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Differential activity of MAPK signalling
defines fibroblast subtypes in
pancreatic cancer
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Christian Neander2,3, Caterina Vicentini4, Elena Fiorini1, Francesca Lupo1,
Sabrina L. D’Agosto4,12, Carmine Carbone 5, Antonio Agostini5, Geny Piro5,
DiegoRosa1,MicheleBevere6, PeterMarkus7, DianaBehrens8, Claudio Luchini 4,
Rita T. Lawlor 1,6, Aldo Scarpa 4,6, Giulia Biffi 9, Phyllis F. Cheung2,3,10,14,
Jens T. Siveke 2,3,14 & Vincenzo Corbo 1,14

Fibroblast heterogeneity is increasingly recognised across cancer conditions.
Given their important contribution to disease progression, mapping fibro-
blasts’ heterogeneity is critical to devise effective anti-cancer therapies.
Cancer-associated fibroblasts (CAFs) represent the most abundant cell popu-
lation in pancreatic ductal adenocarcinoma (PDAC). Whether CAF phenotypes
are differently specified by PDAC cell lineages remains to be elucidated. Here,
we reveal an important role for theMAPK signalling pathway in defining PDAC
CAF phenotypes. We show that epithelial MAPK activity promotes the myofi-
broblastic differentiation of CAFs by sustaining the expression and secretion
of TGF-β1. We integrate single-cell profiling of post-perturbation transcrip-
tional responses from mouse models with cellular and spatial profiles of
human tissues to define a MAPKhigh CAF (mapCAF) phenotype. We show that
this phenotype associates with basal-like tumour cells and reduced frequency
of CD8+ T cells. In addition to elevatedMAPK activity, this mapCAF phenotype
is characterized by TGF-β signalling, hypoxia responsive signatures, and
immunoregulatory gene programs. Furthermore, the mapCAF signature is
enriched in myofibroblastic CAFs from various cancer conditions and corre-
lates with reduced response to immune checkpoint inhibition in melanoma.
Altogether, our data expand our knowledge on CAF phenotype heterogeneity
and reveal a potential strategy for targeting myofibroblastic CAFs in vivo.

Fibroblasts functionally contribute to disease progression and therapy
response in solid tumours1,2. Thediversity of phenotypes and functions
displayed by cancer-associated fibroblasts (CAFs) within the tumour
microenvironment (TME) is dependent on their cellular origin, spatial
localisation and disease context2,3. In pancreatic ductal adenocarci-
noma (PDAC), different subtypes and specialised functions of CAFs
have been reported4–10. Myofibroblastic CAFs (myCAFs) and

inflammatory CAFs (iCAFs) are two distinct states consistently repor-
ted in the PDAC TME4,6,8 for which mechanisms of cancer-induced
rewiring have been provided4. The failure of agnostic targeting of
PDAC CAFs in preclinical and clinical settings11–14 demonstrates our
current insufficient understanding of fibroblast heterogeneity to
properly guide therapeutic strategies. Here, we hypothesised that
different neoplastic cell states contribute to PDAC fibroblast
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heterogeneity. Different transcriptional states of PDACmalignant cells
have been described15–19, which result from the integration of cell
intrinsic and extrinsic inputs20–22. Transcriptional infidelity to the
pancreatic endodermand acquisition of exogenous gene programmes
(e.g., squamous/basal-like) is invariably associated with a more
aggressive biological behaviour of cancer cells23. However, we have a
limited understanding of whether specific CAF rewiring is induced by
different neoplastic cell states. We argued that the identification of a
CAF transcriptional phenotype specifically associated with a biologi-
cally aggressive cancer subtype may improve patients’ stratification
based on the risk, lead to a better prediction of therapeutic responses
and potentially guide effective personalised therapies. Activating
mutations of KRAS are nearly universal in PDAC24 and result in the
hyperactivation of the RAS/MEK/ERK (Mitogen-activated protein
kinase, MAPK) pathway, which plays a central role in tumour initiation
andmaintenance25,26. Increased dosage of oncogenic KRAS is observed
in basal-like/squamous subtypes17,27,28, yet classical PDAC cells have
been reported to display superior sensitivity to the inhibition of
MAPK29. Targeting of MAPK, alone or in combination, has demon-
strated to be ineffective in PDAC30,31. However, the significance of
MAPK activity in the PDAC TME has never been explored so far.

In this work, we uncover an important role for the MAPK signalling
pathway in the definition of PDAC CAF phenotypes. We show that epi-
thelial MAPK activity promotes the myofibroblastic differentiation of
CAFs by sustaining the expression and secretion of TGF-β1 bymalignant
cells. Additionally, we demonstrate that hyperactivation of MAPK sig-
nalling occurs in myCAFs (MAPKhigh CAFs, mapCAFs) populating basal-
like tumour niches with reduced frequency of CD8+ T cells. In addition
to elevated MAPK activity, this mapCAF phenotype is characterised by
TGF-β signalling, hypoxia responsive signatures and immunoregulatory
gene programmes. In silico analyses confirm this phenotype in other
solid tumours and further show that mapCAFs are indicative of primary
resistance to immunotherapy in metastatic melanoma.

Results
Basal-like PDAC cells bear cancer-associated fibroblasts with
elevated MAPK activity
To identify molecular features predictive of cellular dependency on
MAPK signalling, we treated 12 human cell lines with increasing doses
of the MEK1/2 inhibitor trametinib (MEKi). Next, we evaluated post-
perturbation biochemical and transcriptomic responses with sub-IC50
doses of MEKi (Supplementary Fig. 1a–c). The cell lines approximated
the two main PDAC subtypes (i.e., classical and basal-like) to varying
extents (Supplementary Fig. 1b, c). Overall, the treatmentdid not affect
cell lineage (Supplementary Fig. 1b, c). The reduction in cell fitness
following short-term MEKi was not predicted by differential p-ERK1/2
phosphorylation, a proxy for pathway inhibition, nor by the amplitude
of drug-induced transcriptomic changes (Supplementary Fig. 1d–f).
Then, we used the RNA-seq data from the 12 MEKi treated cell lines to
derive a transcriptomic signature of MEK1/2 inhibition (epithelial
MEKi, eMEKi) based on downregulated genes only (Supplementary
Data 1). To isolate the drug-induced transcriptional response, we
employed batch correction to remove the major source of intrinsic
variability in theRNA-seq data, i.e., cell lines’ identities (Supplementary
Fig. 1g). The eMEKi signature levels did not correlate with drug sensi-
tivity, biochemical pathway activation (i.e., p-ERK1/2 levels), or the
‘basalness’ score (see ‘Methods’) (Supplementary Fig. 1h, i). Con-
versely, eMEKi showed positive correlation, although not reaching
statistical significance, with another transcriptional signature of MAPK
activation (MAPK_Biocarta) (Supplementary Fig. 1j). The latter showed
a better correlationwith pathway activation, as assessed by levels of p-
ERK1/2 in unperturbed condition (Supplementary Fig. 1h, k). To con-
firm this result, we used an established cell line (PaTu8988S)where the
basal-like programme is induced by RNAi silencing of the classical
driver GATA632. In keeping with our observations, downregulation of

GATA6 did not result in significant changes in MAPK fluxes nor in
sensitivity to MEKi (Supplementary Fig. 1l–n).

Therefore, in our array of cell culture, MAPK activity does not
discriminate basal-like vs classical PDAC cells nor identify cell lines
with differential sensitivity to pathway inhibition.

Next, we used the same transcriptional signature of MAPK acti-
vation (MAPK_Biocarta) to infer differential activity of the pathway in
an extended set of human cell lines. We explored the transcriptomic
data available from the Cancer Cell Line Encyclopaedia (CCLE)
(n = 41)33 and those available in our laboratory (n = 10) to classify cell
lines as either basal-like or classical19 (see ‘Methods’, Supplementary
Data 2). In this dataset, the MAPK transcriptional signature could not
discriminate classical from basal-like cell lines (Fig. 1a). Considering
that in vitro models do not fully represent in vivo cell states, we next
explored transcriptomic data from PDAC tissues. High levels of the
MAPK signature were enriched in the basal-like PDAC of The Cancer
Genome Atlas (TCGA)16 and the International Cancer Genome Con-
sortium (ICGC)15 cohorts, but not in the PanCuRx17 cohort, which
contains RNA-seq data from microdissected epithelia (Fig. 1a). Based
on those results, we reasoned of a potential contribution of non-
malignant cells to the elevated MAPK activation inferred in the basal-
like tissues of the two cohorts. We focused on CAFs and tumour-
associated macrophages as they represent the most abundant cell
types in the PDACTME. Independently of the neoplastic cell content of
the tissues, MAPK transcriptional signatures were generally positively
correlated with the levels of stromal genes such as Podoplanin (PDPN),
Actin alpha 2 (ACTA2) and Fibroblast activation protein (FAP) (Sup-
plementary Fig. 2a). Next, we applied amultiplex immunofluorescence
(mIF) to 15 human PDAC tissues where neoplastic cells were classified
as either basal-like or classical with well-established tissue
markers15,34–37 (Fig. 1b). First, we found that every tumour tissue showed
co-existence of classical (GATA6high KRT81neg) and basal-like (GATA6neg

KRT81high) cells (Fig. 1b and Supplementary Fig. 2b). An increased
abundance of (myCAFs, PDPN+α-SMA+) was observed in proximity of
basal-like cells (Fig. 1b, c). In classical tumour regions38,39, p-ERK+ CAFs
were rarely detected while the opposite was found in KRT81high

expressing tumour regions (Fig. 1b). Spatial analysis showed that sig-
nificantly more PDPN+ α-SMA+p-ERK+ CAFs can be found in proximity
of basal-like cells (Fig. 1b, d). Stromal p-ERK1/2 signal was also sig-
nificantly higher in GATA6low tissues from patient-derived xenografts
(PDXs, n = 15) (Fig. 1e, f).

Pancreatic stellate cells (PSCs) are known precursors of CAFs40–42.
We serum-starvedmouse PSCs (mPSCs) and thenbriefly exposed them
to the conditioned media from 10 human cell lines displaying varying
degree of basalness before evaluating p-ERK. Although no clear trend
was observed for increased nuclear p-ERK levels when mPSCs were
exposed to conditioned media from more basal-like cultures, statisti-
cally significant differences were detected when mPSCs were treated
with conditioned media from isogenic cell lines either proficient or
deficient in GATA6 expression (Supplementary Fig. 2c–f). This result
suggests that while othermechanismsmight be at play, the phenotype
of nuclear p-ERK accumulation in fibroblasts can be partially recreated
through direct modulation of the neoplastic cell state. Collectively,
these data support a mechanistic link of basal-like PDAC cancer cells
driving elevated activity of MAPK in CAFs in vivo.

scRNA-seq of mouse PDAC tumours treated with MEKi reveals
quantitative and qualitative changes in cell subsets
To investigate the role of MAPK in the definition of stromal pheno-
types, we performed a multidimensional analysis of tissues from
mouse basal-like PDAC (Fig. 2a). First, we generated and characterised
a mouse model based on the orthotopic transplantation of a
quasi-mesenchymal KPC (KrasLSL-G12D/wt; Tp53LSL-R172H/wt; Pdx1-Cre)43

derived cell line that in vivo produces cancer tissues aligning with the
human basal-like PDAC phenotype44. As reported previously, this
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Fig. 1 | Basal-like PDAC cells bear cancer-associated fibroblasts with elevated
MAPK activity. a Scatter dot plot and boxplots of GSVA scores obtained for the
MAPKBiocarta gene set (MSigDB) stratifiedbyMoffitt subtypes19. From left to right:
CCLE 33and in house cell lines, PanCuRx17, ICGC15 and TCGA16. p values byWilcoxon
test (two-sided). TCGA Classical: Min −0.42, Max 0.35, a median of −0.08, with first
quartile (Q1) at −0.15, third quartile (Q3) at 0.08, an interquartile range (IQR) of
0.23, lower whisker (LW) −0.42, upper whisker (UW) 0.35. TCGA Basal-like: Min
−0.35, Max 0.35, Med 0.05, Q1 −0.14, Q3 0.19, IQR 0.33, LW −0.35, UW 0.35. ICGC
Classical: Min −0.44, Max 0.27, Med −0.06, Q1 −0.18, Q3 0.09, IQR 0.27, LW −0.44,
UW 0.27. ICGC Basal-like: Min −0.28, Max 0.38, Med 0.05, Q1 −0.05, Q3 0.19, IQR
0.24, LW −0.28, UW 0.38. PanCuRx Classical: Min −0.31, Max 0.31, Med −0.01, Q1
−0.12, Q3 0.05, IQR 0.17, LW −0.31, UW 0.30. PanCuRx Basal-like: Min −0.30, Max
0.26, Med −0.01, Q1 −0.12, Q3 0.07, IQR0.19, LW −0.30, UW0.26. b Representative
images of multiplex IF performed on FFPE of human PDAC tissues. The panels

represent different areas within the same tumour displaying different molecular
phenotypes. GATA6negKRT81high, basal-like; GATA6highKRT81neg, classical. Scale bars
as indicated. See also Supplementary Fig. 2b. c Paired dot plot showing quantifi-
cation of α−SMA+PDPN+CAFs with a distance below 100 µm to classical and basal-
like cells (n = 15 tissues). p values as determined by paired t-test (two-sided).
d Paired dot plot showing the quantification of α−SMA+PDPN+p-ERK+ CAFs with a
distance below 100 µm to classical and basal-like cells (n = 15 tissues). p values as
determined by paired t-test (two-sided). e Representative images of immunohis-
tochemistry for GATA6 and p-ERK on tissues from two patient derived xenografts.
Scale bar, 200μm. Inserts showed a magnification of selected areas (Scalebar,
25μm). f Quantification of (e) showing the percentage of stromal p-ERK signal. p
values asdetermined byMann-Whitney test (two-sided). Results presented asmean
values ± SD. n = 7 biological replicates GATA6high; n = 8 biological replicates
GATA6low.
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transplantation-based model shows accelerated tumour growth
kinetics44–46. Tumour-bearing mice treated daily with 1mg/kg of MEKi
showed reduced activation of MAPK signalling (Supplementary
Fig. 3a, b). Multiplex IF of tissues from tumour-bearing mice treated
over the course of 14 days showed the presence of p-ERK+ CAFs in
untreated tumours, the reduction of p-ERK signal in both the epithelial
and stromal compartments at 2 days following treatment, and the
rapid pathway rewiring particularly in the stromal compartment
starting at 7 days of treatment (Fig. 2b, c and Supplementary Fig. 3c). In
keeping with that, the reactivation of the MAPK pathway occurred

in vitro within hours from the treatment of mPSCs (Supplemen-
tary Fig. 3d).

Given the kinetics of the MAPK pathway rewiring, we then per-
formed scRNA-seq on fresh tissues from tumour-bearing mice treated
for 2 and 7 days with MEKi along with their untreated controls. We
profiled a total of 18,495 cells across 12 tumours (6 untreated and 6
treated, see ‘Methods’) and recovered an overall cellular composition
similar to that expected from PDAC tissues (Fig. 2d, e). Unsupervised
clustering of single cell data identified 11 major cell types (Fig. 2d).
Further annotation of the identified cell subsets was performed post
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hoc by using known gene signatures (Fig. 2e). The main cluster was
almost exclusively composed by malignant epithelial cells which were
confirmed by inferred copy-number alterations (CNA)47 (Supplemen-
tary Fig. 3e, f). Other cell types included non-malignant epithelial cells
(i.e., acinar cells), immune and stromal cell types (Fig. 2d, e). The treat-
ment was associated with significant changes in cell composition and
cell states. We observed a significant reduction in the proportion of
malignant epithelial cells both at 2 and 7 days of treatment (Fig. 2f).
Consistentwith thepharmacological treatmentandproteomicanalysis,
thefrequencyofcellsexpressinghighlevelsoftheeMEKitranscriptional
signature was significantly reduced in the epithelial compartment of
treated tumours (Fig. 2g). In the non-malignant compartment, we
observed a significantly higher fraction of CAFs in the treated groups
(Fig. 2f). To validate our findings, we performed cytofluorimetric and
mIF analyses in additional transplantation-based models of mouse
PDAC subjected to MEKi. Tissues were obtained from syngrafts ortho-
topically transplantedwith cell lines derived fromKrasLSL-G12D/wt; Tp53fl/fl;
Ptf1awt/Cre backgroundmice48. Consistent with our in-silico findings, the
fractionofepithelial cells (PanCK+,mIF;CD45–CD31–PDPN–, FACS) in the
tissues decreased with the treatment (Fig. 2h and Supplementary
Fig. 3g). However,flow cytometric analysis of the same tissues revealed
no changes in the frequency of PDPN+ cells after treatment (Fig. 2i and
Supplementary Fig. 3h), suggesting a context (i.e., cell line) dependent
effect of MEKi on quantitative changes in the stromal compartment.
MEKi was also associated with changes in the proportion of basal-like
and classical neoplastic cells (Fig. 2j, k). However, molecular subtyping
on epithelial pseudo-bulk showed no significant changes in cell state,
which is in line with the results obtained on treated human PDAC cell
lines (Supplementary Fig. 1b).

MAPK inhibition induces changes in the proportion of myCAFs
and iCAFs
Analysis of fibroblast clusters within our scRNA-seq dataset identified
10 CAF subpopulations (Supplementary Fig. 4a, b), which were
represented in both untreated and treated mice. However, only cells
from untreated mice were considered for further characterisation of
these subpopulations (Supplementary Fig. 4c, d and Supplementary
Data 3). Cluster 6 was identified as ‘cycling’ fibroblasts based on
expression of mitotic cell signatures (Supplementary Fig 4c, d and
Supplementary Data 3). Clusters 7 and 8 were identified as ‘con-
taminant’ since they expressed markers of epithelial cells undergoing
EMT and of cells of the innate immunity, respectively (Supplementary
Fig 4c, d and Supplementary Data 3). Clusters 0 and 1 were identified
as distinct groups with overlapping signatures of iCAFs, as the estab-
lished mouse iCAF signature6 was enriched in these two clusters
(Supplementary Fig. 4c, d and Supplementary Fig. 4e, f). Clusters 2–5
were identified as primarily composed by myCAFs6 (Supplementary
Fig 4c–f),whileCluster 9was characterised by the expression of apCAF
markers6 (e.g., Cd74) and composed by rare cells (n = 50) (Supple-
mentary Fig 4c–f). Considering their frequency across stages (C2, C7;

Fig. 3a, b) and conditions (C vs T; Fig. 3a, b), we focused on the most
abundant subpopulations iCAFs and myCAFs. In our model, progres-
sion was associated with an increase frequency of iCAFs, which we
linked to the increased expression of Il1a and Il1b in malignant cells
(Supplementary Fig. 4g).

As observed for the malignant compartment, the treatment
induced quantitative and qualitative changes in CAFs. We observed a
significant reduction in the proportion of myCAFs after treatment,
both at 2 and 7 days of MEKi, which was associated with an increase in
the number of iCAFs (Fig. 3a, b) in the fibroblast compartment. Next,
we used the velociraptor toolkit49 to infer pseudotemporal trajectory
from scRNA-seq data50. In untreated tumours, no dominant pseudo-
trajectory could be identified (Fig. 3c, d). Conversely, a dominant
pseudotrajectory from myCAFs to iCAFs was inferred in treated
tumours (Fig. 3d). Furthermore, malignant cells from MEKi treated
tumours expressed lower levels of Tgfb1 both at T2 and T7, while
expressing higher levels of Il1b only at 7 days of treatment (Supple-
mentary Fig. 4h). Consistently, MEKi significantly reduced the secre-
tion of TGF-β1 in a panel of human cancer cell lines (Fig. 3e).
Conversely, direct MAPK inhibition of plastic or TGF-β1 activated
mPSCs did not significantly alter the expression of myCAF or iCAF
markers (Supplementary Fig. 4i).

To orthogonally validate these findings, we first explored scRNA-
seq fromuntreated tumours to identify reliablemarkers ofmyCAF and
iCAF subsets. We found that Tnc and Mmp3 were highly expressed in
cell subsets showing myCAF and iCAF phenotypes, respectively (Sup-
plementary Fig. 4j). In situ RNA hybridisation analysis (ISH) of mouse
PanIN from autochthonous KC (KrasLSL-G12D/wt; Pdx1-Cre) models driven
by oncogenic KrasG12D 51 revealed expression of Tnc in proximity of
epithelial cells while abundant stromal cells expressing Mmp3 were
found surrounding each lesion (Supplementary Fig. 4k). In cancer tis-
sues from autochthonous KPC models driven by mutations of Kras
and Trp5343, both Tnc and Mmp3 expressing cells showed a spatial
segregation consistent with that observed for myCAF and iCAF phe-
notypes in this model4,6,8 (Supplementary Fig. 4k). Next, we performed
RNA ISH on tissues from our mouse cohort, including KPC-
transplantation based models, which are representative of either
classical (60400, 110299) or basal-like (FC1199a/b, 60590, 511892)
human PDAC (Supplementary Fig. 4l). Consistent with the scRNA-seq
data, the treatment induced statistically significant changes in the
proportion of myCAFs and iCAFs (Fig. 3f, g). Specifically, after short-
term MEKi, there was a drastic reduction in the number of Tnc
expressing cells with a concomitant increase inMmp3 expressing cells
(Fig. 3f, g). These changes occurred independently of the epithelial cell
lineage and were confirmed by flow cytometric analysis (myCAFs,
PDPN+LY6C−; iCAFs, PDPN+LY6C+; Fig. 3h and Supplementary Fig. 4m)
and multiplex IF (myCAFs, PDPN+α-SMA+LY6C−; iCAFs, PDPN+α-
SMA−LY6C+; Fig. 3i, j).

Altogether, our data indicates that epithelial MAPK activity pro-
motes the myCAF phenotype in vivo.

Fig. 2 | scRNA-seq of mouse PDAC tumours treated with MEKi reveals quanti-
tative and qualitative changes in cell subsets. a Schematic representation of the
in vivo experimental setting. Mouse and cell cartoon schematic from Malinova
et al.23 b Images of multiplex immunofluorescence of tumour tissues from mice
treated with: vehicle (C), MEKi for 2 (T2), 7 (T7) and 14 (T14) days. Scalebars, 50 µm
(main), 25μm (insets). c Quantification of b showing the percentage of Pan-CK–α-
SMA+p-ERK+ cells. p values byMann-Whitney test (two-sided).n ≥ 8mice/condition.
Results as mean values ± SD. d UMAP plot displaying unsupervised clustering of
viable cells from 12 mouse tumours samples annotated in 11 different clusters,
colour-codedby cell type. eBubble plot showing selected cell type-specificmarkers
across clusters. Dot size indicates cell percentage; colour intensity shows average
expression. f Barplots show cell type percentages in samples from vehicle (C) or
MEKi (T) treated mice (2 or 7 days). Numbers indicate total cells per sample.
Malignant cells (blue) are shown relative to non-epithelial populations; fibroblasts

(brown) are shown relative to other TME cells (grey).p values by χ² test (two-sided).
g Barplot showing percentage of cells of the epithelial cluster stratified based on
the expression level of the eMEKi signature in vehicle (C2, C7) or MEKi (T2, T7)
treated samples for 2 or 7 days. p values by χ² test (two-sided). h Barplot showing
the quantification of pan-Cytokeratin+ cells in tissues MEKi-treated tumour-bearing
mice. p values by Mann-Whitney test (two-sided). n = 6 mice. Results as mean
values ± SD. i FACS analysis of CAFs (PDPN+ cells) in tumour-bearing mice treated
with MEKi for 2 or 7 days, shown as a percentage of total viable cells. p values by
Mann-Whitney test (two-sided). n ≥ 6 mice/condition. Results as mean values ± SD.
j UMAP plots of epithelial cluster cells from vehicle (C2–C7) and MEKi (T2–T7)
treated mice, classified as classical or basal-like per Moffitt’s classification19.
k Barplots showing percentage of epithelial cells frommice treated with vehicle or
MEKi (2 or 7 days), classified byMoffitt’s subtypes19. p values by χ² test (two-sided).
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MAPK inhibition alters ligand-receptor interactions between
malignant and non-malignant cells in mouse PDAC
To understand how MAPK inhibition affects cell-to-cell communica-
tion in mouse PDAC, we used CellChat52, a computational tool that
infers interactions between different cell types based on the identifi-
cation of ligand-receptor (LR) pairs from scRNA-seq data52. Our

analysis focused on the most prevalent cell types in both treated and
untreated tumours, i.e., malignant cells, fibroblasts, macrophages and
neutrophils (Fig. 2f). We did not analyse LR pairs at the level of
malignant and stromal subtypes as the low prevalence of certain
subtypes and the similar LR expression among them (Supplementary
Fig. 5a) would have compromised statistical power. When comparing

Fig. 3 |MAPK inhibition alters themyCAFs/iCAFs ratio inmouse PDAC. aUMAP
plot offibroblast cluster frommice treatedwith vehicle (C2, C7) orMEKi (T2, T7) for 2
or 7 days, classified as myCAFs or iCAFs according to Elyada’s classification6.
bBarplots showmyCAFs and iCAFs percentages.p values determinedby χ² test (two-
sided). cUMAPplot of the fibroblast cluster obtained by the integration of vehicle- or
MEKi-treated mice for 2 days, colour-coded by Elyada’s subtypes6. d UMAP showing
velocity (arrows) and pseudotime (colour) for each cell of the fibroblast cluster
(annotated in Fig. 3c) from mice treated with either vehicle (C2) or MEKi (T2) for
2 days. Black arrow indicates overall velocity direction. e Paired dot plot of human
TGF-β1 levels in conditioned media from human cancer cell lines treated with MEKi
for 2 (n= 10 cell lines) or 7 (n=9 cell lines) days. p values by paired t-test (two-sided).
f Representative in situ hybridisation images showing Tnc (red; myCAFs) and Mmp3
(green; iCAFs) expression in PDAC tissues from vehicle- or MEKi-treated mice. Scale

bar, 60μm (main), 15μm (insets). See also Supplementary Fig. 4j, k. g Paired dot plot
displaying the percentage of iCAFs and myCAFs in tissues from 6 tumour-bearing
mice shown in (f). p values determined by paired t-test (two-sided). n= 6 biological
replicates. h Flow cytometry of myCAFs (PDPN+LY6C−) and iCAFs (PDPN+LY6C+) as
percentage of total CAFs (PDPN+ cells). Each value refers to an individual tumour-
bearingmouse.Resultspresentedasmeanvalues ± SD.p valuesdeterminedbyMann-
Whitney test (two-sided). See also Supplementary Fig. 4m. n=6 mice Vehicle; n= 17
mice MEKi. i Representative images of multiplex IF of tissues from vehicle- or MEKi-
treated mice. Scale bar, 100μm (main), 50μm (insets). j Paired dot plot shows
myCAFs (PDPN+α−SMA+LY6C− cells) and iCAFs (PDPN+α−SMA−LY6C+ cells) percen-
tages relative to all CAFs. Eachdot represents the average valuederived frommultiple
mice, when available. p values by paired t-test (two-sided). n= 3 biological replicates.
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treated and untreated tumours, a systematic investigation of catalo-
gued LR pairs between any two cell types revealed that the largest
variation in the number of interactions occurred between fibroblasts
and other cell types (Supplementary Fig. 5b, c). Moreover, the largest
variation in interaction strength was observed for CAFs signalling to
malignant cells (Supplementary Fig. 5d). Focusing on malignant cell-
fibroblast communication (Supplementary Data 4), we found that
enriched LR pairs were associated with cell response to extracellular
matrix components, chemotaxis and the response to angiogenic fac-
tors (Supplementary Fig. 5e). The treatment-depleted LR pairs were
associated with the EGFR pathway in both malignant cells and fibro-
blasts, integrin-mediated responses in fibroblasts and axon-guidance
pathway in both malignant cells and fibroblasts (Supplementary
Fig. 5e, f). These results suggest that the interactions between CAFs
and malignant cells mostly rely on ECM-integrin signalling which is
disrupted upon MEKi.

A MAPK CAF signature identifies a subcluster of myCAFs in
mouse PDAC
To identify subsets of CAFswith elevated activity ofMAPK in our scRNA-
seq data, we derived a transcriptomic signature based on genes sig-
nificantly downregulated by 2 days of MEKi in the CAF compartment
(stromal MEK inhibition, sMEKi) (Supplementary Fig. 5g, and Supple-
mentary Data 5). This timepoint corresponded to the abrogation of p-
ERK1/2 signal in the stromal compartment (Fig. 2b, c). The expression of
high levels of the sMEKi signature (n = 169 genes, see ‘Methods’) was
enriched in myCAFs of the c3-c4 clusters (Supplementary Fig. 4c, d and
Fig. 4a, b). Consistent with the dynamics of MAPK inhibition in our
model (Fig. 2b, c), the proportion of CAFs expressing high level of the
sMEKi signature decreased after 2 days of treatment and then increased
at 7 days (Fig. 4c). Based on these results, we identified a MAPKhigh CAF
(mapCAF,n = 38genes, see ‘Methods’) transcriptional signature (Fig. 4d)
to infer the presence of this phenotype in the scRNA-seq data from
cancer tissues of autochthonous KPC mice6. In this dataset, we con-
sistently found that mapCAFs were mostly myCAFs (Fig. 4e). In accor-
dance with this, the mapCAF signature positively correlated with TGFB1
in the TCGA dataset16(Fig. 4f) and could be induced in vitro by treating
mPSCs with TGF-β1 (Supplementary Fig. 5h).

Then, we used PROGENy53 to infer pathway activity in each CAF
subset from untreated tumours. In line with previous reports4–6,8,54, the
activation of TGF-β was higher in myCAFs, while iCAFs were enriched
for inflammation-associated signalling pathways (Fig. 4g). mapCAFs
were characterised by elevated TGF-β and MAPK activity, the enrich-
ment of hypoxia-driven programmes and activity of inflammatory
pathways (Fig. 4g). Gene-set enrichment analysis of differentially
expressed genes between CAFs with high and low MAPK activity con-
firmed metabolic reprogramming, as well as activation of
inflammation-associated transcriptional programmes in mapCAFs
(Supplementary Fig. 5i). We next applied decoupleR55,56 to infer tran-
scription factor activity from scRNA-seq data and found that hypoxia-
(e.g., Hif1a, Epas1), MAPK- (e.g., Etv4, Fosb) and TGF-β-related (e.g.,
Runx2) transcription factors were the main drivers of the mapCAF
phenotype (Supplementary Fig. 5j).

The mapCAF phenotype is associated to basal-like human
tumours
To translate ourfindings frommousemodels to humanPDAC tumours,
we re-analysed the scRNA-seq dataset of human PDAC that we already
investigated in Lupo et al.44. This dataset encompasses 126,530 cells
from63 patients. Subclustering in dimensionality-reduced space of the
fibroblast compartment (n = 10,481 cells from 61 patients) revealed 9
CAF subpopulations (Fig. 5a, b). Cluster 2 was identified as IL1 depen-
dent CAFs and accordingly the iCAF signature from Elyada6 was parti-
cularly enriched in this cluster (Fig. 5c, d). The expression of themeCAF
marker PLA2G2A57 was also high in this cluster (Fig. 5a, b). Accordingly,

the meCAF signature57 showed enrichment in c2 (Supplementary
Fig. 6a, b). Cluster 1 was a distinct subcluster of iCAFs that expressed
components of the complement system; therefore, they were identi-
fied as complement secreting CAFs (csCAF58) (Fig. 5a, b). Considering
the relative levels of myCAF and iCAF signatures expression as well as
their distinctive gene expression programmes (Supplementary Data 6),
clusters 0 and clusters 3–5, were identified as myCAFs (Fig. 5c, d).
Cluster 0 in particular was identified as TGF-β driven CAFs and
accordingly showed enrichment of the LRCC15+ CAF signature (Sup-
plementary Fig. 6a, b). Cluster 5 was characterised by the upregulation
of IFN signalling responseswhile preserving itsmyofibroblastic identity
and was therefore identified as interferon myCAFs (Fig. 5a, b and
Supplementary Data 6). Cluster 6 was identified as apCAFs and indeed
showed increased expression of CD74 and HLA_DRA (Fig. 5a, b). Clus-
ters 7 and 8 formed somewhat distinct clusters and were identified as
WNT CAFs and fibro-adipogenic CAFs, respectively (Fig. 5a, b).

To identify CAFs displaying elevated MAPK activity, we mapped
the sMEKi signature on the human CAF subclusters. Based on this, we
defined a human mapCAF signature (n = 22, Supplementary Data 7)
contrasting CAFs with high vs low MAPK transcriptional activity
(Supplementary Fig. 6c). We exclusively retained genes which
showed low to no expression in the malignant compartment (Sup-
plementary Fig. 6d–f). Although to a different extent, mapCAF sig-
nature levels were enriched in CAFs clusters (c0–c3) which
corresponded to the c3–c4 of themouse subclusters (Supplementary
Fig. 4c, d and Fig. 4a, b). The Hallmark_Hypoxia signature was enri-
ched in the c2 iCAF clusters but also in myofibroblastic clusters,
particularly c3 (Supplementary Fig. 6a, b). These results agree with
prior observations from Mello and colleagues59 who showed that
although hypoxia signalling is a defining feature of iCAFs, myCAFs
remain themost abundant subpopulation in hypoxic tumour regions
and a subset of myCAFs displays elevated levels of the Hallmar-
k_Hypoxia signature59. Then, we inferred the mapCAF phenotype in
the bulk RNA-seq of the TCGA16. In this dataset, the mapCAF, but not
the human myCAF signature6, discriminated basal-like from classical
tumours (Fig. 5e). To further confirm our observation, we isolated
cases showing predominance of either basal-like or classical malig-
nant cells from the scRNA-seq dataset (Supplementary Fig. 6g). We
found that the mapCAF signature was significantly enriched in the
stroma of human tumours displaying a greater proportion of basal-
like cells (Fig. 5f). The epithelial cells coupled to the mapCAF phe-
notype showed enhanced glycolytic activity based on expression
data (Supplementary Fig. 6h). This is in sharp contrast with the
meCAF population, which is reported to couple with epithelial cells
relying on oxidative phosphorylation57.

Spatial distribution of transcriptionally defined molecular
subtypes
To understand how gene expression programmes are spatially orga-
nised in human PDAC, we employed Visium spatial transcriptomics
(ST) on formalin-fixed paraffin embedded sections from 4 primary
PDAC. The tumours exhibited different degrees of differentiation of
the malignant epithelium and stromal cell content (Supplementary
Fig. 7a). The number of Visium spots with data varied across the 4
tumours and rangedbetween 2234 and4118 per section, also reflecting
the different sizes of the investigated tumour tissues. The median
number of genes detected per spot was 3724. To identify distinct cell
populations, we deconvolved the spots data using scRNA-seq sig-
natures from Peng et al.60 where tumour cells are indicated as Ductal
cell type 2. We identified 9 major cell populations (Supplementary
Fig. 7b). The spatial distribution of the identified cell types as well as
the prediction of areas with high prevalence of either neoplastic
or non-neoplastic cells, largely mirrored the histopathological eva-
luation of the sections by two expert pathologists (A.S., C.L.)
(Fig. 6a, b). Next, wemapped the expression of malignant and stromal
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gene programmes, which have been identified through either bulk19 or
single-cell6 RNA-seq of human PDAC tissues. First, we calculated
the module score for Moffitt epithelial signatures19, i.e., classical and
basal-like (Fig. 6c–f). This analysis revealed variability in the expression
of the two epithelial programmes both between and within patients
(Fig. 6c–f). Across each section,we foundvariability in the relative level
of each signature indicating either the co-existence of subtypes or
the presence of hybrid cells. However, given the size of the spots
(55 µm diameter), it is also possible that the results are influenced
by mixed gene expression signals due to more than one cell type
contained in each spot. Considering the relative signal of each

epithelial subtype, the whole slide estimate of the Moffitt gene pro-
grammes identified PDAC1 and PDAC4 as classical tumours, while
PDAC2 and PDAC3 were defined as basal-like (Fig. 6c–f). This agreed
with the expression of the basal-like marker S100A2 assessed on
the Visium slides or with immunohistochemistry on serial sections
(Supplementary Fig. 7c, d).

Mapping of the CAF signatures6 revealed that myCAFs were the
most abundant CAF subpopulation in each tumour section (Fig. 6g,
and Supplementary Fig. 7e, f). In keeping with scRNA-seq data, the
Hallmark_Hypoxia signaturewas associatedwith both iCAF andmyCAF
programmes (Fig. 6g, and Supplementary Fig. 7e, f).

Fig. 4 | AMAPKhigh signature identifies a subcluster ofmyCAFs inmouse PDAC.
a UMAP plot of cells from the fibroblast cluster stratified according to sMEKi
signature frommice treated with vehicle. b Violin plots showing the enrichment
of cells (n = 742 cells) expressing high level of the sMEKi signature in myofi-
broblastic clusters. Data are presented as mean values and 95% confidence
interval (CI). See Supplementary Fig. 4c, d. c Barplot representing the percen-
tage of cells of the fibroblast cluster displaying either high or low levels of the
sMEKi signature in vehicles (C) and in MEKi (T) treated samples. p values
determined by χ2 (two-sided). d Volcano plot representing the differentially
expressed genes from the comparison between fibroblasts displaying high vs

low MAPK transcriptional activity (based on sMEKi levels). The red dots are
some of the genes defining the mapCAF signature (n = 38). e Barplot displaying
the frequency of cells expressing the mapCAF signature in the myCAF and iCAF
clusters from Elyada et al.6 p values determined by χ² test (two-sided). f Scatter
plot showing the positive correlation between TGFB1 expression and the map-
CAF GSVA score for samples of the TCGA (n = 148 sample) cohort16. P value from
r correlation test. Grey area represents 95% CI. g Heatmap showing expression
of pathway-responsive genes in specific CAF phenotypes as assessed by PRO-
GENy analysis101.
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Finally, we mapped the human mapCAF signature and calculated
its module score for each section. Consistent with prior findings,
the mapCAF signature score was higher in basal-like than in classical
tumours and mapped in areas with predominance of fibroblasts

(Fig. 6h, i). Next, we performed multiplex immunohistochemistry
to show that the mapCAF programme captured areas displaying ele-
vated stromal p-ERK1/2 staining (Fig. 6h, i and Supplementary Fig. 7g).
Since gene expression programmes of mapCAFs suggested

Fig. 5 | ThehumanmapCAFsignature identifiesbasal-like tumours. aUMAPplot
of fibroblast compartment after subclustering. Different cell type clusters are col-
our coded. b Heatmap showing the relative average expression of the most enri-
chedgenes for each cluster.Only two representative genesper cluster are reported.
Clusters are colour coded as in UMAP plot of (a) and were annotated by markers
and pathway enrichment analysis using GSEA93 by comparing cells within a cluster
to all other cells in the dataset. See also Supplementary Data 6. c Density plot
showing enrichment of humanmyCAF, iCAF andmapCAF signatures in the scRNA-
seq dataset d Violin plots showing enrichment of the human myCAF, iCAF and
mapCAF signatures in the clusters shown in (a). Data are presented asmean values
and 95% CI e Boxplot of the GSVA scores for the human mapCAF and myCAF

signatures in samples of TCGA (n = 148 sample) cohort16 stratified by Moffitt’s
subtypes19. p values by Wilcoxon test (two-sided). mapCAF Classical: Min −0.73,
Max 0.65, Med −0.12, Q1 −0.43, Q3 0.15, IQR 0.58, LW −0.73, UW 0.65. Basal-like:
Min −0.55, Max 0.73, Med 0.17, Q1 −0.07, Q3 0.47, IQR 0.54, LW −0.55, UW 0.73.
myCAF Classical: Min −0.84,Max0.84,Med −0.10, Q1 −0.46, Q3 0.40, IQR0.87, LW
−0.84, UW 0.84. Basal-like: Min −0.79, Max 0.77, Med 0.06, Q1 −0.28, Q3 0.50, IQR
0.78, LW −0.79, UW0.77. f Barplot showing the percentage of cells of the fibroblast
cluster stratified according to the expression of mapCAF signature in PDAC sam-
ples displaying prevalent basal-like (n = 6) or classical (n = 6) epithelial cells as
shown in Supplementary Fig. 6g.p values determined byWilcoxon test (two-sided).
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immunoregulatory functions, we also looked at the intra-tumoral fre-
quency of cytotoxic T cells (CD8+ T cells) and observed that they were
rare in mapCAFs occupied areas of the tumours (Fig. 6h).

mapCAFs are associated with T cell exclusion in PDAC and pre-
dict poor response to immunotherapy in melanoma
To confirm our initial observation on the reduced CD8+ T cell frequency
inmapCAFs rich subTME,weperformedmIFonadditional humanPDAC

Fig. 6 | Spatial mapping of epithelial and stromal gene programmes reveals
specific association between p-ERK+CAFs and the mapCAF signature.
a Haematoxylin and Eosin (H&E) staining of 4 primary PDAC tumours selected for
VISIUM spatial transcriptomics (ST). Scale bar, 1mm. b Spatial visualisation of the
cell types deconvolved using scRNA-seq data from Peng et al.60. See also Supple-
mentary Fig. 7a, b. c Spatial visualisation of gene module score for the classical
PDAC epithelial signature19. d Distribution of module scores for classical PDAC
signature in each section. The red line indicates the median value, while the black
dot the average expression value. All pairwise comparisons are statistically sig-
nificant by Wilcoxon test (two-sided). e Spatial visualisation of gene module score
for the basal-like PDAC epithelial signature19. f Distribution of module scores for

basal-like PDAC signature in each section. The red line indicates the median value,
while the black dot the average expression value. All pairwise comparisons are
statistically significant by Wilcoxon test (two-sided). g Spatial visualisation of gene
module score for the myCAFs and the Hypoxia_Hallmark signature. h Spatial
visualisation of gene module score for the mapCAF signature. The red boxes
indicate the corresponding regions on the multiplex IHC slide for p-ERK, GATA6
and CD8, conducted on a consecutive section of PDAC tissues. Scale bars as shown
in figure. Conducted n = 1. i Distribution of module scores for the mapCAF sig-
nature in each section. The red line indicates the median value, while the black dot
the average expression value. All pairwise comparisons are statistically significant
by Wilcoxon test (two-sided).
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tumours (n = 15). Spatial analysis showed significantly less CD8+ T cells in
proximity of PDPN+α-SMA+p-ERK+ CAFs (Fig. 7a, b and Supplementary
Fig. 8a). The increased abundance of CD8+ T cells in proximity of p-ERK−

CAFs only partially associated with increased vessel density in these
areas (Supplementary Fig. 8b, c). In our mouse model, short-term inhi-
bition of MAPK led to increased intra-tumoral density of CD8+ T cells
with a kinetic that is compatible with MAPK rewiring in the stromal
compartment (Fig. 7c, d and Supplementary Fig. 8d).

Next, we performed a single-cell pan-cancer analysis across 7
tumour types61 displaying myCAF and iCAF phenotypes in their
TME62–68. The mapCAF signature was enriched in fibroblasts vs other
cell types in all cancer indications (Supplementary Fig. 8e). Within the
fibroblasts compartment, the mapCAF phenotype was significantly
enriched in myCAFs (Supplementary Fig. 8e). Then, we sought to test
whether the presence of mapCAFs correlated with the response to
cancer immunotherapy by exploring data from two immuno-reactive
tumour entities. We found that the mapCAF signature was enriched in
patients with worse response to immunotherapy (stable and pro-
gressive disease) in patients with malignant melanoma in the cohort
fromHugo et al.69 but not in patients with bladder cancer (BLCA) from
the IMvigor210 trial70 (Fig. 7e and Supplementary Fig. 8f).

Overall, those data suggest that the mapCAF phenotype associ-
ates with a CD8+ T depletedmicroenvironment and could predict poor
response to immunotherapy in immune-reactive tumours.

Discussion
Here, we disclosed an important role for the MAPK signalling pathway
in the definition of PDAC CAF phenotypes. Our data suggest that epi-
thelial MAPK signalling promotes the myofibroblastic differentiation
of CAFs. Furthermore, we show that hyperactivation of MAPK signal-
ling occurs in myCAFs populating basal-like tumour niches with
reduced CD8+ T cells density.

Understanding how inhibition of the MAPK pathway affects
malignant and non-malignant cell populations in PDAC is critical
considering the recent advent of direct KRAS inhibitors which can
specifically target mutant KRAS driven MAPK activity71. It is increas-
ingly recognised that heterogeneity exists within CAFs subpopulation,
withmyCAFs exerting both tumour restraining and tumour promoting
functions8,10,13,14,72. Thus, strategies to target the heterogeneous phe-
notypes and functions of CAFs in the PDAC TME is gaining increased
attention.

Fig. 7 | mapCAFs are associated with T cell depleted sub-tumour micro-
environment. aRepresentative imageofmultiplex IF performedonFFPEof human
PDAC tissues. The panels represent different areas within the same tumour dis-
playing either low or high density of p-ERK+ CAFs. Scale bars as indicated. See also
Supplementary Fig. 8a. b Paired dot plot showing the quantification of CD8+ T cells
with a distance below 100 µmto p-ERK+ or p-ERK−CAFs (n = 15 tissues) shown in (a).
p values as determined byMann-Whitney test (two-sided). c Immunohistochemical
staining for CD8 of tumour tissues from tumour-bearing mice treated with either
vehicle orMEKi for 7 and 14days. Scale bar, 100 µm. Inserts showed amagnification

of selected areas (Scale bar, 20μm). d Quantification shown as total number of
CD8+ T cells per mm2 per sample. p values as determined by Mann-Whitney test
(two-sided). n ≥ 4 mice/condition. Results presented as mean values ± SD.
e Boxplots showing mapCAF GSVA score in melanoma69 (n = 28 sample). Samples
are separated by binary drug response. CR complete response, PR partial response,
SD stable disease, PD progressive disease. p value as determined by Wilcoxon test
(two-sided). Hugo CR/PR:Min −0.45, Max 0.57, Med −0.17, Q1 −0.38, Q3 −0.04, IQR
0.34, LW −0.45, UW0.06. PD:Min −0.41, Max 0.58, Med0.36, Q1 0.03, Q3 0.41, IQR
0.38, LW −0.41, UW 0.58.

Article https://doi.org/10.1038/s41467-024-54975-8

Nature Communications |        (2024) 15:10534 11

www.nature.com/naturecommunications


In addition to elevatedMAPK activity, theMAPKhigh CAF (mapCAF)
phenotype we identified is characterised by TGF-β signalling, hypoxia
responsive signatures and immunoregulatory gene programmes. In
silico analyses confirmed this phenotype in other solid tumours and
further showed that mapCAFs are indicative of primary resistance to
immunotherapy in melanoma.

In our mouse model, short-term inhibition of MAPK result in the
reduction of themapCAF phenotype and increased intra-tumoralCD8+

T cell density. While it remains unclear howmapCAF would exert their
immunosuppressive function, our data provide a strong basis for
futuremechanistic studies. Our findings expand on the heterogeneous
phenotypes that can be found in the PDAC TME and provide new
insights on a stromal phenotype specifically shaped by basal-like cells.

Signalling pathway activities and cell dependency on a given
pathway are often successfully inferred from gene expression data53,73.
Here, we used pathway mapping analysis and context-dependent
pathway response signatures to infer MAPK activity in heterogeneous
expression data from models and patients’ samples. Our data show
that gene expression data can serve as predictor for the activation of
the MAPK pathway.

However, in human cancer cell lines elevated MAPK transcriptional
activity did not predict sensitivity to MEK1/2 inhibition nor discriminate
between cell lines representative of the basal-like or the classical subtype.
In vitro, a transiently disabled MAPK pathway was not associated with
significant changes of cancer cell states. Our results are in line with pre-
vious observation from Miyabayashi and colleagues showing that RAS
signalling hyperactivation is not fundamental for the definition of the
basal-like/squamous subtype in the epithelial compartment27. We have
previously shown that querying bulk transcriptional datasets from tissues
with different neoplastic cell content is a viable strategy to localise the
cellular compartment contributing to gene expression differences
between molecular subtypes44,74. Using the same approach, we show that
a MAPK transcriptional signature was particularly elevated in basal-like
tumours from the TCGA and the ICGC cohort16, while it could not dis-
criminate basal-like from classical in RNA-seq from microdissected epi-
thelia. The inferred hyperactivation ofMAPK in the stromal compartment
of tumours classified as basal-like significantly correlated with increased
density of fibroblasts displaying nuclear p-ERK, a known surrogatemarker
for MAPK activation75. Different neoplastic cell states often co-exist in
humanPDAC tissues17,21,76,77. Therefore,molecular subtypingbasedonbulk
sequencing data might mask transcriptional heterogeneity17,22. Immuno-
phenotyping of heterogeneous human tumours clearly showed that
p-ERK+ CAFs were significantly enriched in basal-like niches. These p-ERK+

CAFs pairedwith basal-like cells also inmouse PDAC tumours as well as in
heterospecies models. Conversely, this phenotype could not be reliably
replicated in vitro. Topological constraints within in vivo tissue niches,
along with other relevant biochemical or metabolic cues, might be
responsible for the emergence of this phenotype.

To gain further insights into this CAF phenotype, we, therefore,
integrated single-cell profiling of post-perturbation transcriptional
responses from mouse models with cellular and spatial profiles of
human tissues. Our mouse model aligned with the human basal-like
PDAC44 and showed rapid kinetics of pathway rewiring in the stromal
compartment following treatment. Short-term perturbations are often
used to capture primary transcriptional response to a specific
stimulus53. Contrasting the two conditions with known differential
pathway activity, we obtained a stromal MAPK transcriptional sig-
nature (sMEKi) which we used to identify CAFs displaying MAPK
hyperactivation. High levels of sMEKi were restricted to myCAF sub-
populations in our mouse model. Our model preserved the CAFs
heterogeneity reported in mouse and human tumours4,6,8, the expec-
ted myCAFs/iCAFs ratio in the PDAC TME1,5 and showed presence of
p-ERK+ CAFs, as expected for a basal-like model. A MAPKhigh CAF gene
signature (mapCAF) was consistently enriched in the myCAF com-
partment in an autochthonous model of PDAC6. Accordingly, the

mouse mapCAF phenotype is enriched for ECM related genes/TGF-β
driven programmes and could be induced, in vitro, by treating mouse
PSCs with TGF-β1. Regulatory-network inference along with gene
expression programmes analysis show that the mapCAF phenotype is
mainly driven by Hypoxia and MAPK activity, while displaying
expression of inflammatory-related pathways.

In line with prior works5,54, we observed both similarities and dif-
ferences with the mouse models when translating our findings into
the human setting. We used scRNA-seq data comprising 126,530 cells
from 63 patients. While we found evidence for fibroblasts identified
as inflammatory or myofibroblastic, overlapping gene expression
programmes between iCAF and myCAF subsets suggest a higher
heterogeneity of functions for human CAFs compared tomouse CAFs.
For example, we found a cluster of interferon-responsive CAFs that,
at the same time, have a strong myofibroblastic identity. Previously
described meCAFs mapped within iCAF clusters. Similar to the
mouse data, CAFs displaying elevated MAPK transcriptional activity
were mostly myCAFs. This result is coherent with the spatial localisa-
tion of p-ERK+ CAFs in human tissues and with previous evidence
that locate myCAFs in close proximity to cancer cells8. Integrating
spatial with cellular profiles, we found that the mapCAFs tightly
associate with basal-like cells to form communities depleted of CD8+

T cells.
Previous studies have shown that similar fibroblast lineages and

phenotypes can be observed in different cancers1,65,78. We explored
pan-cancer scRNA-seq data61 to find that the mapCAF signature is
enriched in stromal cells frommany cancer conditions and particularly
in myCAFs79–81. Consistent with a potential immunoregulatory func-
tion, mapCAFs identify primary resistance to immunotherapy in
metastatic melanoma69. Inferred dynamics in scRNA-seq data and
orthogonal validation through in situ as well as cytofluorimetric ana-
lyses showed that MAPK inhibition leads to a reduced myCAFs/iCAFs
ratio into themouse PDAC TME. Changes into themyCAFs/iCAFs ratio
were observed following MEKi in a large spectrum of transplantation-
based models and regardless of the molecular subtype of the malig-
nant compartment.

ThemyCAF and iCAF phenotypes are driven by a well-established
antagonistic interaction between TGF-β and IL14, with TGF-β promot-
ing myCAFs differentiation through the downregulation of IL1 recep-
tor. In our mouse models, MEKi affected the relative abundance of
myCAFs and iCAFs by favoring an inflammatory stroma. In scRNA-seq
data, we found that MEKi was associated with reduced expression of
TGF-β which paralleled the reduced secretion of the cytokine by
human cancer cell lines uponMAPK inhibition. At the same time, direct
MEKi of activated mPSCs did not affect expression of myCAF or iCAF
markers. Overall, our data suggests that the changes in the fibroblast
compartment are contributed by effective MAPK inhibition in
malignant cells.

Altogether, our study shows that epithelial MAPK activity pro-
motes the myCAF phenotype while MAPK hyperactivation in the
stromal compartment is a distinctive feature of stromal cells in basal-
like tumour niches. Inhibition ofMAPK signalling using a potentMEK1/
2 inhibitor has important consequences on stroma remodelling with
changes in myCAFs to iCAFs ratio. Finally, our data show that the
presence of these MAPK-activated myCAFs may represent a feature to
predict responses to immunotherapy in PDAC and othermalignancies,
warranting further consideration for targeting.

Methods
Human samples
Human PDAC tissues used in this study were obtained from surgical
resections of patients treated at the University and Hospital Trust of
Verona (Azienda Ospedaliera Universitaria Integrata, AOUI). Written
informed consent was acquired from patients before specimens’
acquisition. TheFFPE samples used for stainingwere retrieved fromthe
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ARC-Net Biobank and were collected under the protocol number 1885
approved by the local Ethics Committee (Comitato Etico Azienda
Ospedaliera Universitaria Integrata) to A.S. (Prot. 52070, Prog. 1885).
Tissues from surgical resection used for the generation of primary
cultures were collected under the protocol number 1911 approved by
the local Ethics Committee (Comitato Etico Azienda Ospedaliera Uni-
versitaria Integrata) to V.C. (Prot. n 61413, Prog 1911 on 19/09/2018). All
experiments were conducted in accordance with relevant guidelines
and regulations. The Essen cohort is a retrospective study carried out
according to the recommendations of the local ethics committeeof the
Medical Faculty of the University of Duisburg-Essen. Patients who had
undergone pancreatic resection with a final histopathologic diagnosis
of human PDAC between March 2006 and February 2016 was used
(Approval no: 17-7340-BO). Clinical data were not collected for this
study, and sex/gender was not considered in the study design.

Cell lines
We used 5 mouse PDAC cell lines, 1 mouse PSC line and 17 human
PDAC cell lines. Themouse PDACcell line FC1199was generated from
tumour of KPC mice (KrasG12D/+; p53R172H/+; Pdx1-Cre)43. FC1199 were
provided by the Tuveson laboratory (Cold SpringHarbor Laboratory,
NY, USA) and was cultured in DMEM supplemented with 10% foetal
bovine serum (FBS) and 1% Penicillin-Streptomycin (Pen-Strep). Pri-
mary murine PDAC cell lines 60400, 60590, 511892 and 110299 were
derived from corresponding tumour pieces of KPC mice (60400,
60590 and 511892: Ptf1awt/Cre;Kraswt/LSL-G12D;p53fl/fl 48; 110299: Ptf1awt/

Cre;Kraswt/LSL-G12D;p53LSL-R172H/fl 82) and were cultured in DMEM high-
glucose medium supplemented with 10% FBS. The mouse PSC line
(mPSC4) has been established from WT C57BL/6J mice8. mPSC4 was
provided by the Tuveson laboratory (Cold SpringHarbor Laboratory,
NY, USA) and cultivated in DMEM containing 5% FBS and 1% Peni-
cillin/Streptomycin. The human PDAC cell lines HPAF-II, PANC-1 and
AsPC1 were obtained fromATCC (catalogue numbers CRL-1997, CRL-
1469, CRL-1682). The Suit-2, Hs766T, Colo 357 and BxPC3 cell lines
were generously supplied by Prof. Aldo Scarpa from the University of
Verona. The MIA PaCa-2 line was provided by Prof. Vincenzo Bronte,
also at the University of Verona. hF2, hT1, and hM1 were kindly pro-
vided by Dr. David A. Tuveson from Cold Spring Harbor Laboratory
(USA). Patu 8988S were kindly provided by Dr. Francisco X. Real
(CNIO, Madrid). All human PDAC cell lines were cultivated in DMEM
supplemented with 10% FBS and 1% Pen-Strep. Human primary PDAC
monolayer cell lines (VR2-2D, VR6-2D, VR9-2D, VR20-2D and VR23-
2D) were established by digesting tissue samples and directly plating
them onto tissue culture vessels to initiate monolayer cultures. Cell
lines have been then cultured in the following medium: Advanced
DMEM/F12 (Gibco), supplemented with HEPES (1X, Gibco), Gluta-
max™ (1X, Gibco), Primocin™ (1mg/mL, Invivogen), mouse Epi-
dermal Growth Factor (50 ng/mL, Gibco), Dexamethasone (3 nM,
Sigma) and 5% Foetal Bovine Serum (FBS, Gibco). Cell lines were
routinely screened for Mycoplasma contamination using MycoAlert
Mycoplasma Detection Kit (Lonza).

Generation of mouse models
In this study we used both isograft and xenograft models. Six- to eight-
weeks old C57Bl/6J (B6J) (Strain #:000664) and NSG (NOD.Cg-
Prkdcscid;Il2rgtm1Wjl) (Strain #:005557) mice were purchased from
Charles River Laboratory (Milan). All animal experiments regarding
transplanted mice were conducted in accordance with procedures
approved by CIRSAL at University of Verona (approved project 655/
2017-PR) or were approved by the Landesamt für Natur, Umwelt und
Verbraucherschutz Nordrhein-Westfalen (LANUV) under the license
number 81-02.04.2020.A316. Animal care procedures and protocols
were as prescribed in the national (Tierschutzgesetz) and European
(Directive 2010/63/EU) laws and regulations as well as European Fed-
eration of Animal Science Associations (FELASA) http://www.felasa.eu.

KC (KrasG12D/wt; Pdx1-Cre) and KPC (KrasLSL-G12D/wt; p53LSL-R172H/wt; Pdx1-Cre)
mice were used as spontaneous model for pre-invasive lesions and
PDAC, respectively43,51. Isograft models were generated with KPC-
derived cell lines. For the generation of isograft based on KPC-derived
cell line (FC1199), 2.5 × 105 cells were resuspended in 50 µL of a 2:3
mixture of Matrigel® (Corning) and cold PBS (Gibco) and injected into
the pancreatic tail region using BD micro-fine insulin syringes (30-
gauge). A successful injection was confirmed by the appearance of a
bubble at the injection site without leakage. Tumour growth was
monitored through weekly manual palpation beginning 7 days post-
transplantation, followed by high-contrast ultrasound imaging using
the Vevo 2100 System with an MS250 scanhead (13–24MHz, Visual
Sonics). For the generation of isograft based on KPC-derived cell lines
(60400, 60590, 511892 and 110299), 5.0 × 103 cells were resuspended
in 30 µL of a 1:1 dilution of Matrigel® (Corning) and cold plain medium
and injected into the pancreas of B6J mice using insulin syringes (BD
micro-fine 30 Gauge) under the guidance of Ultrasonic imaging. The
injection was considered successful by the appearance of encapsu-
lated cell suspension ball without signs of leakage. Mice were eutha-
nized atdesignated timepoints, andpancreaswas collected for further
analysis. Patient-derived xenografts (PDX#1-15) were generated by
subcutaneous implantation of a patient’s tumour fragment in the left
flank of anaesthetised NSG mice. Tumour growth was measured twice
weekly until they reached the volume of 1 cm3. Then, tumours were
harvested, cut into small fragments (3mm3), and transplanted sub-
cutaneously into the left flank of anaesthetised NSG to generate the
2nd generation of xenograft. The same procedure was followed to
generate the 3rd generation whichwas used for treatments.Micewere
maintained under sterile and controlled conditions (22 °C, 50% relative
humidity, 12 h light–dark cycle, autoclaved food andbedding, acidified
drinking water). The maximal tumour size allowed by ethic commit-
tees (CIRSAL: diameter = 1.2 cm; LANUV: volume = 1000mm3) was
never exceeded in this study.

In vivo drug treatments
Isografts and xenografts were treated with Trametinib (MEKi) as indi-
cated. Only female C57BL/6J mice were used for experiments with
FC1199 derived grafts. Both male and female C57BL/6J mice were used
for generating grafts from the other KPC cell lines. Sex was not con-
sidered in the study design. Before treatment, tumour masses were
measured, and mice were randomised. KPC-derived isografts were
treatedwith Trametinib dissolved in a solution of 0.5% hydroxypropyl-
methylcellulose, 0.2% tween 80 and ddH2O (pH 8) with a final con-
centration of 1mg/kg for daily oral administration. Isografts based on
KPC-derived cell lines (60400, 60590, 511892 and 110299) were trea-
ted with Trametinib dissolved in a solution of 1% Kolliphor® EL, 1%
PEG400 and ddH2Owith a final concentration of 1mg/kg for daily oral
administration. Monitoring of tumour growth was performed as
described in the section ‘Generation of mouse models’. Pancreas was
collected for downstream analysis. For models orthotopically trans-
planted with 60400, 60590, 511892 and 110299 cell lines, tissue
biopsies were collected from the same tumours under ultrasound
guidance before treatment started or at different time points after
treatment started as indicated.

In vitro drug treatments
Cells and organoids were treated with Trametinib as indicated. Tra-
metinib (Selleck) was dissolved in DMSO, whose final concentration
was less than 0.1% (v/v). For each cell culture, the IC50 concentration
was determined by the luminescence ATP-based assay CellTiter-Glo
(Promega, G9683) following the manufacturer’s instructions. Briefly,
1 × 103 cells were plated on white 96-well plate in 100 µL of culture
medium. After 24 h cells were treated with increasing doses of Tra-
metinib, and viability was measured at endpoint (72 h) using a micro-
plate reader (BioTek, Synergy 2 Multi-mode Microplate Reader). For
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measurement of signalling pathways following pharmacological
treatment, individual cell lines were counted and seeded in a 6 well
plate or a 100 cm2 dish. After reaching 40% of the confluence, cells
were treated for the time reported in each experiment. PDAC cell lines
and mPSCs were treated with sub-IC50 doses of Trametinib.

Immunohistochemistry
The following primary antibodies were used on mouse PDAC tissues:
p-ERK (#4376, 1:200, cl. 20G11, lot. 21, Cell Signaling Technology),
GATA6 (#ab175349, lot. GR3447918-1, Abcam), S100A2 ([EPR5392],
#109494, Abcam) and CD8 (CD8a (4SM15) (14-0808-82, Invitrogen)).
Quantificationof stromal p-ERKwasperformedbyHALO softwarewith
the classifier function. After cell type segmentation performed by the
software, p-ERK+ cells in the stroma regions are quantified as % of
positive cells out of total cells in the whole tumour section. Quantifi-
cation of CD8 was performed by counting the number of CD8 positive
T cells permm2. At least 5 individual areas per case and aminimumof 4
mice/arm were evaluated. Chromogenic multiplex IHC analysis was
performed using Leica Biosystems BOND RX/RXm according to the
manufacturer’s instructions using the following antibodies: p-ERK
(#9101, lot.32, Cell Signaling Technology), GATA6 (#AF1700, lot.
KWT0523031, Bio-techne) and CD8 (C8/144B, lot. 20042547, DAKO).

Multiplex immunofluorescence
mIFwas carriedout using theOpalmultiplex system (AkoyaBiosciences,
MA, USA) following the manufacturer’s instructions. The following
antibodies havebeenused: pan-Keratin (#ab6401, cl. C11, Abcam), p-ERK
(#4376, 1:200, cl. 20G11, lot. 21, Cell Signaling Technology), α-SMA
(ab5694, 1:200, GR3263275-13, Abcam), PDPN (ab236529, 1:200, cl.
EPR22182, lot. GR3330154-1, Abcam), GATA6 (#ab175349, lot.
GR3447918-1, Abcam), KRT81 (#sc100929, cl. 36-Z, lot. I3021, Santa Cruz
Biotechnology), CD8 (#ab101500, 1:200, cl. SP16, lot. 1036318-32,
Abcam),CD34 (NCL-L-END, 1:200, cl. QBEND/10, lot. 6088521, Leica) and
LY6C (#ab15627, 1:100, cl. ER-MP20, lot.GR3261661-18, Abcam). Sections
were counterstained with DAPI (Vector lab). Using a Zeiss Axio Scanner
Z.1 (Carl Zeiss AG, Germany) at 10x objective magnification, slides were
scanned and digitalised. For the mouse PDAC tissues from Fig. 2b, the
following antibodies have been used: pan-Keratin (#4279, C11, Cell Sig-
naling Technology), p-ERK (#9101, Cell Signaling Technology) and α-
SMA (#ab5694, lot. GR3183259-39, Abcam). Sections were counter-
stained with DAPI (Sigma Aldrich). Images were acquired with Leica TCS
SP5 laser scanning confocal (Leica) and digitalised by the Leica Appli-
cation Suite X (LAS X) software.

Spatial imaging analysis
Quantification of individual and/or co-expressing markers in the mul-
tiplexed immunofluorescence images was performed using HALO
image analysis software (Indica Labs, NM, USA). A gate for region of
interest (ROI) was manually drawn on the image of each slide to
exclude the non-tumour regions, areas containing tissue folds and
stain artifacts. Tissue segmentation with classifier was performed to
select for all tumour and stroma regions within the ROI. Nuclear
detection based on DAPI staining was performed. Signal intensity for
positivity of each marker was manually adjusted and the signal
threshold for positivity was the same for all tissues within the cohort.
After quantification of each marker and various phenotypes (co-
expression of markers), close proximity analysis was performed to
measure the close interaction between two target cell subsets. The
threshold to pair up two cells was set to 100 µm.

Immunofluorescence on mPSCs
5 × 103mPSCswereplated in a cell culture chamber slide. After 48h, cells
were serum starved for 6h and treated for 10min with media collected
fromcancer cell lines after 15 hof conditioning in serumstarvation. After
treatment, the IFwas performed following the suggested protocol for p-

ERK1/2 antibody (#9101, 1:200, lot. 32,Cell SignalingTechnology).Nuclei
were counterstained with DAPI. Quantification was performed by
counting cells with nuclear signal for p-ERK per FOV divided by the total
number of cells counted in the field (minimum 10 FOV/condition).

qRT-PCR on mPSCs
To perform qRT-PCR, mPSCs were cultured in both 2D and 3D formats.
For plastic-activated mPSCs, 6 × 104 cells were plated in a 6-well plate.
After 48h, cells were treated with a sub-IC50 dose of Trametinib for 6h.
For TGF-β activated mPSCs, 8 × 104 cells were embedded in 50 µL
Matrigel®domes. After 24h, cellswerepre-treatedwith20ng/mLTGF-β1
for 48h, followed by treatment with a sub-IC50 dose of Trametinib for
6h. RNA was isolated utilising the Trizol® Reagent (Life Technologies).
Following DNase treatment, 1 µg of RNA was reverse transcribed into
cDNA using the SensiFAST® cDNA Synthesis Kit (meridian BIOSCIENCE)
in a total volume of 20 µL, following to the manufacturer’s guidelines.
The resulting samples were then diluted to achieve a final concentration
of 10ng/µL. TaqMan assays were conducted in triplicate, employing
20ngof cDNAalongwith the followingTaqMan®probes (TaqMan®Gene
Expression Assay): Il6 (Mm00446190_m1), Cxcl1 (Mm04207460_m1),
Acta2 (Mm01546133_m1) and Ctgf (Mm01192933_g1). Hprt
(Mm03024075_m1) was used as the reference gene. The relative quan-
tification of gene expressionwas calculated using theΔΔCtmethodwith
the Sequence Detection Systems Software, Version 1.9.1 (Applied
Biosystems).

In situ hybridisation
The in-situ hybridisation (ISH) was performed on 4μmsection ofmouse
tissues. Briefly, slides were deparaffinized in xylene for 10min followed
by 100% ethanol for 2min. After drying, slides were first incubated for
10minwith RNAscope®Hydrogen Peroxide (AdvancedCell Diagnostics)
and then for 15min at 99 °C with RNAscope® 1X Retrieval Reagents
(Advanced Cell Diagnostics). After dehydration in 100% ethanol, slides
were dried and incubated at 40 °C for 20min with RNAscope® Protease
Plus (Advanced Cell Diagnostics). The RNAscope® Probes (Mm-Mmp3
and Mm-Tnc-C2, Advanced Cell Diagnostics) were added to the slides
following RNAscope® 2.5 Duplex Detection Reagents kit’s instructions.
Positive control probe 2.5 Duplex Positive Control Probe-Mm and 2-plex
Negative Control Probe (Advanced Cell Diagnostics) were used as posi-
tive and negative control, respectively. Quantification was performed by
counting the total number of spindle-like cells with signal for Tnc or
Mmp3 in each tumour section.

Immunoblotting
Protein lysates were obtained from cells using Lysis Buffer (Cell
Signaling Technology) supplemented with phosphatases and pro-
teases inhibitors (PhosSTOP™ and cOmplete (TM) Mini Protease
Inhibitor Co, Roche). After electrophoretic separation, proteins were
transferred on a PVDF membrane and incubated with the following
antibodies: p-ERK (#9101, 1:2000, lot.32, Cell Signaling Technology),
total ERK (#9102, 1:1000, lot. 26, Cell Signaling Technology), p-AKT
(#4060, (Ser473) (D9E) XP®, lot.2, Cell Signaling Technology), total
AKT (#9272, lot. 28, Cell Signaling Technology), p-S6 (#D57.2.2E/
#4858, lot. 11, Cell Signaling Technology), total S6 (#2317, cl. 54D2,
Cell Signaling Technology). Vinculin (#4650, 1:1000, lot. 5, Cell Sig-
naling Technology) and GAPDH (#5174, (D16H11) XP®, 1:3000, lot. 9,
Cell Signaling Technology) were used as loading controls. The signal
was quantified with ImageJ, by measuring the integrated density of
each band.

ELISA
Cell culture media were collected after 48 h of conditioning, cen-
trifuged to remove particulates and stored at –80 °C. The ELISA assay
was conducted using the Human TGF-β1 Quantikine® ELISA (DB100B,
R&D System) according to the manufacturer’s instructions.
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FACS analysis
Freshly isolated cells from KPC-derived orthotopic tumours (1 × 106)
resuspended in 1mLDPBSwere first stained with BDHorizon™ Fixable
Viability Stain 440UV (#566332, BD Biosciences), incubated at room
temperature in the dark for 15min and washed twice with FACS buffer
(DPBSwith 2% FBS). Upon the addition of 50μL of BDHorizon Brilliant
Stain Buffer (#563794, BD Biosciences), the cells were incubated with
the following fluorochrome-conjugated antibodies: CD45 BV421
(#563890, 0.2mg/ml, cl. 30-F11, lot. 4036259, BD Biosciences), CD31
PE-Cy7 (#561410, 0.2mg/ml, cl. 390, lot. 3327027, BD Biosciences),
PDPN (AF488 #127406, 0.2mg/ml, cl. 8.1.1, lot. B355066, Biolegend)
and LY6C APC (#128016, 0.2mg/ml, cl. HK1.4, lot. 3115596, Biolegend)
at 4 °C in the dark for 45min in a final volume of 100μL. After a final
wash with FACS buffer, samples were acquired with BD FACSDis-
cover™ S8 Cell Sorter (BD Biosciences). Data analysis was conducted
with the FlowJo software v10.10 (BD Biosciences).

RNA sequencing and data processing
RNA was extracted from cell lines using TRIzol (Life Technologies), fol-
lowed by column-based purification with the PureLink RNA Mini Kit
(Ambion). The quality of purified RNA samples was determined using a
Bioanalyzer 2100 (Agilent) with RNA 6000 Nano Kit. RNAs with RNA
Integrity Number (RIN) values greater than 7.5 were used to generate
sequencing libraries using the TruSeq Stranded Total RNA Kit (Illumina)
following manufacturer’s instructions. Libraries were prepared from
TrueSeq Stranded RNA Kit (Illumina) and sequenced on Illumina instru-
ments. After quality control and adaptor trimming, PSC reads were
aligned to the GRCm38 genome using Salmon v1.4.083,84 Cell lines reads
were aligned to theGRCh38genomeusingSTARv2.785. RSEMtranscripts’
quantification86 was imported in R through tximport package v4.0 and
raw counts were normalised using the R/Biocondutor package DESeq2
v1.30.084. Differentially expression analysis has been performed using
DESeq284. The eMEKi signature was derived by filtering the results of
differential gene expression performed with DESeq284 between cell lines
untreated and treated with MEKi for 2 days, filtering according to
padj <0.01 and log2FoldChange<–1. GSVA R package v1.38.287 was used
to calculate the main PDAC transcriptomics subtypes gene set scores19.
Subtyping of cell lines and tissue sampleswas based on the highest GSVA
score between the basal and classical gene programmes.

Statistical analysis and data mining
Four transcriptomic datasets from either cell lines or cancer tissues
were used for data mining15–17,33. Samples belonging to the ICGC15 and
the TCGA-PAAD datasets16 were restricted to 82 and 148, respectively,
by selecting only true PDAC cases. Two additional datasets were
included for testing prediction capability of mapCAFs. Malignant
melanoma FPKM from Hugo et al.69 were downloaded from GEO
(GSE78220). BLCA RNAseq counts from the IMvigor210 trial70 were
accessed through the R package easierData. GraphPad Prism was used
for graphical representation of data. Statistical tests were performed
with R or GraphPad Prism and are reported in each figure legend.

Mouse single cell RNA sequencing
Sample preparation and sequencing. Single cell RNA sequencingwas
performed on digested PDAC tissues from mice treated with either
vehicle orMEKi for 2 or 7 days. For the digestion, tumour sampleswere
collected in Splitting Medium (AdDMEM/F12 medium supplemented
with HEPES (10mM), Glutamax and Pen/Strep) supplemented with
0.1%BSA andRhoKi (10.5μM).Afterwashingwith PBS, specimenswere
cut in small pieces (1mm3) and incubated for 20min in a tube rotator
at 37 °C in warm Digestion Medium (PBS 1X, 2mg/mL Dispase I,
1.25mg/mL Collagenase Type II, 100μg/mL DNAse I, and 0,05% FBS)
supplemented with RhoKi. The cell suspension was pipetted and
incubated on ice to let the larger tissue clumps settle to the bottom of
the tube. The surnatant was collected, spun down and the pellet was

resuspended in Splitting Medium supplemented with 0.1% BSA and
10mg/ml Soybean trypsin inhibitor and stored on ice (Fraction 1).
Then, the larger undigested clumps were digested again for 10min,
and every step previously described was repeated twice until the col-
lection of Fraction 2 and 3. After digestion, Fractions 1, 2 and 3 were
combined, filtered (40μm nylon cell strainer) and centrifuged. The
pellet was then resuspended in ACK lysing buffer supplemented with
DNAse I to remove red blood cells from the sample and spun down.
Cells were washed with PBS supplemented with 10% FBS and 1 × 104

cells (concentration 1.000 cells/ul) were submitted for sequencing. To
generate single cell GEMs, cellular suspensions from 3 mice/condition
were loaded on a GemCode Single Cell Instrument (10x Chromium
System) and libraries were generated with GemCode Single Cell 3’ Gel
Bead and Library Kit v3 (10x Genomics). After barcoding, GEMs were
broken, and cDNA was cleaned with with DynaBeads MyOne Silane
Beads. cDNA was amplified, cleaned with the AMPure beads and the
quality was checked using Fragment Analyzer HS NGS Assay. Libraries
were quantified by quantitative PCR (qPCR) (KAPA Biosystems Library
Quantification Kit for Illumina platforms) and the sequencing was
performed on NextSeq500 (Illumina) with 75 paired-end kit.

Data processing. Binary base call (BCL) files were processed with the
10X proprietary software Cell Ranger88, with default and recom-
mended parameters. FASTQs files were aligned to reference tran-
scriptome GRCm38 by count pipeline. Counts matrices for all samples
were imported with Seurat89. Cells with low quality were filtered from
counts matrices (200 < n° of genes x cell < 9000 & %mitochondrial
gene count <25%). Vehicle and treatment datasets were integrated
using Seurat integration pipeline89, clustering analysis were run on
integrated dataset with Seurat FindCluster89 function using a resolu-
tion of 1. Annotation of the dataset were performed looking at the
expression of well-known cell typemarkers. Copy number analysis was
performed on epithelial compartment with InferCNV R package90

using as reference the non-epithelial cells.

Subtyping and enrichment analysis. Subtyping of epithelial cells was
performed using signatures from Moffitt et al.19, Bailey et al.15 and
Collisson et al.18. Subtyping of fibroblasts was performed using sig-
natures from Elyada et al.6. To assess cells subtype, an enrichment
score was assigned for each gene set to each cell using UCell R
package91, the cell subtype was assigned based on maximum score
achieved by a cell for a specific gene set. Other tested signatures were
obtained through the msigdb packages92,93. The related single cell
enrichment score was computed with UCell package91.

Analysis of the fibroblast subcluster. To assess the purity of the CAF
cluster, we extrapolated thefibroblast cells from the integrated atlas and
performed subclustering with FindCluster function of Seurat89 using a
resolution of 0.5. Resolution value was decided after evaluation with
clustree94. The unique features of the fibroblast subclusters were eval-
uated by marker genes expression. Of the 10 subclusters, 7 were anno-
tated as CAFs (c0 =442 cells, c1 = 398 cells, c2 = 357 cells, c3 = 282 cells,
c4 = 209 cells, c5 = 149 cells, c9 = 50 cells) due to expression of both
subtype specific signature genes6 and panCAF genes (Pdpn, Fap, Acta2,
Pdgfra). One subcluster was annotated as cycling (140 cells) and the two
remaining subclusters were annotated as EMT-like (61 cells) and
Myeloid-like (53 cells) based on the high expression level of Ptprc,
Pecam1 and Epcam for EMT-like cells and Itgam, Ptprc and Adgre1 for
Myeloid-like cells. The 3 non-CAF clusters were filtered out before the
subsequent analysis. To perform velocity analysis, the matrices of
spliced and unspliced RNA counts were obtained from raw data using
velocyto pipeline50 under default parameters. The resulting matrices
were uploaded in Seurat objects selecting cells from the previously
annotated CAF subclusters. The objects were integrated with Seurat
integration pipeline by timepoints, regressing out cell cycle effect.
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Computation of velocity and velocity pseudotime values was performed
through velociraptor R package49, using default parameters and pre-
computed PCA values. The sMEKi signature was derived by filtering the
results of differential gene expression performed with Seurat function
FindMarkers89 between vehicle andMEKi treated CAF subclusters of the
2 days timepoint, filtering according to p_val_adj <0.05 and
avg_log2FC<−0.25. Signature enrichment score was computed on
fibroblast compartment using UCell R package91. CAFs of the vehicle
sampleswere classified as sMEKhigh CAFwhen their signature enrichment
score was above the third quartile of the score’s distribution. The map-
CAF signature was instead obtained contrasting the transcriptome of
sMEKhigh CAF vs those showing low level of the signature. Only genes
showing p_val_adj <0.05 and avg_log2FC> 1 were selected. Enrichment
pathway analysis on the mapCAFs and other CAF subclasses was per-
formed with both PROGENy53 and fgsea package. As input was used the
ordered gene list from differential gene expression analysis performed
with FindMarkers89 function and pathways from HALLMARK, REAC-
TOME andGOcollections frommsigDB92,93. Transcription factor analysis
was performed with decoupleR package56. Ligand receptor analysis was
performed with CellChat R package52, first individually on vehicles and
treatments data, then performing differential communication analysis
between them.

Additional mouse scRNA-seq data
Single cell RNA-seq normalised counts of fibroblasts enriched dataset
from Elyada et al.6 were downloaded from GEO (GSE129455). The data
were imported and managed with Seurat89. mapCAF signature
enrichment score was computed on dataset cells with UCell package91.
Subtyping of the fibroblasts cluster was performed as described in the
subtyping section of our mouse single cell RNA sequencing.

Human single cell RNA sequencing datasets
ScRNA-Seq from human PDAC tissues17,60,95,96 were downloaded from
NGDC (GSA: CRA001160), GEO (Accession #GSE154778 and
#GSE155698) and EGA (accession EGAS00001002543) together with
annotation metadata, when provided. The dataset Peng et al.60 (pri-
mary PDAC = 24, ncells = 41964), Lin et al.95 (primary PDAC = 10,
ncells = 7752), Chan-Seng-Yue et al.17 (primary PDAC= 13, ncells =
33970) and Steele et al.96 (primary PDAC= 16, ncells = 42844) were
first preprocessed individually using Seurat V4.0.197 for quality control
and filtering (percent_mt_max = 20, nFeature_min = 500, nCount_-
min = 500, nCount_max= 50,000), then integration was performed
through harmony98 using default parameters and dataset metadata as
grouping variable. The integrated dataset was annotated through
singleR package using as reference the preloaded dataset HPCA from
the celldex package. Epithelial cells were re-classified as ductal, acinar,
or endocrine using known gene signatures99. Identification of tumour
cells in the ductal cluster, was performed with copycat CNV analysis
at sample level, using as normal reference non epithelial cells.
Fibroblasts were re-classified using known gene signatures99.We then
performed subclustering on the CAFs from the integrated atlas
with FindCluster function of Seurat89 using a resolution of 0.2.
Resolution value was decided after evaluation with clustree94. The
unique features of the subclusters were evaluated by marker genes
expression. Pan-cancer dataset fromLuo et al.61 (primary tumour = 148,
ncells = 494,610) was downloaded from Gene expression Omnibus
(accession No. GSE210347) with annotation metadata6,19. All signature
enrichment scores on human single cell datasets were computed with
UCell package91. Subtyping of the epithelial and fibroblast clusters was
performed as described in the subtyping section of mouse single cell
RNA sequencing. For the definition of the humanmapCAF phenotype,
we first mapped the mouse sMEKi signature to human orthologs100.
The human sMEKi was then used to identify CAFs with elevated
expression of the signature which were then contrasted to all other
CAFs to identify the human mapCAF signature. For that, we retained

only genes showing p_val_adj < 0.05 and avg_log2FC > 1 with low to
little expression in the malignant compartment of Peng et al.60.

Spatial transcriptomics
Five sections (thickness = 5μm) from each sample were used to assess
RNA quality (RIN) with 2100 Bioanalyzer (Agilent, USA); all samples
showed DV200> 30%. Spatial transcriptomics was performed with
Visium Spatial Gene Expression for FFPE v2 (Manual protocol). One
section from each patient was scored to fit 6.6mm Visium capture
areas and processed according to manufacturer protocols, with no
modifications. Visium library quality was assessed with Tapestation
(Agilent) and sequenced on Nextseq 2000 (Illumina). Binary base call
(BCL) files were processed with the 10X proprietary software Space
Ranger. V3.0.0 with default and recommended parameters. FASTQs
files were aligned to reference transcriptome GRCh38 by count pipe-
line. All samples showed high QC parameters with a mean sequencing
saturation around 60%. Countsmatrices for all samples were imported
with Seurat97 and integrated with RPCA method for batch effect cor-
rection. For annotation of cell types, we used single cell signatures
from Peng et al.60 using the Seurat ‘anchor’-based integration
workflow97.Signatures enrichment on the spatial dataset was per-
formed using AddModuleScore function, with UCell method91.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RNA-seq data generated in this study have been deposited in the GEO
databaseunder accessioncode: GSE246457. scRNA-seqdata generated
in this study have been deposited in theGEOdatabase under accession
code: GSE246458. Spatial transcriptomics data generated in this study
have been deposited in the GEO database under accession code:
GSE274665. The publicly available RNA-seq data from CCLE used in
this studywere downloaded fromDepMapportal[https://depmap.org/
portal/]. The publicly available RNA-seq data from TCGA used in this
study were downloaded from firebrowse [http://firebrowse.org/?
cohort=PAAD]. The publicly available RNA-seq data from ICGC used
in this studywere downloaded from ICGCdata portal, nowmigrated in
ICGC 25K data. The publicly available RNA-seq data from PanCuRx
used in this study are available upon request in the EGAdatabase under
accession code EGAS00001002543. The publicly available RNA-seq
data from ImVigor trial70 used in this study are available within
easierData R package. The publicly available mouse sc-RNA-seq data
used in this study are available in the GEO database under accession
codeGSE129455. Thepublicly available human sc-RNA-seqdata used in
this study are available in: GEO database under accession codes
GSE15477895, GSE15569896, GSE21034761; in GSA database under
accession code CRA00116060 and in EGA database upon request under
accession code EGAS0000100254317. The remaining data are available
within the Article, Supplementary Information or Source Data
file. Source data are provided with this paper.
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