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Abstract
The formation of amyloid-β (Aβ) aggregates in brain is a neuropathological hallmark of Alzheimer’s disease (AD). However, 
there is mounting evidence that Aβ also plays a pathogenic role in other types of dementia and that specific post-translational 
Aβ modifications contribute to its pathogenic profile. The objective of this study was to test the hypothesis that distinct types 
of dementia are characterized by specific patterns of post-translationally modified Aβ variants. We conducted a comparative 
analysis and quantified Aβ as well as Aβ with pyroglutamate (pGlu3-Aβ and pGlu11-Aβ), N-truncation (Aβ(4-X)), isoaspar-
tate racemization (isoAsp7-Aβ and isoAsp27-Aβ), phosphorylation (pSer8-Aβ and pSer26-Aβ) or nitration (3NTyr10-Aβ) 
modification in post mortem human brain tissue from non-demented control subjects in comparison to tissue classified as 
pre-symptomatic AD (Pre-AD), AD, dementia with Lewy bodies and vascular dementia. Aβ modification-specific immuno-
histochemical labelings of brain sections from the posterior superior temporal gyrus were examined by machine learning-
based segmentation protocols and immunoassay analyses in brain tissue after sequential Aβ extraction were carried out. Our 
findings revealed that AD cases displayed the highest concentrations of all Aβ variants followed by dementia with Lewy 
bodies, Pre-AD, vascular dementia and non-demented controls. With both analytical methods, we identified the isoAsp7-Aβ 
variant as a highly abundant Aβ form in all clinical conditions, followed by Aβ(4-X), pGlu3-Aβ, pGlu11-Aβ and pSer8-Aβ. 
These Aβ variants were detected in distinct plaque types of compact, coarse-grained, cored and diffuse morphologies and, 
with varying frequencies, in cerebral blood vessels. The 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ variants were not found to 
be present in Aβ plaques but were detected intraneuronally. There was a strong positive correlation between isoAsp7-Aβ and 
Thal phase and a moderate negative correlation between isoAsp7-Aβ and performance on the Mini Mental State Examination. 
Furthermore, the abundance of all Aβ variants was highest in APOE 3/4 carriers. In aggregation assays, the isoAsp7-Aβ, 
pGlu3-Aβ and pGlu11-Aβ variants showed instant fibril formation without lag phase, whereas Aβ(4-X), pSer26-Aβ and 
isoAsp27-Aβ did not form fibrils. We conclude that targeting Aβ post-translational modifications, and in particular the highly 
abundant isoAsp7-Aβ variant, might be considered for diagnostic and therapeutic approaches in different types of dementia. 
Hence, our findings might have implications for current antibody-based therapies of AD.
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LB stage  Unified Staging System for Lewy Body 
Disorders

MMSE  Mini Mental State Examination
NOS2  Inducible nitric oxide synthase
PBS  Phosphate-buffered saline
PBS-T  PBS containing 0.02% Tween 20
PMI  Post mortem Interval
Pre-AD  Pre-symptomatic AD
PTM  Post-translational modifications
ROI  Region of interest
TBS  Tris-buffered saline
TEM  Transmission electron microscopy
ThT   Thioflavin T
TMB  3,3′,5,5′-3,3,5,5-Tetramethylbenzidin
VAD  Vascular dementia

Introduction

Alzheimer’s disease (AD) and other types of dementia are 
characterized by the degeneration of defined subsets of neu-
rons and by the deposition of proteins that accumulate as 
amyloid plaques, neurofibrillary tangles, Lewy bodies and 
glial cytoplasmic inclusions. Historically, the aggregated 
proteins were assigned to defined clinical conditions: Aβ and 
Tau to AD [19, 37], α-synuclein to the synucleinopathies 
Parkinson’s disease (PD) [86, 110], dementia with Lewy 
bodies (DLB) [9, 110] and multiple system atrophy (MSA) 
[5, 116] and Huntingtin to Huntington’s disease (HD) [64, 
102]. This constricted perspective has changed in the last 
two decades when proteins formerly considered typical for a 
specific clinical condition were also observed in other types 
of pathology [4, 6, 14, 34, 42, 53, 117, 118]. Therefore, we 
became interested in analyzing the pathology of distinct Aβ 
peptide variants in brains from different types of dementia: 
AD, DLB and vascular dementia (VAD) and, at an early 
disease stage, Pre-AD.

It is well established that Aβ per se is a physiological 
peptide with cellular functions. For example, it was shown to 
be critical for neuronal survival [82]. Moreover, Aβ acts as 
a positive modulator of neurotransmitter release probability 
in hippocampal synapses [1] and its hippocampal produc-
tion is enhanced during memory induction in experimental 
mouse models [84]. In addition, Aβ concentrations measured 
by ELISA in brain interstitial fluid have been shown to cor-
relate with neurological status in human subjects [20]. On 
one hand, in the clinical condition of familial AD, amyloid 
precursor protein overexpression and mutations or mutations 
of its processing γ-secretase, respectively, lead to pathologi-
cal Aβ accumulation [87, 121, 126]. In sporadic AD, on the 
other hand, the exact mechanisms leading to Aβ accumula-
tion are not known, but may include a pathological forma-
tion of Aβ post-translational modifications (PTMs), such 

as N-terminal truncation [17, 66], pyroglutamylation [63, 
97], phosphorylation [55, 57], nitration [61] and isoaspar-
tate formation [107, 115] (for review, see [62, 91]). Such 
Aβ PTMs might be valuable diagnostic markers and also 
therapeutic targets for pharmacologic interventions. In case 
of enzyme-catalyzed generation of PTMs, their formation 
could be prevented by enzyme inhibition and already formed 
Aβ PTMs could be targeted by specific monoclonal anti-
bodies. A good example for this strategy is the prevention 
of pGlu3-Aβ formation by inhibition of glutaminyl cyclase 
with Varoglutamstat [100, 119] and clearance of existing 
pGlu3-Aβ by the antibody Donanemab [40, 108].

However, to date, there is no comprehensive side-by-side 
analysis of all the above-mentioned Aβ variants in differ-
ent types of dementia, which would allow the identifica-
tion of a therapeutic target for a specific type of dementia 
or a combination of dementia diseases. Therefore, we here 
asked the question whether the different clinical conditions 
of dementia under investigation are characterized by specific 
signatures of Aβ PTMs or display similar patterns of these 
Aβ variants (Fig. 1). To address this issue, we used well-
preserved human brain tissue with a short post mortem delay 
and a detailed clinical and pathological characterization that 

Fig. 1  Schematic representation of the Aβ peptide variants inves-
tigated in the present study in brain tissue of deceased patients cat-
egorized in Pre-AD, AD, DLB, VAD and control subjects. Together, 
eight different Aβ variants from five groups of post-translational 
modifications were analyzed side-by-side in a comprehensive man-
ner by immunohistochemical and biochemical methods. Aβ structure 
from [25]. Created with BioRender.com 
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enabled us to correlate clinical with histopathological and 
biochemical findings.

Materials and methods

The general workflow of the immunohistochemical and bio-
chemical analyses conducted in the present study is sum-
marized in Fig. 2. Human brain tissue from all cases was 
available to be used for both analytical methods.

Human brain tissue

The human brain tissue was provided by the Arizona Study 
of Aging and Neurodegenerative Disorders (AZSAND) and 
Brain and Body Donation Program of Banner Sun Health 
Research Institute in Sun City, Arizona. Case recruitment 
and autopsy were performed as approved by institutional 
review boards overseeing AZSAND’s Brain and Body Dona-
tion Program [13]. The required consent was obtained for 
all cases. The diagnosis and staging of AD, DLB and VAD 
for the cases used in this study were based on standardized 
clinicopathological criteria as previously described [13]. The 
diagnosis of AD cases was based on the presence of neu-
rofibrillary tangles and neuritic plaques in the hippocampal 
formation and neocortical areas and met “intermediate” or 
“high” levels of AD Neuropathological Change according 
to the criteria of the National Institute on Aging–Alzhei-
mer’s Association (NIA–AA). DLB was defined as demen-
tia occurring either at presentation or within one year of 
the onset of parkinsonism, with a brain distribution of 
α-synuclein pathology meeting DLB Consortium criteria for 
“intermediate” or “high” likelihood [67]. The Unified Stag-
ing System and McKeith criteria received good inter-rater 
reliability scores in a multi-center comprehensive analysis 
defining consensus criteria for the evaluation of Lewy body 

pathology in post mortem brains [8]. The diagnosis of VAD 
was based on the National Institute of Neurological Disor-
ders and Stroke (NINDS) and the Association Internation-
ale pour la Recherche et l’Enseignement en Neurosciences 
(AIREN) criteria [92].

Brain sections of the posterior superior temporal gyrus 
(Brodmann area 22) from ten AD cases, ten DLB cases, ten 
VAD cases and thirty age-matched non-demented subjects 
were evaluated for deposition of different post-translationally 
modified Aβ variants by immunohistochemistry. According 
to their respective Thal phase, the thirty age-matched non-
demented subjects were further subdivided into control (Co; 
Thal 0–1) and pre-symptomatic AD (Pre-AD; Thal 2–5). 
Biochemical analyses were performed in unfixed brain tis-
sue from the same location (Brodmann area 22) of the other 
brain hemisphere of the same cases. For detailed characteri-
zation of the cases, see Table 1.

Antibodies

For immunohistochemical labelings and immunoassay anal-
yses, primary antibodies specific for the respective Aβ vari-
ants were used (for details, see Table 2). Antibodies raised 
against Aβ (3D6; epitope Aβ amino acids 1 to 5; parent anti-
body of Bapineuzumab), pGlu3-Aβ (J8), isoAsp7-Aβ (K11), 
pGlu11-Aβ (K13), 3NTyr10-Aβ (4C3) and isoAsp27-Aβ 
(F2) were generated by Fraunhofer IZI-MWT (Halle, Ger-
many) (see Supplementary Information). The specificities of 
the antibodies 3D6 against Aβ [32, 38], J8 against pGlu3-Aβ 
[45], K11 against isoAsp7-Aβ [38], 1E4E11 against 
pSer8-Aβ [56], K13 against pGlu11-Aβ [52] and 5H11C10 
against pSer26-Aβ [59] were recently demonstrated. For 
the characterization of the binding capacity and specificity 
of the newly generated monoclonal antibodies 4C3 raised 
against 3NTyr10-Aβ and F2 against isoAsp27-Aβ, immu-
noassays based on different N- or C-terminally truncated 

Fig. 2  Schematic presentation of the workflow for the immunohisto-
chemical (top) and biochemical (bottom) analyses of Aβ peptide vari-
ants in human brain tissue from Pre-AD, AD, DLB, VAD and con-
trol subjects. The immunohistochemically labeled brain slices were 
digitized with an Axioscan slide scanner and subjected to plaque load 
quantification by machine learning-based segmentation protocols. 

For biochemical analyses, Aβ peptides were extracted from unfixed 
human brain tissue by sequential centrifugation of Tris-buffered 
saline (TBS), guanidinium chloride (GdmCl) and formic acid (FA) 
dilutions followed by quantification by immunoassays using specific 
monoclonal antibodies. Created with BioRender.com 
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Aβ species as well as wild type Aβ were established (see 
Suppl. Figure 1 and 2). For the detection of Aβ(4-X), the 
polyclonal rabbit antibody 58–1 was used for immunohisto-
chemical labeling [10] and the monoclonal antibody 18H6 
was employed for immunoassay analyses [22]. In immuno-
assay analyses, the commercially available horseradish per-
oxidase (HRP)-conjugated antibody 4G8 (Biolegend, San 
Diego, CA, USA) against Aβ(17–24) and HRP-conjugated 
antibody Aβx-40 (clone 11A50B10; Biolegend) against 
Aβ(x-40) have been used for the detection of Aβ and Aβ40 
species, respectively.

Peptide synthesis

Peptides listed in Suppl. Table 1 were purchased from pep-
tides & elephants GmbH (Hennigsdorf, Germany), Bio-
Cat GmbH (Heidelberg, Germany) or Peptide Specialty 
Laboratories GmbH (Heidelberg, Germany). Generation 
of full-length and N- or C-terminally truncated pGlu3-Aβ, 
3NTyr10-Aβ and isoAsp27-Aβ peptides was performed by 
Fraunhofer IZI as previously described by Piechotta et al. 
[80] and Gnoth et al. [38].

Immunohistochemical analysis

Single labeling immunohistochemistry

All immunohistochemical labelings on human brain tissue 
were performed on 40 µm thick free-floating brain sections 
at room temperature, unless stated otherwise. After optional 
pre-treatment (for pre-treatments, see Table 2), brain sec-
tions were washed in PBS containing 0.02% Tween 20 (PBS-
T) and treated with 1%  H2O2 in 60% methanol for 60 min. 
Unspecific staining was blocked by incubating brain sections 
in blocking solution (PBS-T with 2% (w/v) bovine serum 
albumin, 0.3% (w/v) milk powder, 0.5% (v/v) normal donkey 
serum) for 60 min before incubating brain sections with the 
primary antibodies in blocking solution at 4 °C for 42 h (for 
antibody concentrations, see Table 2). Brain sections were 
incubated in a 1:2 mixture of blocking solution and PBS-T 
containing the biotinylated donkey anti-mouse or anti-rabbit, 
respectively, secondary antibody (1:1000; Dianova, BIO-
ZOL Diagnostica Vertrieb GmbH, Eching, Germany) for 
60 min followed by incubation with ExtrAvidin-conjugated 
peroxidase (1:2000; Sigma, Merck KGaA, Darmstadt, Ger-
many) in PBS-T for 60 min. Bound peroxidase was visual-
ized in a solution containing 2–4 mg DAB, 40 mg ammo-
nium nickel(II) sulfate and 5 µl  H2O2 per 10 ml Tris-buffer 
(0.05 M; pH 8.0) yielding black epitope staining.

Light microscopy

Immunohistochemically stained human brain sections were 
digitized with an Axio-Scan.Z1 slide scanner connected with 
a LED light source and a Hitachi HV-F202SCL camera (Carl 
Zeiss AG, Oberkochen, Germany). Using a 20 × objective 
lens with 0.8 numerical aperture (Carl Zeiss AG), high-
resolution images from areas of interest were taken. Images 
were analyzed using the Zeiss ZEN 3.8 imaging tool. Pho-
toshop CS2 (Adobe Systems, San José, CA, USA) was used 
to process the images. Care was taken to apply the same 
brightness, sharpness, color saturation and contrast adjust-
ments in the processing of the various pictures.

Automated image analysis

To quantify the stained plaque area of immunohistochemi-
cally labeled brain sections, Zeiss arivis cloud and Zeiss 
ZEN 3.8 Intellesis software were used for automated image 
analysis (for details see Suppl. Figure 3). For each Aβ vari-
ant and for all 60 cases, three representative regions of 
interest (ROIs) with an area of 4  mm2 each were chosen 
of the grey matter spanning all cortical layers. A separate 
training was conducted for each Aβ variant staining using 
Zeiss arivis cloud. After several iterating training cycles to 
enhance the capability of the machine learning algorithm 
to detect immunohistochemically stained plaques, all 60 
cases were analyzed by the trained algorithm in a batch 
analysis using Zeiss ZEN Intellesis software. Obviously 
false positive detection of unspecific staining was manu-
ally removed upon visual inspection.

Staging of plaque morphology and vascular deposition

The staging of compact, coarse-grained, cored and diffuse 
plaques stained for a specific Aβ variant was performed 
on digitized human brain slices with Zeiss ZEN  3.8 
according to Boon et al. [15]. The plaque load of each 
plaque morphology was ranked between no staining ( – ), 
some positive staining (+  – ), positive staining ( +) and 
prominent positive staining with high plaque load (+ +). 
Vascular Aβ deposition was evaluated similarly and dif-
ferentiated between 0% ( – ), 1–40% (+  – ), 41–80% ( +) 
and 81–100% (+ +) of cases with vascular deposition per 
clinical group.
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Immunoassays

Human brain tissue preparation

Tissue blocks of human temporal cortex were prepared in 
the frontal plane according to the atlas of the human brain 
and stored at – 80 °C until usage. To prepare human brain 
for Aβ immunoassay analysis, the protocol of Gnoth et al. 
[38] was followed with adaptations. In short, a sample of 
about 500 mg temporal cortex was homogenized in TBS 
buffer (20 mM Tris/HCl, 150 mM NaCl, 5 mM KCl, pH 
7.5) supplemented with Protease Inhibitor Cocktail Tab-
lets (Roche Diagnostics GmbH, Mannheim, Germany) and 
1 mM 4-(2-Aminoethyl)-benzolsulfonylfluorid Hydrochlo-
rid (Carl Roth GmbH + Co. KG, Karlsruhe, Germany) at a 
concentration of 200 mg/ml by using a Precellys homog-
enizer (VWR International GmbH, Darmstadt, Germany), 
followed by sonication for 10 s. After centrifugation of 
the homogenate at 100,000xg for 1 h, supernatant (TBS 
fraction) was obtained. The resulting pellet was dissolved 
to 250 mg/ml in 5 M GdmCl, followed by an incubation 
step in an overhead shaker at room temperature for 3 h 
and a subsequent centrifugation step at 100,000xg for 1 h. 
Again, supernatant (GdmCl fraction) was collected and 
the pellet was resuspended in 500 µl 70% FA, followed 
by sonication for 20 s and neutralization by 2.9 ml 3.5 M 
Tris (FA fraction).

Quantification of Aβ variants using immunoassay analysis

The performance of Aβ and isoAsp7-Aβ immunoassay 
analyses was previously described by Gnoth et al. [38]. In 
short, coating antibodies were immobilized on polystyrene 
96-well microtiter plates at 4 °C overnight. After block-
ing (4 °C, 2 h), sample dilutions (TBS fraction 1:2–1:50, 
GdmCl fraction 1:40–1:5000, FA fraction 1:100–1:5000) 
were selected according to subsequent adsorption sig-
nals within the linear range of the standard curve. For the 
standard curve, synthetic standard peptides were serially 
diluted and added to the wells in duplicate. This was fol-
lowed by an incubation period at 4 °C for 2 h. For detec-
tion of bound Aβ peptides, the HRP-conjugated antibody 
4G8 was used to detect Aβ, pGlu3-, isoAsp7-, pSer8- and 
3NTyr10-Aβ. The HRP-conjugated antibody Aβx-40 was 
used for pSer26- and isoAsp27-Aβ detection. Both detec-
tion antibodies were diluted to a final concentration of 1 μg/
ml (see Table 2), added to the samples and incubated at 
4 °C for 1 h. A color reaction with commercially available 
HRP substrate 3,3′,5,5′-3,3,5,5-Tetramethylbenzidine (TMB; 
SureBlue Reserve TMB Microwell Peroxidase Substrate 
(1-component); KPL, LGC Clinical Diagnostics, Milford, 
MA, USA) was performed and stopped by the addition of 
1.2 N  H2SO4. Absorption at 450/540 nm was determined B
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by a Tecan Sunrise plate reader (Tecan Group Ltd., Männe-
dorf, Switzerland). The standard curve was calculated 
from measured absorption by a 4-Parameter-Logistic-Fit: 
y = A2 + (A1 − A2)/(1 + (x/ × 0)^p). Novel immunoassays 
were adapted and specified in the same way (see Table 2). 
For specification purposes, the stability of the antibodies in 
the matrix as well as LOD and LOQ were determined.

Quantification of the Aβ(4-X) variant was carried out 
as electrochemiluminescence assay (Meso Scale Discov-
ery, MSD, Rockville, MD, USA). Biotinylated 18H6 ([22]; 
0.6 µg/ml), as well as sulfo-tagged 4G8 (1:50; Meso Scale 
Discovery, MSD) were used as capture and detection anti-
bodies, respectively, on MSD GOLD 96-well Small Spot 
Streptavidin Plates (Meso Scale Discovery, MSD) following 
the manufacturer protocol for the human Aβ antibody set. 
Standard curves were prepared using synthetic Aβ(4–40) 
peptides and data analysis including standard curve 

calculations was carried out with the Discovery Workbench 
4.0.12 software package (Meso Scale Discovery, MSD).

Thioflavin T fibril formation assays

Aβ aggregation studies were based on Piechotta et al. [80]. 
Lyophilized Aβ peptides were dissolved in 1,1,1,3,3,3-hex-
afluoro-2-isopropanol (HFIP) to obtain homogeneous prepa-
rations without seeds. For peptide preparation, the HFIP was 
evaporated and immediately prior to analysis, peptide pellets 
were dissolved in 20 µl of 0.1 M NaOH and incubated for 
10 min. After adding 380 µl PBS (138 mM NaCl, 8 mM 
 Na2HPO4, 1.5 mM  KH2PO4, 3 mM KCl, pH 7.1), neutraliza-
tion with 0.1 M HCl followed. All work steps were carried 
out on ice. Peptide concentration was determined by Pierce 
BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, 
MA, USA) and adjusted to 10 µM or 15 µM. To monitor the 

Table 2  Primary and secondary antibodies for detection of Aβ variants by immunohistochemistry (IHC) and immunoassay analyses

Pre-treatments: basic: Tris-buffer (0.05 M; pH 8.0); acidic: citric acid/sodium citrate (0.1 M; pH 6.0) and 88% FA (v/v)

IHC and Immunoassay IHC Immunoassay

Antibody (Clone; Concentration 
[mg/ml])

Company / Supplier Host Pre-treatment Antibody Dilution Standard Curve Range 
or Concentration [ng/
ml]

Aβ
(3D6; 5.00)

Fraunhofer IZI (Halle, Germany) Mouse – 1:4000 0.39–0.006

pGlu3-Aβ
(J8; 1.00)

Fraunhofer IZI (Halle, Germany) Mouse basic 1:1000 0.39–0.006

Aβ(4-X)
(58–1; 1.00)

University Medical Center Göttin-
gen (Göttingen, Germany)

Rabbit – 1:5000 –

Aβ(4-X)
(18H6; 0.60)

NYU Grossman School of Medi-
cine (New York, USA)

Mouse – – 30–0.0073

isoAsp7-Aβ
(K11; 3.00)

Fraunhofer IZI (Halle, Germany) Mouse – 1:6000 0.5–0.008

pSer8-Aβ
(1E4E11; 1.00)

University Hospital Bonn (Bonn, 
Germany)

Mouse acidic 1:1000 3.125–0.049

pGlu11-Aβ
(K13; 2.50)

Fraunhofer IZI (Halle, Germany) Mouse – 1:1000 –

3NTyr10-Aβ
(4C3; 1.00)

Fraunhofer IZI (Halle, Germany) Mouse – 1:400 6.25–0.01

pSer26-Aβ
(5H11C10; 1.00)

University Hospital Bonn (Bonn, 
Germany)

Mouse acidic 1:2000 2.187–0.003

isoAsp27-Aβ
(F2; 1.64)

Fraunhofer IZI (Halle, Germany) Mouse – 1:6000 100–1.56

biotinylated donkey anti-mouse
(-; 0.55)

Dianova, BIOZOL Diagnostica 
Vertrieb GmbH, (Eching, Ger-
many)

Donkey – 1:1000 –

biotinylated donkey anti-rabbit
(-; 0.50)

Dianova, BIOZOL Diagnostica 
Vertrieb GmbH, (Eching, Ger-
many)

Donkey – 1:1000 –

HRP-conjugated 4G8
(4G8; 0.50)

Biolegend (San Diego, CA, USA) Mouse – – 1000

HRP-conjugated Aβx-40
(11A50B10; 0.50)

Biolegend (San Diego, CA, USA) Mouse – – 1000
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fibril formation of Aβ variants, monomeric Aβ peptide was 
co-incubated with 20 µM thioflavin T (ThT) in 96-well micr-
otiter plates (PS, half area, black µClear; Greiner Bio-One, 
Kremsmünster, Austria). Measurements were carried out 
in triplicates. The plate was sealed with adhesive film and 
incubated at 37 °C and 300 rpm for 20 h. ThT fluorescence 
intensity was measured using a CLARIOstar (BMG Labtech, 
Ortenberg, Germany) plate reader (excitation 440 nm, emis-
sion 490 nm) and normalized to the initial ThT fluorescence 
signals. Kinetic parameters of the ThT curves of the fibril-
forming Aβ variants were calculated using logistic sigmoid 
functions in GraphPad PRISM (version 10, San Diego, CA, 
USA).

Transmission electron microscopy

Transmission electron microscopy (TEM) of Aβ aggregates 
was based on Köppen et al. [53]. In short, fibril samples 
(10 µl) from an aggregation reaction as described above 
were directly incubated on an EM Tec Formvar Carbon TEM 
Support Film on nickel 200 square mesh (Micro to Nano, 
Haarlem, Netherlands) at room temperature for 10 min 
and washed three times with distilled water. Staining was 
obtained with 2% (v/v) uranyl acetate (SERVA Electro-
phoresis GmbH, Heidelberg, Germany) for 1 min. Fibrils 
were imaged with a LEO EM 912 Omega TEM (Carl Zeiss 
AG) at 80 kV, and digital micrographs were obtained with a 
dual-speed 2 K-on-axis CCD camera-based YAG scintillator 
and the software ImageSP (version 1.2.13.17 TRS-Tröndle, 
Moorenweis, Germany).

Statistical analysis of immunohistochemical 
and immunoassay data

For statistical analysis, the mean plaque area and the mean 
amount of Aβ variant was used. Using a Python script for 
immunohistochemical data, the total plaque area of one ROI 
of one case and one Aβ variant was calculated relative to 
the total area of the ROI (4  mm2). The mean plaque area 
was then calculated from the total plaque area of three ROIs 
per case. The mean amount of Aβ variant per case was cal-
culated using two technical immunoassay replicates. In the 
case of the Aβ(4-X) electrochemiluminescence assay, a sin-
gle measurement was performed. Determination of statistical 
significance of differences of the stained plaque areas and 
the amount of a specific Aβ variant, respectively, between 
disease conditions was conducted with One-Way ANOVAs 
followed by Tukey’s multiple comparisons test using Graph-
Pad PRISM. Differences between groups were considered 
statistically significant for p values < 0.05. Correlations of 
plaque area or amount of Aβ variants relative to Braak stage, 
Thal phase and MMSE were calculated as Pearson Corre-
lations using GraphPad PRISM. The Pearson correlation 

coefficient r and the P value (two-tailed, confidence inter-
val 95%) are indicated in each plot. Pearson correlation was 
considered to be moderate with correlation coefficients of 
0.40 ≤ r < 0.70, as strong with 0.70 ≤ r < 0.90 and as very 
strong with 0.90 ≤ r ≤ 1.00. Correlations with 0.00 ≤ r < 0.40 
were interpreted as weak and negligible [105]. Heat Maps 
show the mean plaque areas, the mean Aβ variant amounts 
and the Pearson correlation coefficient r of the immunohis-
tochemical or biochemical correlations, respectively (values 
are not normalized).

Results

Immunohistochemical analyses

First, the abundance of post-translationally modified Aβ pep-
tides in amyloid plaques was quantified. The Aβ variants 
3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ were not detected 
in amyloid plaque-like formations and, thus, excluded from 
this analysis. The immunohistochemical appearance of 
these Aβ variants is documented in Suppl. Figure 4. All 
other Aβ variants were, in varying quantities, detected in 
amyloid plaques (Fig. 3). In control cases, Braak stage I–III 
and Thal phase 0–1, a very minor plaque load of < 1% of 
the grey matter brain area was calculated for all Aβ pep-
tide variants (Fig. 3). In the Pre-AD cases, Braak stage I–III 
and Thal phase 2–5, the median plaque load varied between 
4.8% for Aβ and 0.3% for pGlu11-Aβ. Among the remain-
ing Aβ PTMs, the isoAsp7-Aβ variant was most abundant 
(2.6% plaque load) followed by Aβ(4-X) (1.7% plaque load), 
pGlu3-Aβ (1.5% plaque load) and pSer8-Aβ (0.6% plaque 
load) (Fig. 3). Among all clinical conditions, the highest 
Aβ plaque load was detected for AD, Braak stage V–VI 
and Thal phase 5 (Fig. 3). For the different Aβ variants, 
median plaque load values between 10.7% for Aβ and 0.5% 
for pGlu11-Aβ were detected. The abundance of isoAsp7-Aβ 
(12.3% plaque load) was similar to that of Aβ and was fol-
lowed by Aβ(4-X) (4.2% plaque load), pGlu3-Aβ (3.4% 
plaque load) and pSer8-Aβ (1.0% plaque load). Also in DLB, 
Braak stage I to IV and Thal phase 0–5, the isoAsp7-Aβ was 
most abundant among all Aβ variants (3.9% plaque load), 
followed by pGlu3-Aβ (2.5% plaque load), Aβ(4-X) (1.4% 
plaque load) and pGlu11-Aβ and pSer8-Aβ with less than 
1% plaque load each (Fig. 3). In the VAD cases, Braak stage 
I–IV and Thal phase 0–3, all Aβ variants accounted for less 
than 1% plaque load, each.

Together, the immunohistochemical analyses of plaque 
load revealed the highest abundance of all Aβ variants ana-
lyzed in AD, followed by DLB, Pre-AD and VAD, the latter 
two being close to control cases. Regarding the different 
Aβ variants, isoAsp7-Aβ plaque load was most abundant, 
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followed by Aβ(4-X) and pGlu3-Aβ at similar levels and 
pGlu11-Aβ and pSer8-Aβ with the lowest plaque occupancy.

We next asked whether there is an association of the Aβ 
load with APOE genotype and whether there might be cor-
relations between the abundance of the Aβ variants inves-
tigated and the histopathological Braak and Thal staging 
on one hand and the MMSE score on the other. The sub-
group sizes defined by APOE genotype differed markedly 
with N = 1 for the 2/2, N = 8 for the 2/3, N = 1 for the 2/4, 
N = 34 for the 3/3, N = 13 for the 3/4 and N = 2 for the 4/4 
allele (see Table 1). The highest abundance for all Aβ vari-
ants was detected in APOE 3/4 carriers, followed by APOE 
3/3 carriers (Fig. 4a). Within the APOE 3/4 subgroup, the 
mean plaque load for all Aβ PTMs was significantly lower 
than that of Aβ, except for isoAsp7-Aβ, which displayed 
similar levels. As expected, the Aβ variants showed a higher 
correlation with Thal amyloid phases than with Braak 
Tau stages (Fig. 4b). The strongest correlations with Thal 
phases were observed for Aβ, Aβ(4-X) and isoAsp7-Aβ 
(r values 0.70 ≤ r < 0.90 indicate a strong correlation) and 
were highlighted in grey. Moderate correlations (r values 
0.40 ≤ r < 0.70) were marked with a light grey. Regarding 
the MMSE, we observed moderate negative correlations for 
Aβ, Aβ(4-X) and isoAsp7-Aβ (Fig. 4b).

To better visualize the plaque load for the individual Aβ 
variants in the different types of dementia and the strength of 
correlations with Braak and Thal staging and MMSE scores, 
respectively, heat maps were established (Fig. 5). These 
indicate the particularly high abundance of isoAsp7-Aβ in 
Pre-AD, AD and DLB (Fig. 5a), as well as a positive correla-
tion between isoAsp7-Aβ plaque load and histopathological 
Braak and Thal staging (Fig. 5b). In addition, a moderate 
correlation of isoAsp7-Aβ and Aβ(4-X) with the decline in 
MMSE is evident (Fig. 5b).

We also wanted to reveal whether specific Aβ variants are 
associated with amyloid plaque types of distinct morphology 
and with cerebral blood vessels. Therefore, we graded the 
abundance of each Aβ variant separately according to its 
respective detection in the following categories of plaques: 
compact, coarse-grained, cored and diffuse, as well as in 
blood vessels. This was done for all clinical conditions and 
cases (Fig. 6a). The staging was made according to Boon 
et al. [15] and differentiated between no staining ( – ), some 
positive staining (+  – ), positive staining ( +) and prominent 

positive staining with high plaque load (+ +). AD and DLB 
cases displayed a high abundance of all plaque types labeled 
for all Aβ variants. Diffuse plaques were strongly labeled by 
all Aβ antibodies and were also highly abundant in the Pre-
AD cases. Regarding the prominent labeling of isoAsp7-Aβ 
and Aβ(4-X) variants, isoAsp7-Aβ was found to be more 
abundant in plaques of compact and of cored morphology 
than Aβ(4-X) (Fig. 6a). For the staining of cerebral blood 
vessels, the grading differentiated between no vascular amy-
loid deposits in any case of a clinical group ( – ), in 1 to 
40% of the cases (+  – ), in 41–80% of the cases ( +) and in 
81–100% of the cases (+ +). The pSer8-Aβ and pGlu11-Aβ 
variants were highly abundant in blood vessels in all clini-
cal conditions including Pre-AD and control cases (Fig. 6a). 
In comparison, the Aβ(4-X) variant was less abundant in 
the vasculature of the VAD and Pre-AD group, whereas 
pGlu3-Aβ and isoAsp7-Aβ were present in all clinical con-
ditions in a smaller subset of patients.

We next asked whether the Aβ variants present in amy-
loid plaques display different aggregation kinetics than 
their counterparts not detected in plaques. ThT assays were 
employed to monitor the time-dependent fibril formation of 
all Aβ(x-40) variants. Intriguingly, the pSer26-Aβ(1–40) and 
isoAsp27-Aβ(1–40) variants which had not been localized in 
plaques only showed low ThT fluorescence. On the contrary, 
3NTyr10-Aβ(1–40) which had not been detected in amy-
loid plaques, did show ThT fluorescence and, thus, robust 
time-dependent fibril formation in the aggregation assay. 
The other Aβ variants detected in amyloid plaques also 
showed ThT fluorescence with instant fibril formation for 
pGlu3-Aβ(1–40), isoAsp7-Aβ(1–40) and pGlu11-Aβ(1–40), 
and lag phases ranging from 1.32 h for pSer8-Aβ(1–40) to 
3.21 h for 3NTyr10-Aβ(1–40) (Fig. 6b). The Aβ(4-X) vari-
ant is an exception from this pattern, since it was highly 
abundant in amyloid plaques, but the Aβ(4–40) variant 
did not form fibrils under the conditions of the ThT assay. 
This might indicate that the Aβ(4–42) variant dominates in 
plaques.

To reveal specific characteristics of the fibrils derived 
from distinct Aβ variants, TEM was performed (Fig. 6c). 
In general, the TEM images confirmed and substantiated 
the data of the fibrillation curves obtained in the ThT assay, 
although a few Aβ(4–40) fibrils were detected (Fig. 6c). 
Remarkably, pGlu3-Aβ(1–40) and isoAsp7-Aβ(1–40) fibrils 
appeared to be shorter and thicker than fibrils of the other 
Aβ variants (Fig. 6c).

Biochemical analyses

We used immunoassay analyses to quantify those Aβ vari-
ants that were shown above to be present in amyloid plaques. 
The Aβ variants 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ 
were not detected in amyloid plaque-like formations and, 

Fig. 3  Representative examples of immunohistochemical labeling of 
human cortical brain tissue from control cases and different clinical 
conditions using antibodies to detect specific post-translational Aβ 
modifications as indicated (left). Respective quantifications of Aβ 
plaque load as a percentage of brain area covered by plaques is pre-
sented (right). Note that the Y-axes differ between the individual Aβ 
variants. Differences between clinical groups are statistically signifi-
cant at *p < 0.05; **p < 0.01; ***p < 0.001. Medians are indicated by 
horizontal lines

◂
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Fig. 4  a Subgroup analyses of 
the abundance of Aβ variants by 
APOE genotype. Note the high 
plaque load for all Aβ variants 
in APOE 3/4 carriers and the 
particularly high abundance 
of isoAsp7-Aβ compared to 
the other Aβ PTMs in this 
subgroup. b Pearson correlation 
analyses between the immu-
nohistochemically quantified 
plaque load for individual Aβ 
variants and the neuropathologi-
cal Braak Tau stages (column 1) 
and Thal amyloid phases 
(column 2). In addition, cor-
relations between the respective 
abundance of Aβ variants and 
the MMSE scores (column 3) 
are presented. Pearson correla-
tion was considered as moderate 
with correlation coefficients of 
0.40 ≤ r < 0.70 (highlighted in 
light grey) and as strong with 
0.70 ≤ r < 0.90 (highlighted 
in grey). Note the moder-
ate and strong correlations of 
isoAsp7-Aβ with Braak Tau 
stages, Thal amyloid phases and 
MMSE scores. The individual 
cases relate to the clinical 
condition as follows: black—
Co; grey—Pre-AD; red—AD; 
blue—DLB; green—VAD
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thus, immunoassay analyses of these Aβ variants are shown 
in Suppl. Figure 5.

Aβ was separated based on solubility in TBS, GdmCl and 
FA fractions. For each Aβ variant, less than 1% of the sum 
of all fractions was detected in the TBS fraction, whereas 
GdmCl and FA fractions accounted for about 50% of each 
Aβ variant (Fig. 7). Due to potential dephosphorylation of 
pSer8-Aβ in FA [21], pSer8-Aβ was not measured in this 
fraction.

Consistent with immunohistochemical data on the quanti-
fication of the respective plaque load, immunoassay analyses 
revealed the highest Aβ concentrations in AD, followed by 
DLB, Pre-AD, VAD and controls. Specifically, in control 
cases, Braak stage I to III and Thal phase 0–1, a low amount 
of all Aβ variants was measured (Fig. 7). In the Pre-AD 
cases, Braak stage I to III and Thal phase 2–5, the median 
amount of Aβ was close to control subjects and varied 
between 341 pg/mg for Aβ and 9 pg/mg for pSer8-Aβ in 
GdmCl and between 161 pg/mg for Aβ and 17 pg/mg for 
Aβ(4-X) in FA.

In AD cases, the highest Aβ concentration was measured 
in the GdmCl and the FA fraction for Aβ with 2,331 pg/mg 
and 1,141 pg/mg, respectively. The lowest concentration was 
measured for pSer8-Aβ with 8 pg/mg in GdmCl. In GdmCl 
fractions, the amount of Aβ(4-X) (564 pg/mg) was highest 
among the Aβ variants, followed by isoAsp7-Aβ (386 pg/

mg) and pGlu3-Aβ (337 pg/mg). In FA, the same pattern as 
in GdmCl was observed with the highest concentration of 
Aβ(4-X) (737 pg/mg), followed by isoAsp7-Aβ (309 pg/mg) 
and pGlu3-Aβ (263 pg/mg).

In DLB cases, Braak stage I to IV and Thal phase 0–5, 
Aβ amounts in the GdmCl fraction ranged from 9 pg/mg 
for pSer8-Aβ to 951 pg/mg for Aβ. The variants pGlu3-Aβ, 
Aβ(4-X) and isoAsp7-Aβ showed similar concentrations 
with around 69 to 269 pg/mg in both GdmCl and FA. In the 
VAD cases, Braak stage I to IV and Thal phase 0–3, all Aβ 
variants accounted for low concentrations in GdmCl and FA.

In analogy to the correlations of immunohistochemically 
determined plaque load, we performed a subgroup analysis 
of the Aβ load by APOE genotype and correlated the abun-
dance of the Aβ variants quantified by immunoassay with 
Braak and Thal staging and with MMSE score (Fig. 8). The 
highest quantities for all Aβ variants were detected in APOE 
3/4 carriers, followed by APOE 3/3 carriers (Fig. 8a). In 
these APOE genotypes, Aβ PTMs displayed significantly 
lower concentrations than Aβ. In addition, the Aβ variants 
showed a higher correlation with Thal amyloid phases than 
with Braak Tau stages, with the strongest correlations for 
Aβ, Aβ(4-X) and isoAsp7-Aβ (r values between 0.70 and 
0.90 indicate a strong correlation; highlighted in grey), 
and a moderate correlation for pGlu3-Aβ (r value 0.621; 
marked with a light grey) (Fig. 8b). Regarding the MMSE, 

Fig. 5  Heat maps for the plaque load of Aβ variants and the correla-
tion coefficient r of the Pearson correlation analyses. a Immunohisto-
chemically quantified plaque load of Aβ variants is depicted for the 
different conditions. b For all correlations between the plaque load of 

Aβ variants and Braak and Thal staging and MMSE score, the cor-
relation coefficient r as a measure for the quality of the correlation is 
presented. Note that the typical correlation pattern is not observed for 
pSer8-Aβ
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we observed moderate negative correlations with r values 
between – 0.415 and – 0.510 for all Aβ variants except for 
pSer8-Aβ (Fig. 8b).

The correlation analyses of the biochemically determined 
concentrations of the Aβ variants with histopathological and 
clinical data revealed results almost identical to the immuno-
histochemical data, indicating strong inter-assay reliability 
of our analytical methods.

To better visualize the abundance of the individual Aβ 
variants in different tissue fractions and in distinct types of 
dementia and to indicate the strength of correlations with 
Braak and Thal staging and MMSE scores, heat maps were 
established (Fig. 9). These indicate the particular high abun-
dance of pGlu3-Aβ, Aβ(4-X) and isoAsp7-Aβ in GdmCl and 
FA fractions in AD and to a lesser extent in DLB (Fig. 9a). 
For all Aβ variants except pSer8-Aβ, a moderate to strong 
correlation to the Thal amyloid phases was observed 
(Fig. 9b). Likewise, for all Aβ variants, except pSer8-Aβ, 
moderate negative correlations with MMSE were observed 
(Fig. 9b).

Discussion

In this study, we present an extensive and, to our knowledge, 
the most comprehensive analysis of eight distinct Aβ PTMs 
in human brain tissue affected by different types of demen-
tia. Our key discovery is that the isoAsp7 modification is a 
highly abundant Aβ PTM in all clinical conditions including 
Pre-AD, AD, DLB and VAD.

Association of Aβ variants with amyloid plaques 
in different types of dementia

The two Aβ variants with the highest abundance identified 
in this study in all clinical conditions were the isoAsp7-Aβ 
and Aβ(4-X) variants (see Suppl. Figure 6).

The isoAsp7-Aβ variant appeared to be very prominent 
among all clinical conditions observed when quantifying 
immunohistochemical plaque load and concentrations of Aβ 
variants in GdmCl and FA fractions by immunoassay. We 
observed strong correlations of the abundance of this variant 
with Thal phase and moderate correlations with the decline 
in MMSE. In addition, we report robust and instant fibril 
formation without lag phase in aggregation assays. This Aβ 
modification was identified over 30 years ago in the brain 
parenchyma [90]. The isoAsp7-Aβ variant was observed to 
induce cerebral amyloidosis when administered peripher-
ally to transgenic mice with amyloid pathology [54] and to 
be more neurotoxic towards human neural stem cells than 
Aβ(1–42) [69]. In addition, an Aβ variant with a dual isoAsp 
modification at residues 1 and 7 was shown to be abundant 
in parenchymal and vascular Aβ deposits in AD [75], as well 
as in the Iowa variant of familial AD [115]. Another study 
showed the neuroprotective effect of protein-L-isoaspartyl 
methyltransferase, an ubiquitous enzyme that catalyses the 
conversion of isoAsp back to Asp, against Aβ oligomers 
by increasing the size and reducing both hydrophobicity 
and toxicity of Aβ oligomers [23]. We observed an instant 
fibril formation for the isoAsp7-Aβ variant in the ThT assay. 
Intriguingly, targeting isoAsp7-Aβ with the monoclonal anti-
body K11 used in this study has already been demonstrated 
to reduce amyloid pathology and to ameliorate behavioural 
deficits in 5xFAD mice [38, 39]. This makes this Aβ variant 
particularly interesting as a therapeutic target for different 
types of dementia.

Aβ(4-X) was identified in AD brain and has been shown 
to account for more than 60% of the FA extractable Aβ 
peptides from amyloid plaque cores that were accessible 
to Edman protein sequencing [66, 68]. However, consider-
ing the abundance of pGlu3-Aβ and pGlu11-Aβ that escape 
Edman protein sequencing, its proportion in plaques should 
be lower but still significant. Subsequently, its presence was 
demonstrated by mass spectrometric analysis in the AD 
brain [83], in parenchymal and vascular deposits in the Iowa 
variant of familial AD [115], as well as in Danish amyloid 
(ADan) and Aβ co-deposits in Familial Danish Dementia 
[114]. Recently, Aβ(4-X) was shown to be produced by 
ADAMTS4, a secreted metalloprotease that is exclusively 
expressed in oligodendrocytes [120]. Moreover, N-terminal 
Aβ truncation at position 4 was demonstrated to result in 
the formation of poorly soluble, aggregation-prone peptides 
with high amyloidogenic propensity and the potential of 
exacerbated fibrillary deposit formation [22]. A study using 

Fig. 6  a Association of Aβ, pGlu3-Aβ, Aβ(4-X), isoAsp7-Aβ, 
pSer8-Aβ and pGlu11-Aβ variants with amyloid plaques of com-
pact, coarse-grained, cored and diffuse morphologies as well as with 
cerebral vessels. The images on the top show labeling of Aβ. The 
quantifications below indicate a high abundance for most Aβ vari-
ants in all plaque types, in particular in AD and DLB. In blood ves-
sels, pSer8-Aβ and pGlu11-Aβ variants were particularly abundant 
in all clinical conditions, whereas pGlu3-Aβ and isoAsp7-Aβ were 
present in a smaller subset of patients in all clinical conditions. b 
Aggregation curves of time-dependent fibril formation of the Aβ 
variants. Note the instant fibril formation of pGlu3-Aβ(1–40). As 
compared to unmodified Aβ(1–40), the variants pGlu3-Aβ(1–40), 
isoAsp7-Aβ(1–40), pSer8-Aβ(1–40) and 3NTyr10-Aβ(1–40) showed 
shorter lag phases, indicating more rapid formation of β-sheet con-
taining aggregates. We did not observe significant fibril formation of 
Aβ(4–40), pSer26-Aβ(1–40) and isoAsp27-Aβ(1–40) variants.  tlag—
lag phase,  t1/2—half maximum ThT fluorescence intensity time. c 
Electron microscopic images of fibrils derived from the respective Aβ 
variants

◂
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a polyclonal Aβ(4-X) antibody confirmed the presence of 
Aβ(4-X) in amyloid plaques in two transgenic AD mouse 
models but also showed that Aβ(4-X) was present in human 
AD cases in blood vessels and in neuritic plaques but not in 
diffuse amyloid deposits [123]. These findings were further 
expanded by a study using another monoclonal antibody 
(clone 18H6) against Aβ(4-X). In this study, an association 
between Aβ(4-X) and cored plaques, CAA and also diffuse 
plaques was reported in human AD brain tissue, along with 
an enhanced brain retention of oligomeric Aβ(4-X) [94]. In 
our study, the polyclonal Aβ(4-X) antibody detected the Aβ 
variant in all plaque types as well as in vascular amyloid 
deposits which is in line with the initial characterization of 
this antibody [10] and a recent study using the monoclonal 
antibody 18H6 against Aβ(4-X) [125]. In our ThT assay and 
transmission electron microscopy, only little fibril formation 
was detected for Aβ(4–40), suggesting that the majority of 
Aβ(4-X) deposited in brain parenchyma and cerebral blood 
vessels is Aβ(4–42).

There are a number of reports in the literature that point 
to the presence of individual or multiple Aβ variants in 
brain tissue of one or more clinical conditions. For exam-
ple, Aβ, the pGlu3-Aβ and pSer8-Aβ variants were com-
pared side-by-side using immunohistochemical and Western 
blot analyses in control, Pre-AD and AD [89]. This allowed 
for a biochemical staging of Aβ deposition, where both 
Aβ PTMs were absent in stage 1 as the earliest preclinical 
stage, only pGlu3-Aβ was present in stage 2 and both modi-
fied Aβ variants were present in the last stage of Aβ aggre-
gation, stage 3 [89]. The higher abundance of pGlu3-Aβ 
compared to pSer8-Aβ in Pre-AD (median plaque load of 
1.5% for pGlu3-Aβ and 0.6% for pSer8-Aβ) and AD cases 
(median plaque load of 3.4% for pGlu3-Aβ and 1.0% for 
pSer8-Aβ) was also demonstrated in our study and was 
quantified in detail by automated immunohistochemical 
analysis and immunoassay methods. Another study analyzed 
the pGlu3-Aβ and pSer8-Aβ variants in cerebral amyloid 
angiopathy (CAA) and found a similar pattern of vascular 
amyloid stages with pGlu3-Aβ preceding pSer8-Aβ deposits 
in microvessels [36]. It should be noted that the appearance 
of Aβ coincides with widespread Tau pathology at later 
stages of AD and that there is Tau co-pathology of DLB 
[70, 106]. Although Tau pathology was not investigated in 
the present study, we would like to point out that Tau is 
an important mediator required for pGlu3-Aβ toxicity [77]. 
Moreover, pGlu3-Aβ load in AD predicted the hyperphos-
phorylated Tau load and was related to the severity of AD 

neuropathology and clinical dementia [65]. In addition, 
pGlu3-Aβ and isoAsp-Aβ displayed low immunoreactivity 
in non-demented controls and were significantly increased 
in AD [75].

Other studies focused on pSer8-Aβ and pGlu3-Aβ, indi-
vidually, in different clinical conditions and related animal 
models. For example pSer8-Aβ was identified in AD brain 
and reported to form neurotoxic oligomers that act as nuclei 
for Aβ fibril formation [55, 56]. In addition, pSer8-Aβ was 
found to be present in Down syndrome and transgenic mouse 
models with Aβ pathology [60] and in brains of non-human 
primates and canines [58]. However, the pSer8-Aβ variant 
was demonstrated to be exclusively associated with a subset 
of Aβ plaques and vascular deposits in familial and spo-
radic AD and to be absent or only detectable at very small 
amounts in control, DLB and VAD brains [7]. This accumu-
lation pattern of the phosphorylated Aβ variant pSer8-Aβ in 
Pre-AD, AD, DLB and VAD brain tissue was substantiated 
in our present study.

The presence of the pGlu3-Aβ variant in AD amyloid 
plaques was initially reported by the Saido and Roher groups 
[63, 97]. It was subsequently reported to be present in the 
brains of humans, non-human primates, canines and trans-
genic mice with amyloid pathology [30, 44, 71, 72, 122]. 
Because of its instant aggregation [104], high neurotoxic-
ity [2, 77], compromised degradation [95, 96] and seeding 
capacity [77, 101], pGlu3-Aβ emerged as a pharmacologic 
target for AD therapy. There are two strategies of interfering 
with pGlu3-Aβ, (i) prevention of its generation by inhibition 
of glutaminyl cyclase [46, 103] and (ii) specific targeting of 
existing pGlu3-Aβ by immunotherapy [24, 26, 27, 29, 31]. 
Recently, intravenous infusions with Donanemab (Kisunla) 
targeting pGlu3-Aβ have been approved by the U.S. Food 
and Drug Administration for early symptomatic AD treat-
ment [51].

As discussed above, in the course of AD, pGlu3-Aβ is 
present earlier than the pSer8-Aβ variant and its abundance 
is higher. In addition, compared to the other Aβ variants, 
pGlu3-Aβ displayed lower concentrations than isoAsp7-Aβ 
and Aβ(4-X) in brains from Pre-AD, AD, DLB and VAD 
cases. The related pGlu11-Aβ variant, on the other hand, has 
been studied less intensively, but was shown to be co-local-
ized with pGlu3-Aβ in amyloid plaques in AD brain tissue 
and to form the central plaque core [79, 111]. In addition, 
structural characteristics and neurotoxicity of pGlu11-Aβ 
were recently reported [98, 99]. We here observed that the 
pGlu11-Aβ variant only accounts for a small proportion of 
the Aβ plaque load in all clinical conditions investigated.

Another important aspect is that longer Aβ42 and Aβ43 
peptides are more directly linked to AD based on early 
pathology, familial AD mutations in presenilins, Down 
syndrome amyloid pathology and Aβ biomarkers than the 
shorter Aβ40 variants [16, 33, 73, 85]. This also holds true 

Fig. 7  Quantification of Aβ variants by immunoassays. Note that the 
Y-axes differ for the individual Aβ variants and for TBS, GdmCl and 
FA fractions. Differences between clinical groups are statistically sig-
nificant at *p < 0.05; **p < 0.01; ***p < 0.001. Medians are indicated 
by horizontal lines

◂
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for higher neurotoxicity and faster aggregation characteris-
tics of Aβ42 versus Aβ40 [48, 49, 81]. In the present study, 
pGlu3-Aβ(3–40), isoAsp7-Aβ(1–40), pGlu11-Aβ(11–40) 
and pSer8-Aβ(1–40) showed faster aggregation compared 
to unmodified Aβ(1–40). Thus, these PTMs could increase 
the pathogenicity of Aβ40 variants towards that of Aβ42.

Aβ variants not associated with amyloid plaques

In the present study, the Aβ variants 3NTyr10-Aβ, 
pSer26-Aβ and isoAsp27-Aβ were not detected in amyloid 
plaques and only the 3NTyr10-Aβ(1–40) variant was shown 
to form fibrils in aggregation experiments of Aβ(1–40) vari-
ants in vitro. Importantly, in the case of immunohistochemi-
cal labeling and immunoassay analyses, pre-analytical treat-
ments of brain tissue and samples may influence the final 
results and should be considered when comparing different 
results. However, it seemed striking that the plaque-associ-
ated Aβ variants investigated were post-translationally modi-
fied at the N-terminus of the Aβ peptide. Due to the high 
β-sheet content of aggregated Aβ in plaques [3], it might be 
difficult for monoclonal antibodies against pSer26-Aβ and 
isoAsp27-Aβ to bind to their epitopes, which might be steri-
cally inaccessible in the plaque-like formation.

For 3NTyr10-Aβ, the NOS2-catalyzed nitration was 
shown by using enzyme inhibitors and knock-out mice 
[61]. This Aβ variant was prone to fibril formation and was 
detected in the core of amyloid plaques in brains from AD 
patients and transgenic mice with amyloid pathology [61]. 
Since these initial data were obtained with a polyclonal 
antiserum, we developed a specific monoclonal antibody 
targeting this particular Aβ variant for the present study. 
While we could reproduce the biochemical characteristics 
of 3NTyr10-Aβ in the ThT and TEM assays (see Fig. 6b, 
c), we did not detect an association of 3NTyr10-Aβ with 
amyloid plaques in any of the clinical conditions (see 
Suppl. Figure 4). Instead, the monoclonal antibody showed 
an intraneuronal localization of 3NTyr10-Aβ. Discrepan-
cies in the staining pattern of the polyclonal antiserum and 
the monoclonal antibody might arise from impacts of Aβ 
conformation and secondary structure or different detection 

sensitivities of the antibodies as well as brain tissue storage 
conditions and pre-analytical sample preparations.

The pSer26-Aβ has recently been demonstrated to give 
rise to stable oligomeric assemblies with high neurotoxicity. 
Furthermore, the pSer26 modification has been shown to 
impair the fibrillation of the Aβ peptide [57, 88]. In a trans-
genic AD mouse model and in human AD brain, pSer26-Aβ 
was found to be localized particularly in intraneuronal 
deposits [57]. The lack of fibril formation of pSer26-Aβ (see 
Fig. 6) and its intraneuronal labeling was confirmed here in 
all types of dementia under investigation, especially in AD 
and DLB (see Suppl. Figure 4).

In addition to the previously described isoAsp7-Aβ vari-
ant (see above), we here also aimed at an analysis on the 
potential formation of isoAsp27-Aβ, for which we generated 
and characterized a monoclonal antibody (see Suppl. Fig-
ure 2). There are several reports in the literature showing 
that Asp isomerization may be a phenomenon associated 
with aging and neurodegeneration in general and in AD in 
particular [47, 74, 78, 93]. For this reason, antibodies raised 
against isoAsp-modified Aβ have been proposed as indica-
tors of the plaque age [28]. In general, isoAsp is formed at 
sites with Asn or Asp amino acid precursors, whereas the 
rate of isoAsp formation from Asn precursors is typically 
one-to-two orders of magnitude faster than from Asp [35, 
41]. Hence, it is tempting to speculate that isoAsp27-Aβ 
might be formed in addition to isoAsp7-Aβ. However, the 
formation and deposition of isoAsp27-Aβ appears negligible 
and to be restricted to intracellular compartments. A poten-
tial rationale for this observation might be the placement of 
Asn27 at the contact area of Aβ protofilaments to form fibrils 
[124]. A modification of this residue to isoAsp might prevent 
the formation of fibrils. Likewise, isoAsp27-Aβ(1–40) did 
not show fibril formation in our analysis.

Taken together, although not abundantly present in dif-
ferent types of dementia, the 3NTyr10-Aβ, pSer26-Aβ and 
isoAsp27-Aβ variants were detected in the soma of pyrami-
dal neurons. Hence, a potential influence on neuronal and 
synaptic dysfunction cannot be excluded, as previously sug-
gested for pSer26-Aβ [57].

It is quite obvious that substantial modifications to the 
majority of Aβ peptides are restricted to the N-terminal 
residues 1–8, as also suggested recently [76]. Cryo-EM 
and NMR data collectively suggest that these residues are 
not incorporated into fibrils and are therefore structurally 
flexible and accessible to enzyme catalysis or spontaneous 
isoAsp formation.

Association of Aβ variants with cerebral blood 
vessels

The pGlu3-Aβ and isoAsp7-Aβ variants were observed to be 
less frequently associated with cerebral microvessels than 

Fig. 8  a Subgroup analyses of the abundance of Aβ variants by 
APOE genotype in GdmCl fractions. Note the high quantity of Aβ 
in APOE 3/3 and APOE 3/4 carriers. b Pearson correlation analyses 
between the load for individual Aβ variants quantified by immuno-
assays in the GdmCl fractions and the neuropathological Braak Tau 
stages (column 1) and Thal amyloid phases (column 2). In addition, 
correlations between the abundance of Aβ variants and the MMSE 
scores (column 3) are presented. Pearson correlation was considered 
as moderate with correlation coefficients of 0.40 ≤ r < 0.70 (high-
lighted in light grey) and as strong with 0.70 ≤ r < 0.90 (highlighted in 
grey). The individual cases relate to the clinical condition as follows: 
black—Co; grey—Pre-AD; red—AD; blue—DLB; green – VAD

◂
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the other Aβ variants investigated in this study. However, 
both Aβ variants, as well as the pGlu11-Aβ, are not com-
pletely absent from blood vessels, a finding also reported 
recently for AD [109]. Vascular Aβ deposits are believed to 
contribute to blood–brain-barrier disruption and to account 
for amyloid-related imaging abnormalities (ARIAs), edema 
and hemorrhages, during the anti-Aβ immunotherapies [11, 
43, 50]. Thus, targeting Aβ variants less frequently present 
in blood vessels should be expected to reduce these adverse 
events. However, in the TRAILBLAZER trials using the 
antibody Donanemab to target the pGlu3-Aβ variant in 
patients, such events were not less frequent than in other 
clinical trials [43, 108].

Conclusions

Post-translationally modified Aβ peptides play an impor-
tant role in the initiation of aggregation processes that result 
in the formation of oligomeric/ fibrillary assemblies with 
high neurotoxicity. We hypothesized that different types of 
dementia are characterized by specific patterns of modi-
fied Aβ variants. Surprisingly, we did not identify such a 
disease-specific signature of post-translationally modified 
Aβ peptides but a rather consistent pattern of Aβ variants 
across different clinical entities. We discovered isoAsp7-Aβ 
as the most abundant Aβ variant, followed by Aβ(4-X) and 
pGlu3-Aβ, in all types of dementia assessed here. It remains 

an open question whether the most abundant Aβ variant is 
the best pharmacologic target. However, in preclinical stud-
ies, the efficacy of antibodies against isoAsp7-Aβ [38] and 
pGlu3-Aβ [27, 31] has already been demonstrated and the 
pGlu3-Aβ antibody Donanemab was recently approved 
for AD therapy. We believe that it is worth considering 
Donanemab treatment in other types of dementia and that 
isoAsp7-Aβ and Aβ(4-X) are additional targets for immu-
notherapy in different clinical conditions with an amyloid 
component.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 024- 02824-9.
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the Pearson correlation analyses. a Aβ variants quantified by immu-
noassays are depicted for the different clinical conditions. b For all 

correlations between the Aβ concentrations and Braak and Thal stag-
ing and MMSE score, the correlation coefficient r as a measure for 
the quality of the correlation is presented. Note that the typical cor-
relation pattern is not observed for pSer8-Aβ
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