and cost of power generators and power purchasers based on cooperative game theory and proposed 
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an improved Shapley allocation method for benefit distribution. Reference32analyzed the interest interaction 
between renewable energy power and thermal power generators in different regions based on cooperative game 
theory. The above-mentioned studies are based on the traditional non-cooperative/cooperative game, assuming 
that all participants are completely rational, and the information is completely symmetrical. However, there is a 
defect that the configuration scheme is too ideal. Evolutionary games do not require the assumption of complete 
rationality or perfect information symmetry among participants, enabling a more reasonable analysis of the 
decision-making behavior of participants in actual situations33,34. Currently, it has been applied in electricity 
market bidding strategy, generation side behavior analysis, electric vehicle charging infrastructure construction, 
and urban heating systems. Several studies have focused on the research of trading strategies between different 
areas. However, they are all modeled by completely rational individuals, without considering the individual 
selection under limited information and limited rationality. The existing research on cross-provincial and 
cross-regional electricity markets has not yet addressed the joint problem of supply-demand transactions and 
demand-side power purchase selection, failing to account for the interaction between the two in the actual cross-
provincial and cross-regional transactions.

Furthermore, the problem of cross-provincial and cross-regional power market operation scheduling has 
historically hindered market development. Therefore, it is crucial to find an effective and powerful optimization 
algorithm to solve this problem. Reference42proposed a penalty function hybrid direct search method to 
solve the multi-region scheduling operation problem considering the large-scale integration of wind turbines. 
Reference43proposed an improved gradient-based Jaya algorithm to generate a feasible Pareto optimal solution 
set for the bi-objective cross-regional scheduling operation problem. Reference44proposed an evolutionary 
particle swarm optimization algorithm to optimize the scheduling operation strategy in multiple regions 
considering the unit valve point effect. Although the above-mentioned studies can effectively address the 
cross-regional operation dispatching problem, they are not directly applicable to modeling the complex game-
theoretic interactions among multiple decision-making players in the power market, especially the two-layer 
game model. Reference45proposed a distributed iterative algorithm to solve the microgrid two-layer game power 
trading model. Reference46developed a two-layer game model for the electric vehicle charging and discharging 
scheduling strategy and the bidding strategy of multiple electric vehicle aggregators in the electricity market, 
employing a distributed iterative algorithm to solve the model. The direct use of the distributed iterative algorithm 
in the above-mentioned studies limits the speed and accuracy of solving the two-layer game model. To better 
solve the two-layer game model of cross-regional transactions, this paper first improves the Aquila optimization 
algorithm (AOA)47, which is used to calculate the supply and demand electricity on both supply and demand 
sides. The AOA is a relatively new natural heuristic optimization method that simulates the hunting process 
of the Skyhawk and has a good effect for optimization problems. To improve the optimization ability of the 
AOA, this paper introduces three strategies: Circle chaotic map, Sobol sequence and random walk. Fifteen test 
functions are used to compare the proposed improved AOA with four classical heuristic algorithms, validating 
its stability and accuracy. To further enhance the computational efficiency and accuracy of solving the two-
layer game model for cross-regional transactions, the improved AOA is nested within the distributed iterative 
algorithm.

Based on the above analysis, this paper proposes an inter-provincial two-layer game power transaction 
optimization decision-making model considering the MLT trading plans. There are four specific contributions:

(1) To better balance the supply and demand of cross-provincial and cross-regional systems and minimize 
the costs and risks of purchasing electricity in the cross-provincial market, this paper proposes an optimization 
model that nests MLT contracts with the day-ahead scheduling plan. By decomposing MLT trading contracts 
and considering multiple factors including contract completion deviations of generating units and daily load 
conditions of participating regions, the model provides relatively efficient contract decomposition results, 
improving the enforceability of MLT trading plans and facilitating the connection between MLT and spot trading 
markets. Additionally, a two-layer game model is proposed to address the issues of multi-player decision-making 
under bounded rationality, the imbalance of interests between supply and demand sides in cross-regional 
transactions, the low enthusiasm of participants in TGC transactions, and the lack of dynamic balance in TGCs. 
The proposed model considers the double-layer coupling between the demand and supply sides during cross-
regional transactions and jointly solves the demand-side selection evolutionary game and the supply-demand 

Ref. Game model Participants Application scenario
28 Stackelberg game Energy service providers and energy consumers Energy supply and consumption

29,30 Stackelberg /Nash-Stackelberg game distributed energy resource aggregators, Independent System Operator 
and Distribution System Operator Strategic bidding in electricity markets

31 Cooperative game Power generators and power purchasers Energy supply and consumption
32 Cooperative game Renewable energy and thermal power producers Energy supply
35–38 Evolutionary game Various generation-side bidding entities Generation-side power market bidding

2,39 Evolutionary game Power producers Analysis of power producers’ trading 
behavior

40 Evolutionary game Electric vehicle station Construction of electric vehicle 
charging infrastructure

41 Evolutionary game Centralized heating companies and government Urban heating system

Table 1. Comparison of different game models.
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Nash-Stackelberg game in the electricity market. An evolutionary game model is constructed on the demand 
side, based on assumptions of “bounded rationality” and “limited information,” to depict the game behavior of 
demand-side users in actual decision-making scenarios, thus avoiding the idealization of game conclusions. 
This approach provides a scheduling scheme that balances the interests of participants across multiple markets, 
promoting more voluntary participation in TGC transactions.

(2) To achieve faster and more accurate computation of the optimal equilibrium result, an Improved Artificial 
Optimization Algorithm (IAOA) is proposed to calculate optimal electricity sales and purchases for both supply 
and demand sides. The proposed IAOA incorporates circle chaotic mapping, Sobol sequence, and random walk 
strategy, enhancing optimization capabilities and exhibiting significant improvements in stability and accuracy 
compared to other algorithms. Complex constraints are addressed through the application of filtering technology, 
and the IAOA is nested within a distributed iterative algorithm to obtain a trading equilibrium strategy.

(3) Using two provinces from western China and two from central China as case studies, this paper derives 
the trading behaviors of both supply and demand sides, exploring the impact of quota tasks, penalty coefficients, 
and the establishment of game relationships on the behavioral trends of multiple agents and system balance.

 The remainder of this paper is structured as follows. Section  "Operation mode of cross-provincial and 
cross-regional electricity market under the RPS" introduces the operation mode of the cross-provincial and 
cross-regional electricity market under the RPS. Section "Optimal decision-making model of cross-provincial 
power transaction considering the MLT transaction plan" presents an optimal decision-making model for 
cross-provincial power transactions that considers the MLT transaction plan. Section "The solution of the two-
layer game model considering the MLT trading plan" provides a solution for the two-layer game model, which 
incorporates MLT trading plans. Simulation cases and comparative analyses are discussed in Sect. "Simulation 
of cases and comparative analysis". Lastly, Sect. "Conclusion" concludes the paper.

Operation mode of cross-provincial and cross-regional electricity market under the 
RPS
Operational framework
The two-level power market of “unified market, two-level operation” works together to ensure power supply 
and optimal allocation of resources through coordinated operation of cross-provincial and provincial power 
markets. The interprovincial electricity market, centered on interprovincial electricity trading, is strategically 
positioned to realize the national energy strategies, promote the consumption of clean energy, and optimize the 
allocation of large-scale resources. The provincial market is mainly positioned to realize the optimal allocation 
of resources in the province and ensure the balance of power supply and demand. Based on the actual situation 
of power transactions between and within provinces in China and the development direction of the future power 
market, this paper proposes an operation mode for a two-level power market under the RPS. The operation 
framework of the two-level power market is shown in Fig. 1.

Before the opening of the spot market, market players can conduct bilateral contract transactions within 
a specific province or across different provinces and regions. After successful transactions, both parties are 
obligated to file the relevant details with the National Power Trading Center and the Provincial Trading Center.

After the opening of the spot market, the cross-provincial and cross-regional spot market shall be carried out 
first. The sending end of various units in the province shall report the power generation information to the cross-
provincial and cross-regional dealers. The receiving end area of various power users and quota subjects in the 
province shall report the power load demand information to the cross-provincial and cross-regional dealers. The 
cross-provincial and cross-regional traders report the inter-provincial power purchase demands to the National 
Power Trading Center based on the generation bidding and load demand information, renewable energy output, 
and load demand forecast. The cross-provincial and cross-regional dealers make optimal decisions regarding 
electricity purchases by leveraging information on various units and load information. This ensures that new 
energy generation in the receiving end area accurately matches provincial electricity purchases.

Once the cross-provincial and cross-regional spot transactions are cleared, the Provincial Power Trading 
Center organizes the intra-provincial spot transactions and receives the provincial bidding information from the 
market entities in the province. The Provincial Power Trading Center takes the results of the cross-provincial and 
cross-regional transactions and the inter-provincial tie line dispatching plan as the boundary conditions to clear 
the intra-provincial market and form the subsequent day’s intra-provincial dispatching plan. The specific supply 
relationship between entities in the province is shown in Fig. 2.

Optimal decision-making model of cross-provincial power transaction considering 
the MLT transaction plan
In this paper, the participants of the two-layer game in the electricity market include the sending end area (seller 
group) and the receiving end area (buyer group). The Stackelberg game model is established between the supply 
and demand sides in the two-layer game model of the cross-regional electricity market built in this paper. The 
sending end area and the receiving end area groups are the leaders and followers of the game, and the power 
interaction is realized through the tie lines. When there are two or more sending end areas, a Nash game is 
formed among the sending end areas.

At the same time, the evolutionary game model between the receiving end areas is established on the power 
demand side. The optimal power trading strategy is finally obtained by employing the two-layer game model 
to deal with the complex relationship between different market subjects. The two-layer game cycle enables the 
sending end area to provide a better electricity purchase price, which will help the evolution of the strategy of 
the evolutionary game. These two layers of the game are coordinated and evolving and will eventually develop 
to the equilibrium point. At this time, it becomes possible to simultaneously determine the optimal power 
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distribution strategy in the sending end area, the optimal power purchase strategy in the receiving end area, and 
the optimal dispatching strategy within the sending end area and the receiving end area. This equilibrium point 
can effectively balance the economic benefits of multiple agents in both the sending and the receiving end areas, 
leading to mutually beneficial and win-win results.

Construction and analysis of the evolutionary game model of the power demand side
Evolutionary game theory is based on the assumption of “limited rationality”, which uses dynamic processes to 
study how participants adjust their behaviors to adapt to the environment or opponents in the evolution of the 
game and thus generates the evolution trend of group behavior48. “Limited rationality” means that the knowledge 
and information owned by the decision-making subject are incomplete, the computing and reasoning ability of 
the decision-making subject is limited, and the decision-making behavior is uncertain. Since the receiving end 

Fig. 1. Operation framework of two-level electricity market under RPS.
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area is a bounded rational group in the power purchase process, an evolutionary game can more reasonably 
depict the game behavior of the receiving end area in the actual decision-making scenario. Therefore, the process 
of power purchase strategy in the receiving end area is modeled as an evolutionary game.

Basic elements of game
(1) Participants. The participants are the receiver regions, represented by RAn, and the set Np of participants is 
marked as NP = (RA1 , RA2 , · · · , RAn).

(2) Strategies. The strategy is the power purchase selection of each receiving area to the sending area. It is 
recorded as Si, where i is the index of the receiving end area, with i ∈ NP = (RA1 , RA2 , · · · , RAn)

(3) Payments. The total payment vector of multiple receiving end areas for power purchase 
isI = (IRA1 , IRA2 , · · · , IRAn).

Description of the strategy set
In this paper, two types of power-selling regions, large and small, are formed due to the regional total renewable 
energy power generation and the gap between local load demand. The division standard is the regional saleable 
electricity capacity. The specific description of the set of evolutionary game strategies is shown in Table 2.

Payment in the receiving end area
The payment of a single receiving end area is the difference between revenue and cost. The revenue includes 
the revenue from selling electricity to users fsell, the cost of generating electricity by conventional units fG, 
the cost of generating electricity by renewable energy frenewable (photovoltaic power generation, wind power 

Fig. 2. Supply relationship of market subjects in the province.
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generation), the cost of purchasing renewable energy power fre-buy, the cost of purchasing TGCs fTGC, and the 
penalty cost fpunishment when the quota is not completed.

The specific expression is shown in the Eq. (1), where t is the index of each dispatching period in the typical 
daily total dispatching cycle, with t ∈ (1, 2, · · · , T) and T = 24 h;

 




max Ii = fsell − fG − frenewable − fre-buy − fTGC − fpunishment

fsell =
T∑

t=1
Vsell · PL,i,t

fG =
T∑

t=1

NG∑
g=1

VG,g · PG,g,i,t

frenewable =
T∑

t=1
Vcost · Prenewable,i,t

fre-buy =
T∑

t=1
Vbuy · Pbuy,i,t

fTGC =
T∑

t=1
VTGC · PTGC,i,t

fpunishment =
T∑

t=1
Vpunishment ·max (|indexi · PL,i,t − (Prenewable,i,t + PTGC,i,t)| , 0)

 (1)

The receiving end area also has the following operational constraints:
(1) Power balance constraint. Power needs to be balanced in real time.

 

NG∑
g=1

PG,g,i,t + Prenewable,i,t + Pbuy,i,t (1 − �) + Plong,i,t (1 − �) = PL,i,t, ∀t (2)

Where, � represents line loss rate.
(2) Conventional unit constraints.

Constraint on output range of conventional units:

 PG,g,i,min Ug(t) ⩽ PG,g,i,t ⩽ PG,g,i,max Ug(t), ∀t (3)

Unit climbing rate constraint:

 PG,g,i,t − PG,g,i,t−1 − ωup
g,t ·∆T ⩽ 0, ∀t (4)

 PG,g,i,t−1 − PG,g,i,t − ωdown
g,t ·∆T ⩽ 0, ∀t (5)

Minimum start-up and minimum shutdown hours constraints:

 
(
T on

g (t − 1) − Tu,g

)
(Ug(t − 1) − Ug(t)) ⩾ 0 (6)

 
(
T off

g (t − 1) − TD,g

)
(Ug(t) − Ug(t − 1)) ⩾ 0 (7)

(3) Tie-line constraints.
Tie-line power direction constraint:

 Pbuy,i,t ⩾ 0, ∀t (8)

Upper and lower limit constraints of tie-line power:

 P
dc
L ⩽ Pbuy,i,t ⩽ P

dc
F , ∀t (9)

Tie-line power climbing rate constraints:

Game selection Meaning

Si-Large area All electric power is purchased from large areas, and the probability of selecting large areas is 100%.

Si-Large area and small area Purchase part of the electricity from large areas and small areas, and the selection probability is 100%.

Si- small area All electricity is purchased from small areas, and the probability of selecting large areas is 100%.

Table 2. Description of the set of evolutionary game strategies.
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 P
dc
down ⩽ Pbuy,i,t − Pbuy,i,t−1 ⩽ P

dc
up , ∀t (10)

Tie-line power maintenance time constraint:

 Pbuy,i,t = Pbuy,i,t+i , Pbuy,i,t ̸= Pbuy,i,t−1 ∀ 1 ⩽ i ⩽ tn (11)

(4) Power purchase constraint.

 PTGC,i,min < PTGC,i,t < PTGC,i,max, ∀t (12)

(5) security constraint.

 

NG∑
g=1

ηG PG,g,i,t + ηr Prenewable,i,t + ηbuy Pbuy,i,t − ηL PL,i,t ⩽ Pl,i,max, ∀t (13)

(6) Non-water quota requirements constraint.

 

T∑
t=1

(Prenewable,i,t + Pbuy,i,t) ⩾ indexRA ·
T∑

t=1

(PL,i,t), ∀t (14)

(7) Constraint on daily electricity quantity of MLT contracts.

 
(1 − Γh) Eh ⩽

T∑
t=1

Plong,i,t ⩽ (1 + Γh) Eh (15)

Where Γh is determined according to the completion of the contract signed by the unit, and Γh = 2.0%.

Construction of the evolutionary game model
It can be seen from Eq. (16) that the optimal electricity quantity purchased by buyer i from seller j in time period 
t is Qt,best

i,j , (the payment function of buyer i reaches the maximum), which is:

 Qt,best
i,j = arg max(Ii,t) (16)

The probability that the buyer i purchases the required electricity from the seller j in time period t is xt
i,j , 

meeting0 ⩽ xt
i,j ⩽ 1 and 

Np∑
j=1

xt
i,j = 1. Then the total electricity demand Et

j  of the buyer group for the seller j 

in time period t is expressed as:

 
E

t
j =

Ns∑
i=1

xt
i,j Q

t,best

i,j  (17)

The optimal electricity Qt,out
i,j  that seller j can sell in time period t is obtained by optimizing all resources in 

seller area j.

 Qt,out
i,j = arg max(Fj,t) (18)

Where Fj,t is the payment function of seller j in time period t.
According to the optimal electricity demand and supply obtained by the buyer and the seller, respectively, the 

supply and demand ratio of the Seller j in time period t can be obtained as:

 ηt
j = Qt,out

i,j / E
t
j  (19)

At this time, the actual electricity quantity that the buyer i can purchase from the seller j in time period t is as 
follows:

 
Qt,fact

i,j =
{

ηt
j xt

i,j Qt,best
i,j

ηt
j ⩽ 1

xt
i,j Qt,best

i,j
ηt

j > 1  (20)

When ηt
j ⩽ 1, it means that the electricity supply of seller j cannot meet the demand, and the sum of all the 

buyer’s actual purchased electricity 
Ns∑
i=1

Qt,fact
i,j  is equal to the seller j’s available electricity, as shown in the 
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Eq. (21). When ηt
j > 1, it means that the electricity supply of seller j exceeds the demand, and seller j can meet 

the electricity demand of all buyers at this time.

 

Ns∑
i=1

Qt,fact
i,j = Qt,out

i,j  (21)

According to the electricity quantity purchased by the buyer, the income of buyer i in time period t is calculated 
as:

 ψi,t = Ii,t

(
Qt,fact

i,j

)
 (22)

It is defined as the average income of all buyer groups in period t, and its calculation formula is:

 
ψj,t =

Np∑
j=1

xt
i,j ψj,t (23)

 
ψj,t =

Ns∑
i=1

ψi,t (24)

In this paper, the buyer group participates in the evolutionary game and takes the power purchase selection 
as the strategy set. Considering that the interaction between buyer groups is a repeated game characterized by 
limited rationality and information, the following replication dynamic equation is used to describe the evolution 
process49:

 
x̃t

i,j =
d xt

i,j

dt
= xt

i,j

(
ψj,t −ψj,t

)
 (25)

When the game reaches the evolutionary stable strategy (ESS), x̃t
i,j = 0, the income of the buyer group is equal 

to the average income, and any buyer will not change the probability of selecting seller j.

 x̃t
i,1 = x̃t

i,2 = · · · = x̃t
i,Np

= 0 (26)

At this time, the evolutionary game equilibrium strategy is xt = [xt
i,1, xt

i,2, · · · , xt
i,Np ].

The discrete replication equation is used to approach the replication dynamic equation to obtain the dynamic 
evolution equation of the final buyer group:

 xt
i,j(w + 1) = α xt

i,j(w)
(
ψj,t −ψj,t

)
+ xt

i,j(w) (27)

Where α is the step adjustment coefficient and w is the number of iterations. When xt
i,j(w + 1) − xt

i,j(w) is 
infinitely close to 0, it indicates that the evolutionary game equilibrium is reached, and the iteration is terminated.

Construction and analysis of game model between power supply and demand
In this paper, the Stackelberg game theory is used to analyze the complex interest relationship between market 
players on both sides of supply and demand in cross-regional TGC bilateral transactions. The sending end area 
(seller group) is the leader of the game, and the receiving end area (buyer group) is the follower of the game. 
When there are two or more sending end areas, a Nash game is formed among the sending end areas.

Basic elements of Nash-Stackelberg game
According to the mechanism and methodology of the Stackelberg game in a competitive market environment50, 
the basic elements are as follows:

(1) Participants: The participants only include the sending and the receiving end areas represented by SAn 
and RAn, respectively. The set of participants is marked as N = {SAn, RAn} , ∀n. The participants in the 
Nash game are the various sending-end regions.

(2) Strategies: The strategy of the sending end area is the power selling price and TGC price of the receiving 
region in the TGC transaction, which are recorded as Msell

j,i,t and MTGC
j,i,t , respectively. The strategy of the receiving 

end area is the trading demand (i.e. trading volume) in the TGC transaction, which is recorded as QTGC
i,j,t .

Both the sending and the receiving end areas have continuous policy space sets. The policy 
space set of each participant is marked as Ω = (ΩSAn, ΩRAn), which can be represented as 

Msell
j,i,t ∈ ΩSAn =

[
Msell

j,i,min, Msell
j,i,max

]
,MTGC

j,i,t ∈ ΩSAn =
[
MTGC

j,i,min, MTGC
j,i,max

]
, and 

QTGC
i,j,t ∈ ΩRAn =

[
QTGC

i,j,min, QTGC
i,j,max

]
 respectively. Where, Msell

j,i,min and Msell
j,i,max are the lower and 
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the upper limits of the transaction price of purchasing renewable energy electricity, respectively, MTGC
j,i,minand 

MTGC
j,i,max refer to the lower and the upper limits of TGC transaction price, respectively, and QTGC

i,j,min and 
QTGC

i,j,max are the lower and the upper limits of the receiving end area’s demand for TGCs in TGC transactions, 
respectively.

(3) Payments: The payment is defined as the profit (the difference between revenue and cost) of the participant 
in the overall scheduling cycle. Since the payment function of the receiving end area has been expressed in 
Sect. "Description of the strategy set", this section mainly describes the payment function of the sending end 
area. The total payment vector of the sending end area can be expressed as F = (FSA1 , FSA2 , · · · , FSAn).

Payment in the sending end area
The revenue of a single sending end area includes revenue fSA

sell from selling electricity to users, income from the 
sale of renewable energy power fSA

re-sell, proceeds from selling green certificates fSA
sell-TGC, generation cost fSA

G  
of conventional units and renewable energy power generation cost fSA

renewable (photovoltaic power generation, 
wind power generation).

 




max Fj = fSA
sell + fSA

re-sell + fSA
sell-TGC − fSA

G − fSA
renewable

fSA
sell =

T∑
t=1

Vsell · PL,j,t

fSA
re-sell =

T∑
t=1

Msell
j,i,t · Qsell

i,j,t

fSA
sell-TGC =

T∑
t=1

MTGC
j,i,t · QTGC

i,j,t

fSA
G =

T∑
t=1

NG∑
g=1

VSA
G,g PG,g,j,t

fSA
renewable =

T∑
t=1

Vcost · Prenewable,j,t

Qsell
i,j,t =

{
Qt,out

i,j
ηt

j ⩽ 1
E

t
j ηt

j > 1

 (28)

Since the conventional unit constraints (conventional unit output range constraint, unit climbing rate constraint, 
minimum start-up and minimum shutdown hours constraint) and tie-line constraints (tie-line power direction 
constraint, upper and lower limit constraint of tie-line power, tie-line power climbing rate constraint, tie-line 
power maintenance time constraint) are similar to those of the receiving end area, they will not be repeated here.

(1) Power balance constraint.

 

NG∑
g=1

PG,g,j,t + Prenewable,j,t = PL,j,t + Qsell
i,j,t (1 − �) , ∀t (29)

(2) Purchase price constraint.

 Msell
j,i,min < Msell

j,i,t < Msell
j,i,max, ∀t (30)

 MTGC
j,i,min < MTGC

j,i,t < MTGC
j,i,max, ∀t (31)

(3) Security constraint.

 

NG∑
g=1

ηG PG,g,j,t + ηr Prenewable,j,t − ηsell Qsell
i,j,t − ηL PL,j,t ⩽ Pl,j,max, ∀t (32)

(4) Non-water quota requirements constraint.

 

T∑
t=1

(
Prenewable,j,t − QTGC

i,j,t

)
⩾ indexSA ·

T∑
t=1

(PL,j,t), ∀t (33)

Equilibrium existence proofs for game models
Since the strategy space set of multi-participants Ω = (ΩSAn, ΩRAn) in bilateral transactions is a non-empty, 
compact, and convex subset of European space, the existence of Nash equilibrium can only be proved by 
assuming that the payment function of each participant is a continuous function or a continuous quasi-concave 
function in the corresponding strategy space.
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Theorem 1 For a strategic game G = {N ; S1 · · · Si, · · · Sn; u1 · · · ui · · · un}, if the strategy set Si is a 
non-empty, compact, and convex subset of Euclid space and the payoff function ui is continuous for the strategy 
combination S and quasi-concave for Si, then the game has a pure strategy Nash equilibrium.

Theorem 2 For a strategic gameG = {N ; S1 · · · Si, · · · Sn; u1 · · · ui · · · un}, if the strategy set Si is a non-emp-
ty, compact, and convex subset of Euclid space and the payment function ui is continuous for the strategy com-
bination S, there is a mixed strategy Nash equilibrium in the game.

In the Nash game model, the existence of Nash equilibrium is established by proving the continuity or continuous 
quasi-concavity of the regional payment functions and supply-side strategies.

The payment F  for the sending end area is divided into the linear term of the transaction price Msell
j,i,t in the 

bilateral TGC transaction and is denoted as FSA,line.
Where FSA,line is a linear function of the transaction price Msell

j,i,t, including five parts, namely, the income 
from selling electricity to users, the income from selling renewable energy electricity, the income from selling 
TGCs, the cost of generating electricity from conventional units, and the cost of generating electricity from 
renewable energy. The following conversions can be made:

 

Fj = fSA
sell + fSA

re-sell + fSA
sell-TGC − fSA

G − fSA
renewable

=
(
A + K1 Msell

j,i,t

)
, K1 > 0

 (34)

According to the definition of the concave function, a linear function is a concave function, and more rigorously, 
a quasi-concave function.

Fj  is continuous on the decision interval 
[
Msell

j,i,min, Msell
j,i,max

]
. Similarly, Fj  is continuous on 

[
MTGC

j,i,min, MTGC
j,i,max

]
. Thus, the payment function Fj  of the sending end area is a continuous function on the 

decision interval, and there is a strategic Nash equilibrium.
The Stackelberg game has an equilibrium if the following three conditions are met:
(1) The strategy set is non-empty, compact, and convex.
(2) Given the leader’s strategy, there exists a unique optimal solution for the follower.
(3) Given the follower’s strategy, there exists a unique optimal solution for the leader.
According to the above description of the Stackelberg game model, the strategies of the sending and receiving 

end areas satisfy their constraints. Thus, the strategy set for each participant is non-empty, compact, and convex. 
Hence, Condition 1 is met. When the upper-level price is given, the payment function of the receiving end area is 
a continuous function over the range of its decision variables, ensuring the existence of a unique optimal solution 
within the constraints. Similarly, when the lower-level transaction volume is given, the payment function of the 
sending end area is also a continuous function over the range of its decision variables, ensuring a unique optimal 
solution within the constraints. Hence, an equilibrium solution exists for this Stackelberg game.

The solution of the two-layer game model considering the MLT trading plan
A decomposition quadratic programming method for MLT contracted energy
The MLT transaction of the MLT contract defines the responsibilities, and locks both demand and price, thereby 
mitigating risks effectively. This mechanism constitutes an excellent approach for implementing inter-provincial 
TGC transactions. Generally, the MLT transactions are divided into annual and monthly transactions according 
to time. Therefore, formulating and decomposing the MLT transaction plan and connecting with the short-term 
scheduling in an orderly manner are the key issues to be solved. The implementation process of MLT TGC 
transactions is shown in Fig. 3.

When making the daily dispatching plan, it is first necessary to decompose the MLT contract electricity into 
days and consider various factors including the contract completion schedule, load demand, and unit maintenance 
to ensure that the electricity completion schedule of each unit is consistent. The following optimization model is 
established to minimize the completion schedule deviation of contracted power between units:

 
minD (l) = 1

H

H∑
h=1

(
lh,x −lx

)2
 (35)

 s.t. E
min
h,x ⩽ Eh,x ⩽ E

max
h,x  (36)

 Eh,x + E
o
h,x−1 ⩽ E

trade
h  (37)

 |lh1,x − lh2,x| ⩽ ∆ h1 ̸= h2 (38)

 

H∑
h=1

Eh,x = E
plan
x  (39)

 
lh,x = Eh,x + E

o
h,x−1

Etrade
h

× 100% (40)
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lx = 1

H

H∑
h=1

lh,x × 100% (41)

 

E
plan
x =

1
H

H∑
h=1

E
trade
h − 1

H

H∑
h=1

E
o
h,x−1

month∑
d=x

PL,d

PL,x (42)

Equation (35) describes the difference in the completion progress of the contracted electricity between units 
using a variance. Equation (36) is the upper and lower limit constraint of the daily decomposition electricity 
of the unit. Equation  (37) is the monthly contract energy constraint of the unit. Equation  (38) refers to the 
constraint of completion schedule deviation of any two units’ contracted energy. Equation  (39) refers to the 
constraint of the daily total generation capacity of units.

The MLT contract electricity quantity decomposition model is composed of a quadratic objective function 
and a series of linear constraints on the daily electricity quantity. Therefore, it is formulated as a standard 
quadratic programming model in this paper. This model calculates the daily executed electricity of each unit, 
which is subsequently introduced as a constraint condition into the constructed receiving end area model.

Two-layer game model solution
According to the game models established in Sect. "Construction and analysis of the evolutionary game model of 
the power demand side" and "Construction and analysis of game model between power supply and demand", the 
optimal electricity sale and purchase strategies in the sending and the receiving end areas, respectively, are both 

Fig. 3. MLT trading framework and decomposition plan.
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single-objective optimization problems. The above optimization problems contain a large number of decision 
variables and complex constraints. In this paper, the IAOA is used to solve the optimization problem.

The standard AOA
The AOA simulates the different hunting methods of the Skyhawk for different prey. The way Skyhawk hunts 
fast-moving prey reflects the global exploration ability of the algorithm, while the way it hunts slow-moving 
prey reflects the local development ability of the algorithm. Skyhawks mainly use four hunting methods, and 
most of them can flexibly and quickly change back and forth between different hunting methods according to 
different situations. Method 1 is vertical dive attack, Method 2 is contour flight and short gliding attack (the most 
commonly used method), Method 3 is low altitude flight and slow descent attack, and Method 4 is walking attack 
and capturing prey. In the AOA, the hunting behavior of the Skyhawk is equivalent to the process of predation 
in a given range to obtain the global optimal solution. The AOA ensures that the search area can be successfully 
created in both wide and narrow fields of vision during the optimization process. The four hunting methods used 
by Skyhawk are as follows:

(1) Expand exploration (X1)
After identifying the prey and its area, Skyhawks select the best hunting area through vertical dive flight and 

high-altitude flight. This behavior is mathematically expressed by Eq. (43):

 
X1(t + 1) = Xbest(t) ×

(
1 − t

T

)
+ (XM (t) − Xbest(t)) × rand (43)

 
XM (t) = 1

N

N∑
i=1

Xi(t) (44)

Where X1(t + 1) is the solution of the next iteration of the t-th iteration generated by the first search method, 
Xbest(t) is the optimal solution of the t-th iteration, 

(
1 − t

T

)
 means exploration is controlled by the number 

of iterations, XM (t) is the average value of the current solution at iteration t, rand is a random number between 
[0,1], t and T represent the current iteration number and the maximum iteration number, respectively, and N is 
the number of candidate solutions.

(2) Narrow the scope of exploration (X2)
After finding the prey at a high altitude, Skyhawks will use contour flight and short gliding to approach the 

prey and launch attacks. This behavior is mathematically expressed by Eq. (45):

 X2(t + 1) = Xbest(t) × levy(D) + XR(t) + (y − x) × rand (45)

 
levy(D) = s × u × σ

|v|
1
β

 (46)

 
σ =

(
Γ(1 + β) × sin

(
πβ
2

)

Γ
( 1+β

2

)
× β × 2

(
β−1

2

)
)

 (47)

Where X2(t + 1) is the solution of the next iteration of the t-th iteration generated by the second search method, 
D is the dimensional space, levy(D) is the Levy flight distribution function, XR(t) is the random solution with 
a value range of [1, N], s is a constant value fixed at 1.5, while y and x are in spiral form in search, and their 
calculation formulas are as follows:

 y = r × cos(θ) (48)

 x = r × sin(θ) (49)

 r = r1 + U × D1 (50)

 θ = −ω × D1 + θ1 (51)

Where θ1 = (3 × π) /2, r1 is the fixed periodic index between 1 and 20, the value of U  is 0.00565, D1 is an 
integer from 1 to the length of the search space and the value of ω is 0.005.

(3) Expand development (X3)
When the prey area is precisely targeted, Skyhawks will slowly reduce their flying height and take the 

preliminary attack to test the prey’s response. This behavior is mathematically expressed by Eq. (52):

 X3(t + 1) = (Xbest(t) − XM (t)) × α − rand + ((UB − LB) × rand + LB) × δ (52)

Where X3(t + 1) is the solution of the next iteration of the t-th iteration generated by the third search method, α 
and δ are mining adjustment parameters with small values within the range of (0,1), while LB and UB represent 
the upper and lower limits of the given problem, respectively.

(4) Narrow the scope of development (X4)
When Skyhawks approach the prey, they will walk on the land to attack the prey according to the random 

movement of the prey. This behavior is mathematically expressed by Eq. (53):
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 X4(t + 1) = QF × Xbest(t) − (G1 × X(t) × rand) − G2 × levy(D) (53)

 QF (t) = t
2×rand−1

(1−T )2  (54)

 G1 = 2 × rand − 1 (55)

 
G2 = 2 ×

(
1 − t

T

)
 (56)

Where X4(t + 1) is the solution of the next iteration of the t-th iteration generated by the fourth search method, 
QF represents the quality function used to balance the search strategy, G1 indicates the different methods taken 
by Skyhawk in tracking their prey, G2 is the decreasing value from 2 to 0, representing the flying slope of the 
Skyhawk when tracking prey from the first position to the last position and QF (t) is the value of the mass 
function at iteration t.

The IAOA
Although the AOA balances the exploration and development capabilities, it has room for further improvement 
in expanding exploration and narrowing exploration capabilities. Therefore, the following content improvements 
are made in the AOA.

(1) Chaotic sequence initialization.
When the basic AOA is initialized, the population diversity becomes worse because it randomly initializes 

the population. Chaotic maps have the characteristics of good ergodicity, non-repetition, unpredictability, and 
aperiodicity, which can be used to improve the performance of the algorithm. The essential idea is to map 
variables into the value range of the chaotic variable space through the characteristics of chaos, and finally 
convert the solution linearly into the optimal variable space. Currently, different chaotic maps51 are available 
including the Iterative map, Tent map, Circle map, and Gauss map. This paper uses the Circle chaotic map to 
regenerate the initial population, which is defined as:

 
xi+1 = mod(xi + 0.2 − (0.5

2π
) sin(2πxi), 1) (57)

Where mod is the residue function.
The circle mapping distribution for 200 iterations is shown in Fig. 4.
It can be seen from Fig.  4 that the distribution of the Circle map is between [0,1]. Compared with the 

population generated by random distribution, the population positions generated by the Circle map exhibit 
greater uniformity. This expands the search scope of the AOA algorithm and improves the optimization 
performance.

(2) Random walk strategy.
The random walk strategy52 is a statistical model proposed in 1905. The process involves the random selection 

of a neighboring point to the current solution. If the neighboring point is better than the current solution, it 
replaces the point as the new center. If no improvement is identified over N consecutive iterations, the current 
solution is considered the optimal value. The current step size is within the N-dimensional sphere of radius. At 
this time, if the step size is less than the threshold, the algorithm will terminate. Otherwise, the step length is 
halved and a new round of walking is started. In the iterative process, when certain conditions are reached, the 
convergence will be achieved, and a stable probability distribution will be obtained.

The process of the random walk can be mathematically expressed as:

 X(t) = [0, cussum(2r(t1) − 1), · · · , cussum(2r(tn) − 1)] (58)

Where X(t) is the set of random walking steps. The statistics of the total steps of the random walk are expressed 
as X(t). The cumulative sum of steps taken is expressed in cussum. The current number of walking steps is 
expressed in t. Taking a random function r(t) as shown in Eq. (59):

 
r(t) =

{ 1, rand > 0.5
0, rand ⩽ 0.5  (59)

Where r(t) is a random number between [0,1].
As the action track of the Skyhawk has a certain range, the position of the Skyhawk cannot be directly 

updated with the Eq. (58). To ensure that the Skyhawk walks within a certain range, it needs to be normalized, 
as shown in the Eq. (60):

 
Xt

i = (Xt
i − ai) ∗ (dt

i − ct
i)

(bi − ai)
+ cit (60)

Where: ai and bi represent the minimum and maximum values of the i-dimension random walk variable, 
respectively, while ct

i  and dt
i  represent the minimum and maximum values of the i-dimension random walk 

variable in the t-th iteration, respectively.
The improvement in this section is mainly carried out after the Skyhawk search, and the random walk strategy 

perturbs it, thereby enhancing its search performance. At the beginning of the iteration, the random walk range 
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is large. After multiple iterations, the random walk range is reduced, which is conducive to improving the local 
search for the optimal location.

(3) Initializing population position based on Sobol sequence.
In this paper, a low-discrepancy sequence is used to replace a pseudo-random sequence with a deterministic 

low-discrepancy sequence, which is also called the Quasi-Monte Carlo (QMC) method. The QMC unifies the 
filled area as much as possible by selecting a reasonable sampling direction. Therefore, it has better ergodicity 
and uniformity in dealing with probability problems. In this paper, a low-discrepancy Sobol sequence is used 
to initialize the population. This deterministic quasi-random number sequence is used to replace the pseudo-
random number sequence to achieve more uniform distribution within the multi-dimensional hypercube.

If the value range of the global solution is a random number of [ub, lb] and Si ∈ [0, 1], the initial position of 
the population is defined in Eq. (61):

 Xn = lb + Si · (ub − lb) (61)

 Assuming that the search space is two-dimensional, the upper and lower bounds are 1 and 0, respectively, and 
the population size is 100. Figure 5 compares the spatial distribution of the pseudorandom initialized population 
with that of the Sobol sequence initialized population. It can be seen from Fig. 5 that the initial population 
distribution generated by the Sobol sequence is more uniform and more ergodic.

Algorithm performance comparison
To evaluate the performance of the proposed IAOA, it was compared with the standard AOA, the Grey 
Wolf Optimization algorithm (GWO), the Whale Optimization algorithm (WOA), and the Particle Swarm 
Optimization (PSO), utilizing 15 classic test functions. To ensure the fairness and effectiveness of the experiment, 
the population size of all algorithms was set to 30, and the number of iterations was set to 100. The test functions 
and parameters are shown in Table A.1 in the appendix.

Fig. 4. Circle map distribution.
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The above-mentioned five algorithms were independently run 20 times in 15 test functions. Table 3 compares 
the obtained average value and the standard deviation. It can be seen from the table that the IAOA has a good 

Fun Metric AOA IAOA GWO PSO WOA

F1
mean 2.1358E-26 6.1397E-31 1.2327E-02 4.0222E + 00 7.2064E-12

std 3.6992E-26 1.0536E-30 6.3953E-03 1.9826E + 00 1.0547E-11

F2
mean 2.8949E-16 3.7175E-17 1.7496E-02 9.1641E + 00 1.8271E-08

std 3.9320E-16 5.1639E-17 1.4192E-03 1.7183E-01 1.9721E-08

F3
mean 9.8205E-24 6.5068E-32 3.5188E + 02 8.6560E + 02 7.8766E + 04

std 1.3888E-23 9.1148E-32 1.6785E + 02 8.9442E + 01 2.1716E + 03

F4
mean 1.4002E-16 1.6860E-18 1.2019E + 00 5.1169E + 00 6.3832E + 01

std 1.9622E-16 1.6636E-18 5.2538E-02 1.9468E + 00 1.0905E + 01

F5
mean 1.8426E-01 1.8260E-02 3.0000E + 01 1.5800E + 03 2.8766E + 01

std 4.1825E-02 7.0675E-03 3.4804E-01 2.8242E + 02 2.9840E-02

F6
mean 2.8677E-03 1.6431E-04 2.4393E + 00 7.2263E + 00 1.8831E + 00

std 2.3632E-04 1.2661E-04 1.3397E + 00 1.8831E + 00 2.1588E-01

F7
mean 8.0655E-04 8.8142E-05 3.2970E-02 7.5480E + 00 1.8657E-02

std 4.5616E-04 1.9203E-05 1.2335E-02 3.0715E + 00 5.2969E-03

F8
mean −3.5249E + 03 −3.7282E + 03 −4.0552E + 03 −2.8864E + 03 −7.5734E + 03

std 1.0365E + 02 7.7337E + 01 1.7045E + 03 2.6475E + 02 1.3451E + 03

F9
mean 0.0000E + 00 0.0000E + 00 3.6812E + 01 2.0944E + 02 3.0411E-12

std 0.0000E + 00 0.0000E + 00 1.1423E + 01 1.7348E + 01 3.8185E-12

F10
mean 1.4557E-12 4.4409E-15 2.4330E-02 3.0610E + 00 3.8480E-07

std 2.0575E-12 5.0243E-15 1.3435E-03 7.0831E-01 3.9975E-07

F11
mean 0.0000E + 00 0.0000E + 00 1.0007E-01 1.9732E + 01 4.8755E-12

std 0.0000E + 00 0.0000E + 00 3.5171E-02 7.0276E + 00 6.6498E-12

F12
mean 1.7285E-04 2.2557E-07 6.9775E-01 1.3736E + 00 1.5048E-01

std 2.4104E-04 1.4064E-07 2.4924E-01 1.6342E + 00 2.5074E-02

F13
mean 1.0419E-04 5.0362E-05 1.5306E + 00 1.7448E + 00 8.3289E-01

std 9.9322E-05 3.0694E-05 2.5244E-02 8.8600E-01 1.7266E-01

F14
mean 1.4950E + 00 9.9815E-01 6.8727E + 00 1.5116E + 00 7.3658E + 00

std 7.0286E-01 2.0506E-04 5.5021E + 00 6.7946E-01 4.8047E + 00

F15
mean 1.0063E-03 5.5518E-04 6.9381E-04 8.8895E-04 1.4809E-03

std 1.9476E-04 9.5771E-05 3.9457E-05 2.7881E-04 1.0904E-03

Table 3. Algorithm performance comparison.

 

Fig. 5. Comparison of initial population distributions. (a) Initial distribution of the random population (b) 
Initial distribution of the Sobol sequence population.
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optimization effect in the test function, and the optimal value of the corresponding function can be directly 
searched.

Since there are many test functions, the convergence curves of four test functions are selected for separate 
analysis and are shown in Fig. 6. The advantages and disadvantages of the algorithm can be directly assessed 
through its convergence curve, which shows the convergence speed of the algorithm and the times of falling 
into local optimal values. It can be observed from Fig. 6 that the convergence speed of the proposed IAOA is 
faster than that of the other four algorithms in the entire iteration process, and the convergence accuracy is also 
the best among the five algorithms. The IAOA demonstrates superior global exploration ability than the other 
algorithms, while also exhibiting a reduced propensity to become trapped in local optima. The IAOA effectively 
balances the global exploration ability and local development ability. To verify the effectiveness of the improved 
strategy, the random initialization strategy was replaced with the chaos map initialization strategy and the Sobol 
sequence initialization strategy. Figure 6 shows that the IAOA is significantly faster than the standard AOA in 
terms of convergence speed. Moreover, the IAOA has rarely fallen into the local optimal value. Hence, the IAOA 
has a significant improvement in both the precision and speed of optimization compared with the standard 
AOA.

Complex constraint processing method
In this paper, the filter technology is employed to deal with complex constraints. The filter technology forms a 
number pair (F, G) to express the filter element, in which the objective function F and the constraint violation 
degree G are expressed as:

 F = f(X, Y, Z) (62)

 s.t. g(X, Y, Z) ⩽ 0 (63)

 h(X, Y, Z) = 0 (64)

 G = max (0, g (X, Y, Z)) + |(h(X, Y, Z))| (65)

There are two definitions:

Definition 1 If F (xi) ⩽ F (xj) and G (xi) ⩽ G (xj), filter (F (xi), G (xi))dominates(F (xj), G (xj));

Definition 2 Filters of filter subsets are independent of each other.

Game model solution
The solution of the two-layer game model proposed in this paper is divided into two parts: the solution of the 
evolutionary game on the demand side and the solution of the Nash-Stackelberg game on both sides of the 
supply and demand. The model-solving process is shown in Fig. 7.

Fig. 6. Comparison of different algorithms convergence curves.
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In the Nash-Stackelberg game process, any seller j cannot obtain the quotation information of other sellers. 
Thus, the distributed iterative algorithm is used to update its electricity price until reaching the Nash-Stackelberg 
equilibrium. The iterative formula is:

 MTGC
j,i,t (w + 1) = βj,t

(
E

t
j − Qt,out

i,j

)
+ MTGC

j,i,t (w) (66)

Fig. 7. Game model solving process.
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Where βj,t is the iteration speed parameter, and its value is set according to the specific situation. If the value 
of βj,t is too large, it will lead to excessive price oscillation. Therefore, it needs to be adjusted to a smaller value 
adaptively to ensure the normal progress of iteration. When MTGC

j,i,t (w + 1) − MTGC
j,i,t (w) is infinitely close to 

0, the iteration ends. At this time, the electricity supply and demand of seller j are equal, and the electricity price 
tends to a stable value, reaching Nash equilibrium.

To enhance algorithm convergence, the step control method can be used to control the fluctuation of 
electricity price during iteration, thereby mitigating the adverse effects of excessive price volatility. The step 
control method is expressed as:

 
max

(
MTGC

j,i,min, MTGC
j,i,t (w) − Θ

)
⩽ MTGC

j,i,t (w + 1) ⩽ min
(
MTGC

j,i,max, MTGC
j,i,t (w) + Θ

)
 (67)

Where, Θ = ϑ
∣∣MTGC

j,i,t (t)
∣∣ , ϑ ∈ [0, 1] is the climbing rate and its specific value is dynamically adjusted 

according to the iteration situation and basic electricity price to ensure the iteration efficiency and convergence 
accuracy.

Fig. 8. Cross-regional interconnected power grid structure.
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Simulation of cases and comparative analysis
The case analysis was simulated using MATLAB R2018b (https://www.mathworks.com/products/matlab.html) 
on a Windows 11 PC (3.2 GHz, 16 GB RAM). This paper utilizes the actual data from provinces A and B in 
western China and provinces C and D in central China to verify and analyze the established cross-regional 
power transaction model. The inter-provincial interconnection grid structure is shown in Fig.  8. The total 
installed capacities of thermal power and photovoltaic units in sending end areas A and B were 9323 MW and 
2150 MW, respectively. The installed capacities of wind turbines in sending end areas A and B were 5000 MW 
and 3100 MW, respectively. The total installed capacity of thermal power in receiving end areas C and D was 
14,057 MW. The installed capacity of photovoltaic power in receiving end area C was 3150 MW. The installed 
capacity of wind power in receiving area D was 2000 MW. The transmission capacity of the tie-line was 3000 MW. 
See Appendix Table A.2-A.5 for the basic parameters of the generator set in the sending and receiving end areas. 
The power generation cost of renewable energy was set at 220 yuan/MWh53. To illustrate a typical wind power 
output scenario in the sending end area, Fig. 9 presents historical wind power and photovoltaic output data of 
the two provinces with a 1-hour resolution for the period from June 2 to July 2, 2018. The load data is shown in 
Fig. 10. After the above simulations, the model’s runtime was 15290.9961 s.

Decomposition results of MLT contracted energy
According to the contract completion progress and daily load, the quadratic programming method in Sect. 4.1 
was adopted to determine the daily executive power of each MLT trading unit. Table 4 presents the decomposition 
results of MLT contracted energy in area C. Similarly, Table 5 shows the decomposition results in area D.

It can be seen from the above tables that the planned daily power demand of area C is 38,505 MW·h, and 
the total executed power of all MLT trading units is 15,797 MW·h. The planned daily power demand of area D 

Fig. 9. Renewable energy output of each area.
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is 29,505 MW·h, and the total executed power of all MLT trading units is 12,104 MW·h. The variance of unit 
contract completion progress in areas C and D is reduced from 2.10 to 1.80 and 0.93, respectively, following 
decomposition. By introducing the constraint of contractual completion schedule deviation between any two 
units, the maximum completion schedule deviation between units in receiving areas C and D is constrained 
to 3.33% and 2.74%, respectively, remaining within 3.5%. This shows that the quadratic programming method 
of MLT contract energy decomposition adopted in this paper can provide a relatively friendly decomposition 
result, improve the fairness of MLT trading unit scheduling, and ensure the execution of the plan.

Analysis of evolutionary game results
Given the complexity of the 24-hour evolution process, Fig. 11 shows selected time points, t = 5, t = 14, and t = 19 
for presentation.

Renewable energy unit number
E

trade
h

(105MW·h)
E

o
h,x−1

(105MW·h)
E

max
h,x

(MW·h)
E

min
h,x

(MW·h)
Eh,x

(103MW·h)
lh,x−1
(%)

lh,x

(%)

1 1.2160 0.7310 2400 100 1.3577 60.12 61.23

2 1.2160 0.7156 2400 800 2.4000 58.85 60.83

3 1.2160 0.7248 2400 400 1.9144 59.61 61.18

4 3.0399 1.8209 6000 600 1.3245 59.90 60.33

5 1.2160 0.6869 2400 2000 2.0000 56.49 58.13

6 1.2160 0.6869 2400 2000 2.0000 56.49 58.13

7 2.4319 1.4466 4800 900 4.8000 59.49 61.46

Variance 2.10 1.80

Table 4. Decomposition results of MLT contract energy in area C.

 

Fig. 10. Load demand of each area.
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It can be seen from Fig. 11 that the buyer group participates in the evolutionary game. As the income of the 
buyer group gradually approaches the average income, the buyer constantly updates the probability of selecting 
the seller until a stable value is achieved and finally reaches the equilibrium solution.

Since the decision-making process of the game is based on the constantly changing game environment, the 
size of the initial state is not proportional to the final stable state. It is determined by the game environment. 
Figure 11 (a) shows the evolution state curve of the buyer group’s selection probability for Seller A (sending end 
area A). It can be seen that when t = 14 and t = 5, the selection probability is very high, and finally the selection 
probability converges to 1, indicating that the buyer group only selects Seller A to purchase electricity at this 
time. The evolution state trends are different at different times, but the final convergence means that under the 
constantly changing game situation and environment, the selection strategy eventually becomes a stable strategy 
within the population. This stable strategy represents an evolutionarily stable strategy. Figure 11 (b) shows the 
evolution state curve of the buyer group’s selection probability for seller B (sending end area B). The stability 
strategy of the buyer group is shown in Fig. 12.

Figure 12 (a) and (b) show the internal strategy results of areas C and D, respectively. It can be seen that both 
areas can ensure the balance of power supply and demand. Moreover, since the overall load demand of area 
C is greater than that of area D, the thermal power output of area C is also relatively large. The overall power 
supply of the two areas is mainly from thermal power generation. Renewable energy is mainly used to complete 
quota tasks, and the thermal power output in peak hours will also be increased compared with other periods. 
It can also be seen in the figure that the power distribution size of MLT transactions in a dispatching cycle is 
decomposed according to the size proportion of the load, which further ensures the balance of power supply and 
demand. Furthermore, the power purchase is mainly concentrated in the time period with less renewable energy. 
Since photovoltaic power generation is mainly used in area C and photovoltaic power generation is mostly used 
in the noon and afternoon periods, morning and evening periods are the main power purchase periods. The 
wind power output of area D is mainly concentrated in the morning and evening. Thus, noon is the main power 
purchase period of area D.

Fig. 11. Convergence of evolutionary game.

 

Renewable energy unit number
E

trade
h

(105MW·h)
E

o
h,x−1

(105MW·h)
E

max
h,x

(MW·h)
E

min
h,x

(MW·h)
Eh,x
(103MW·h)

lh,x−1
(%)

lh,x
(%)

1 0.9318 0.5601 2400 100 0.2763 60.12 60.41

2 0.9318 0.5484 2400 800 1.4276 58.85 60.38

3 0.9318 0.5554 2400 400 0.7207 59.61 60.38

4 2.3294 1.3953 6000 600 3.4203 59.90 61.37

5 0.9318 0.5263 2400 2000 2.0000 56.49 58.63

6 0.9318 0.5263 2400 2000 2.0000 56.49 58.63

7 1.8635 1.1085 4800 900 2.2595 59.49 60.70

Variance 2.10 0.93

Table 5. Decomposition results of MLT contract energy in area D.
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Analysis of Nash-Stackelberg game results
Figure 13 shows the TGC price per hour after the game. It can be seen from the figure that with the decrease 
in the ratio of demand to supply, the TGC price also decreases. During the game, the buyer’s area needs to 
purchase a large number of TGCs to complete the quota task and avoid huge penalty costs. However, the seller’s 
area prioritizes the completion of its regional quota tasks and the maximization of revenue generated from 
electricity sales. The seller’s area transmits the price signal to the buyer’s area, enabling the buyer to adjust its 
demand accordingly. When the ratio of demand to supply is large, it means that the TGC supply is smaller than 
the demand at this time, and the TGC price will increase to ensure the seller’s income, while the buyer will 
also reduce the demand because of the price increase. With the transmission of signals from both sides finally 
reaching a balanced state, the interests of both sides have also been balanced.

Fig. 13. Results of trading price.

 

Fig. 12. Strategy results of buyer group.

 

Scientific Reports |        (2024) 14:30137 24| https://doi.org/10.1038/s41598-024-81133-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Sensitivity analysis of regional evolution behavior
The change in regional income is the source of driving the evolutionary behavior of each subject, which is usually 
accompanied by the change in the government’s new energy incentive policy and the area’s power generation 
capacity. The quota task and quota penalty coefficient are analyzed and discussed as follows.

 (1)  Quota Tasks.

Three groups of different quota tasks were set for different regions. Case 1: The quota task coefficients of the 
seller’s area and the buyer’s area were set to 4% and 12%, respectively. Case 2: The quota task coefficients of the 
seller’s area and the buyer’s area were set to 7% and 15%, respectively. Case 3: The quota task coefficients of the 
seller’s area and the buyer’s area were set to 10% and 18%, respectively.

It can be seen from Fig. 14 (a) that the selection probability of Area C in Case 3 is higher because, under 
a high proportion of quota requirements, area C will be promoted to purchase more TGCs to complete quota 
tasks. At this time, the TGCs purchased only from Area A cannot meet the quota requirements of Area C. Thus, 
the selection probability of Area B will be increased. In Case 1, due to the low quota requirements, the supply 
of TGC in the market exceeds the demand, which will lead to a decrease in the price of TGC. Area C will buy 
some green electricity to replace thermal power generation. In Case 2, since the power supply of Area A is large, 
area A can meet the demand of Area C. Hence, the probability of selecting Area B is the smallest compared 
with the other two cases. It can be seen from Fig. 14 (b) that the selection probability of Area D in Case 1 is the 
highest because Area D chooses to purchase some green electricity to replace thermal power generation due to 
low quota requirements and to reduce its own power generation cost. In Case 3, it can be seen that the selection 
probability in Area D is smaller than that in Area C. Since the load in Area D is much smaller than that in Area 
C, the number of tasks in Area D quota is less under the same quota coefficient, which makes Area D purchase 
less from Area B. Hence, the selection probability in Area D is smaller.

 (2)  Quota penalty.

To investigate the impact of quota fines on the evolutionary game, the penalty coefficient was adjusted to values 
of 500, 900, and 1300, respectively, when quota tasks were not completed.

It can be seen from Fig. 15 that with the increase of the penalty coefficient, the purchase volume of Areas 
C and D decreases first and then increases. The selection probability of Areas C and D decreases gradually. 
When the penalty coefficient is small, the supply of TGC in the market will exceed the demand, which will 
reduce the price of TGC, and the selection probability of Area B is also the largest. Areas C and D will buy some 
green electricity to replace some thermal power generation. When the penalty coefficient increases, the market 
demand and price of TGC will increase. To ensure their economy, Areas C and D will not buy more green 
electricity, leading to a decrease in the selection probability for Area B. When the penalty coefficient further 
increases, Areas C and D will increase the purchase volume to ensure the completion of the quota task. This 
can lead to a situation where supply is less than demand, increasing the price of TGC. At this time, the selection 
probability of Area B is also the minimum.

Analysis of the game relationship between supply and demand
To study the advantages of the game relationship between supply and demand established in this paper, two 
scenarios were set for comparative simulation, as shown in Table 6. Scenario 1: There is no game relationship 
between supply and demand. Scenario 2: The supply and demand sides establish a game relationship.

In Scenario 2, the income gap of the four areas is the smallest, and the results are the most satisfactory 
compared with other methods. In the game interaction between supply and demand, the interests of different 
market participants can be scientifically balanced. Scenario 2 leverages demand-side flexibility to mitigate the 
need for energy purchases from the supply-side area. By reasonably regulating and controlling the schedulable 
resources in the demand-side area, it can force the supply-side area to adjust the price curve, ultimately reducing 
the power purchase costs for the demand-side area. When the TGC price is high, the demand side area will 
reduce its purchase volume, and vice versa. Since the game relationship is added on both sides of supply and 
demand, the supply side area, as the leader, will send a TGC price signal to the demand side area. The demand 
side area will adjust the demand according to the price, and then feed back the demand to the supply side area. 
The supply side area will adjust the TGC price. The mutual information interaction will eventually reach a stable 
state, balancing the interests of both parties. The game interaction between the supply and demand sides in 
Scenario 2 can also better balance the interests of the market subjects of the buyer and seller.

Conclusion
This paper proposes an optimization model of a cross-provincial two-layer game power trading strategy 
considering MLT trading plans. The decomposition method of MLT contracts of TGCs is introduced into 
the cross-provincial power trading model to construct a bilateral trading framework of TGCs and optimize 
the global configuration of TGCs. Game theory is employed to solve the complex game interaction between 
multiple participants in the interprovincial electricity trading market under the TGC mechanism. This approach 
addresses the limitations inherent in the traditional game theory, which often assumes perfect rationality on 
the part of participants. Finally, the IAOA and iterative algorithm are used for the joint solution. Through case 
analysis, the following conclusions are obtained.
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Fig. 14. Probability of areas C and D choosing B in different cases. (a) Purchase volume C-B. (b) Purchase 
volume D-B.
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Case analysis reveals several key findings. First, the quadratic programming approach for decomposing 
medium- and long-term contracted energy successfully accounts for deviations in contract completion levels, 
achieving reductions in the variance of contract completion progress by 14.3% and 55.7% in Areas C and 
D, respectively. The maximum deviation in completion progress remains constrained within 3.5%, ensuring 
fairer scheduling for trading units and enhancing the feasibility of the plan’s execution. Second, the two-layer 
game model captures the dynamic interactions among various stakeholders on both the supply and demand 
sides, promoting balanced coordination of economic interests and promoting the development of the power 
market. Third, model sensitivity analysis indicates that adjusting quota ratios appropriately increases selection 
opportunities for smaller power-selling areas and helps balance benefits across different regions. Reducing 
penalties for specific units not only leads to a reduction in TGC prices but also stimulates demand-side purchase 
volumes, facilitating a more equitable selection of smaller power-supply areas. The establishment of a game-
based framework between supply and demand sides simulates market dynamics, mitigates regional income 
disparities, and facilitates a scientifically balanced allocation of interests. Lastly, the proposed IAOA efficiently 
addresses the challenges posed by high-dimensional variables and complex constraints within the model. Its 
effectiveness was validated through testing on 15 benchmark and real-world power grid data, underscoring its 
significant performance advantages.

According to the conclusion of this study, some suggestions are made to the government.
The government should conduct a comprehensive assessment of the costs and benefits associated with both 

the power generation area and the development plan of the renewable energy industry. Based on this analysis, 
an effective quota ratio should be formulated to facilitate the implementation of renewable energy plans within 
the power generation sector. On the one hand, the government needs to scientifically set the quota penalty 
coefficient, and then strictly implement relevant measures. On the other hand, it is imperative to improve laws 

Area A Area B Area C Area D

Scenario 1 7.0576 × 107 4.8285 × 107 5.2609 × 107 3.5100 × 107

Scenario 2 6.7491 × 107 4.7833 × 107 5.4359 × 107 3.6887 × 107

Table 6. Comparison of results of the game relationship.

 

Fig. 15. Results of penalty coefficient variation.
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and regulations, management policies, and informal rules to facilitate effective supervision of each area, and 
compliance with RPS regulations.

Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information files.
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