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Abstract
Disulfidptosis is a newfound programmed cell death (PCD) mode characterized by disulfide stress. Nevertheless, the char-
acteristics and functional significance of disulfidptosis-related genes in head and neck squamous cell carcinoma (HNSCC) 
are still largely unknown. In this study, several computer-aided bioinformatic analyses were performed. The Nonnegative 
Matrix Factorization (NMF) method classified The Cancer Genome Atlas (TCGA) patients into two clusters according to 
the expression of disulfidptosis-related genes. The relative compositions of cells in the tumor microenvironment (TME), 
mutant landscape, lasso regression analysis, and predicted clinical outcome were performed by analyzing bulk RNA-
sequencing data. Besides, single-cell sequencing data (scRNA) was analyzed by Seurat, CopyKAT, and monocle2 to reveal 
the expression characteristics of disulfidptosis-related genes. Moreover, the spatial distribution characteristics of each 
cell subgroup in the section and the functional significance of cancer-associated fibroblasts (CAFs) were elucidated by 
STUtility, SpaCET, and SPATA2. Here, two clusters with different expression characteristics of disulfidptosis-related genes 
were identified. Cluster 1 (C1) patients had a worse prognosis and a higher proportion of stromal cells but lower effector T 
cell infiltration than cluster 2 (C2). A novel prognostic model was established and verified in our patient cohort. Addition-
ally, diploid and inflammatory CAFs (iCAFs) showed higher disulfidptosis-related gene expression levels. Furthermore, 
the CCNC and CHMP1B expressions significantly changed following CAFs differentiation. Disulfidptosis-related genes 
exhibited extensive and differential spatial expression on tissue sections. Collectively, our study may contribute to reveal-
ing the function of disulfidptosis, and improve the expansion of knowledge of crosstalk between cancer cells and CAFs.
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scRNA	� Single-cell sequencing
CAFs	� Cancer-associated fibroblasts
C1	� Cluster 1
C2	� Cluster 2
iCAFs	� Inflammatory cancer-associated fibroblasts
SLC7A11	� Solute carrier family seven-member 11
NADPH	� Nicotinamide adenine dinucleotide phosphate
CRISPR	� Clustered Regularly Interspaced Short Palindromic Repeats
TME	� Tumor microenvironment
CCNC	� Cyclin C
CHMP1B	� Charged Multivesicular Body Protein 1B
TPM	� The gene expression data
SNP	� Single nucleotide polymorphism
CNV	� Copy number variation
LASSO	� Least absolute shrinkage and selection operator
DEG	� Differentially expressed genes
ROC	� Receiver Operating Characteristic
TIDE	� Tumor Immune Dysfunction and Exclusion
UMAP	� Uniform Manifold Approximation and Projection
PCA	� Principal Component Analysis
SLC3A2	� Solute carrier family 3 (amino acid transporter heavy chain), member 2
SERPINE2	� Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2
AUC​	� Area Under Curve
GYS1	� Glycogen synthase 1
STAG3	� Stromal antigen 3
GSTO1	� Glutathione S Transferase Omega 1
myCAFs	� Myofibroblast cancer-associated fibroblasts
AKR1C1	� Aldo–keto reductase family 1 member C1
ACTC1	� Actin alpha cardiac muscle 1
CCL2	� Chemokine (C–C motif ) ligand 2

1  Introduction

Head and neck squamous cell carcinomas (HNSCC) account for 95% of head and neck cancers, the eighth most common 
malignancy, and cause over 310,000 annual deaths worldwide [1, 2]. Although the past few decades have witnessed 
tremendous progress in therapeutic strategies against cancer, the long-term survival of HNSCC patients remains poor 
due to the highly aggressive and heterogeneous nature of HNSCC [3]. The 5‐ year survival rate is still less than 50% [4]. 
Surgical is the primary means of radical treatment for early HNSCC patients. However, patients with advanced-stage 
HNSCC often experience tumoral recurrence and systematical metastasis and show poor prognosis. Immunotherapy has 
displayed satisfactory effects in some patients recently, but it usually does not trigger an adequate immune response [5, 
6]. It is urgent to clarify further the mechanism involved resistance of tumor cells to drugs and immunotherapy, as well 
as explore the new effective treatment target against HNSCC.

Programmed cell death (PCD) is essential for maintaining tissue homeostasis in multicellular organisms [7, 8]. Unlike 
mitosis, which promotes cell growth and proliferation, PCD eliminates damaged, mutated, or unnecessary cells, thereby 
ensuring the stability of the cell population [9]. By facilitating the removal of abnormal cells, PCD helps to prevent the 
accumulation of harmful mutations and maintain tissue integrity [10]. Thus, PCD plays a critical role in the normal devel-
opment and maintenance of healthy tissues. Previously, we generally believed that the imbalance of proto-oncogene 
and tumor suppressor genes of cells disturbed the normal regulation of proliferation and differentiation, leading to the 
production of tumor cells. However, it is gradually recognized that cancer development has a significant relationship 
with decreased cell death [11, 12]. The disorder of necroptosis, pyroptosis, and ferroptosis has been observed in the 
progression of HNSCC [13–15].
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Identifying specific signal pathways and developing drugs or non-coding RNA to induce tumor sensitivity to PCD 
have shown specific effects in some tumors [16, 17]. Cystine uptake mediated by solute carrier family seven-member 
11 (SLC7A11) inhibits ferroptosis but promotes cell death under glucose starvation [18, 19]. Recent studies have found 
that the abnormal accumulation of intracellular disulfides in SLC7A11high cells under glucose starvation can induce 
a new form of cell death, disulfidptosis [19]. The SLC7A11-mediated reduction of ingested cystine to cysteine is highly 
dependent on the reduced nicotinamide adenine dinucleotide phosphate (NADPH), which was mainly produced by the 
glucose-pentose phosphate pathway [19]. NADPH in SLC7A11high cells is quickly consumed under the con starvation, 
and disulfides such as cystine are abnormally accumulated, leading to disulfide stress and rapid cell death [19]. Chemi-
cal proteomics and cell biology analysis show that the abnormal disulfide bonds actin cytoskeletal protein and collapse 
of F-actin is a feature of this new death mode [19]. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 
screening and functional studies identify some disulfidptosis-related proteins [19]. However, the characteristics of these 
proteins still need to be discovered in HNSCC.

The application of computer-aided medicine is widely used in disease diagnosis, mechanism exploration, prognosis 
evaluation, and target exploration [20–22]. Computer-based bioinformatics technology has become an accurate and 
efficient tool for understanding various cancers [23]. Bulk-sequence data analysis can comprehensively summarize gene 
expression and prognostic characteristics, which are widely used to construct prognostic models and target investiga-
tion. However, gene expression characteristics usually depend on the dominant cell subgroup. single-cell sequencing 
data (scRNA) can accurately identify each cell subgroup, which is significant in judging cell heterogeneity and special 
gene differential expression. However, single-cell data lack the spatial expression characteristics of cells. The spatial 
transcriptome can reflect the spatial expression characteristics of cells to make up for this defect [24].

In this study, we conducted bioinformatics analyses using transcriptomic, scRNA, and spatial transcriptomic data to 
investigate the expression patterns and functional roles of disulfidptosis-related genes in HNSCC (Fig. 1). We stratified 
501 TCGA patients into two clusters based on the expression levels of 77 disulfidptosis-related genes. Cluster 1 (C1) 
patients exhibited worse prognoses, higher stromal component proportions, and lower levels of CD8 + T cell infiltration 
than those in Cluster 2 (C2). A prognostic model containing five risk-associated genes related to disulfidptosis was con-
ducted. Moreover, six cell groups in tumor microenvironment (TME) were identified, and a higher disulfidptosis-score 
in epithelial and fibroblast cells was observed. Cyclin C (CCNC) and Charged Multivesicular Body Protein 1B (CHMP1B) 
were identified as vital molecules in the differentiation of CAF cells. Furthermore, this study observed a significant co-
localization phenomenon among CAF, endothelium, and plasma cells. Our findings could improve our comprehension of 
the distinct and functional roles of disulfidptosis-related genes and discover novel therapeutic targets for treating HNSCC.

Fig. 1   The workflow and analytical pipeline of this study
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2 � Material and methods

2.1 � Data source

The gene expression data (TPM), single nucleotide polymorphism (SNP) mutation, and copy number variation data 
(CNV) were downloaded by using TCGAbiolinks. 501 samples were involved in downstream analysis. The single-cell 
transcriptome data for GSE139324, GSE173647, and GSE173964, and the space transcriptome sample were obtained 
from the Gene Expression Omnibus database (https://​www.​ncbi.​nlm.​nih.​gov/​geo).

2.2 � Acquisition of disulfidptosis‑related genes set

The disulfidptosis-related genes set was obtained from the recent study of Junjie Chen et al. through the whole-
genome CRISPR-Cas9 screening [19]. Here, 77 genes with an absolute value of NormZ score greater than 2.9 were 
identified as disulfidptosis-related genes (Table S1).

2.3 � TCGA sample clustering, dimension reduction, and survival analysis

The TCGA expression matrix was standardized using the log2 (x + 1) method, and the expression matrix contain-
ing only 77 disulfidptosis-related genes was extracted. The samples were classified using the R package “NMF”. The 
parameters rank = 2:7 and method = "brunet". According to the official recommendation of the “NMF” package, we 
set rank = 2 to classify patients into two clusters according to the change of the copheric parameter. R package “tin-
yarray” was used for dimensionality reduction and visualization. R package “Survival” was employed to analyze the 
difference in prognosis [25].

2.4 � TME analysis

CIBERSORT and ssGSEA algorithm of the “GSVA” package was performed to predict the relative proportion of immune 
cells infiltrated in TCGA samples. The “ESTIMATE” R package was employed to assess the stromal score, immune score, 
and tumor purity of the samples [26].

2.5 � SNP variation analysis of disulfidptosis‑related genes

R package “Maftools” was used to process TCGA-SNP mutation data and select the top 30 mutation rates genes [27].

2.6 � Protein interaction analysis of disulfidptosis‑related genes

Upload disulfidptosis-related genes to String database (http://​string.​embl.​de/). The minimum required interaction score 
was 0.150, and the genes that did not correlate with the corresponding proteins of other genes were deleted.

2.7 � Least absolute shrinkage and selection operator (LASSO) regression to build a prognosis model

R package “glmnet” was used to perform LASSO regression analysis on the expression matrix of disulfidptosis-related 
genes, carrying out ten cross-validations. Briefly, set family =  “cox”. The cv.glmnet function was used for cross-validation, 
and the minimum value of λ was taken for subsequent construction. Five differentially expressed genes (DEG) were 
selected. The prognostic model was constructed with risk-score value calculated by the following formula (Table S2): 
Risk score = ∑iCoefficient (DEG mRNAi) * Expression (DEG mRNAi). The median risk-score value serves as the threshold, 
distinguishing high- and low-risk groups according to the median risk score. R package “Survival” and “timeROC” were 
conducted to analyze prognosis and draw time-dependent Receiver Operating Characteristic (ROC) curves between high 

https://www.ncbi.nlm.nih.gov/geo
http://string.embl.de/
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and low-risk groups. TCGA patients were randomly divided into a training set and a testing set at a 1:1 ratio to examine 
the prognostic significance of the model.

2.8 � qRT‑PCR validation

A total of 52 HNSCC tissues were collected from Taizhou Central Hospital. According to the official guidance, total RNA 
was extracted with Trizol Reagent (Invitrogen). RNA was revers-transcribed into cDNA. qRT-PCR was conducted on SYBRH 
Select Master Mix (Invitrogen) with the relative expression of the five modeling genes and normalized by GAPDH. Data 
were quantified using the 2−ΔCt methods. High and low-risk groups were determined according to the median value of 
the risk score above. The primer was synthesized by Genepharma (Table S3). The research protocol was approved by 
the Ethics Committee of Taizhou Central Hospital (2020-KT01-E). All procedures were performed strictly in compliance 
with the Declaration of Helsinki 1964 or equivalent ethical principles. All patients involved in this study had given their 
informed consent before study.

2.9 � Prediction of response to immunotherapy and chemotherapy

We processed the TPM expression matrix of TCGA sample with log2 (x + 1), subtracted the expression amount of each 
gene in each sample from the mean value of the gene in all samples, and uploaded the matrix to the Tumor Immune 
Dysfunction and Exclusion (TIDE) database (http://​tide.​dfci.​harva​rd.​edu/) [28]. The predicted response to immunotherapy 
was obtained. The sensitivity to different drugs was predicted using “pRRophic”, and the difference in drug sensitivity 
between high and low-risk groups was compared [29].

2.10 � Quality control, cell type clustering, and identification of main cell types

Cells with higher than 20% mitochondrial gene content were removed, and 73,660 cells were obtained for downstream 
analysis. Here we randomly selected 1/5 cells for Uniform Manifold Approximation and Projection (UMAP) dimension-
ality reduction display and downstream analysis. To standardize and normalize the single-cell data, we employed the 
SCTransform function available in Seurat 4.2.0 [30]. To reduce the dimensionality of the data, we utilized the RunPCA 
function. The parameter dims = 1:30 was set to cluster the cells. The UMAP dimension reduction diagram was optimized 
using “plot1cell”. Six cell groups were identified according to the instructions of CellTypist database (https://​www.​cellt​
ypist.​org/).

2.11 � Scissor

The phenotype of single cell can be deduced from the phenotype of bulk sequencing data: Use Scissor to predict the 
classification or risk grouping of each cell in a single cell according to the results of NMF sample classification and the 
results of high and low-risk groups predicted by our prognosis model, and set the parameter family = "binary". The input 
bulk sequencing data uses the original TPM expression matrix.

2.12 � Disulfidptosis‑score

The AddModuleScore function implemented in Seurat software was utilized to quantify the expression of disulfidptosis-
related genes and to assess the relative expression levels of these genes across distinct cellular populations or subgroups.

2.13 � Identification of cancer cells

The epithelial cells were extracted. The SCTransform function in Seurat was used to standardize and normalize the single-
cell data. The RunPCA function was employed to reduce the dimension of the data. The parameter dims = 1:30 was set 
to cluster the data. R package “CopyKAT” was used to predict the malignant and normal cells in the epithelial cells [31].

http://tide.dfci.harvard.edu/
https://www.celltypist.org/
https://www.celltypist.org/
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2.14 � Trajectory analysis

Fibroblast cells were extracted and further clustering. After identifying the cell subgroups according to the differ-
entially expressed genes, the development trajectory of cells was predicted using “monocle2”. The highly variable 
genes selected by “monocle2” were used to represent the developmental characteristics of cells [32].

2.15 � Space transcriptome analysis

“STUtility” was used to integrate the space transcriptome data. Min.gene.count = 100 and min.spot.count = 500 was 
set to filter the data. The FeatureOverlay function was used to explore the expression level and location of the sec-
tions [33]. SpaCET was further used to control the data quality [34], and the SpaCET.deconvolution function was 
applied to explore the relative proportion of cells in each spot. The parameter cancerType = "HNSCC" was set, and 
SpaCET.visualize.spatialFeature function was used to visualize the inferred results. To explore the co-localization effect 
between cells, SpaCET.CCI.Colocalization function was employed to calculate the correlation between cells. We use 
SPATA2 to standardize and extract the gene expression amount in the space transcriptome for the space trajectory 
vector field. The AddModuleScore function scores the disulfidptosis-related gene set of each spot as the input data 
to represent the gene expression or the changing trend of the gene set score in the local section [35].

2.16 � Statistics

Statistical data were analyzed using R. P < 0.05 was suggested as statistically significant. *P < 0.05, ** P < 0.01, *** 
P < 0.001 and **** P < 0.0001.

3 � Results

3.1 � Classification of patients according to the disulfidptosis‑related genes

In this study, the NMF method was applied to classify a cohort of 501 samples of HNSCC (TCGA-HNSCC) based on the 
gene expression levels of 77 disulfidptosis-related genes (Table S1). Two patient clusters were identified (Fig. 2A, Fig. 
S1). We generated a heat map to visually represent the differences in gene expression between two distinct clusters 
(Fig. 2B). UMAP and Principal Component Analysis (PCA) dimensionality reduction analysis showed that patients in the 
two groups could be well distinguished (Fig. 2C, Fig. S2A). Besides, C1 patients showed unfavorable overall survival 
(Fig. 2D). ESTIMATE algorithm was performed, and the results showed that the stromal score of C1 was significantly 
higher than C2. The immune score of C1 was slightly lower than that of C2, but there was no statistical significance 
(Fig. 2E, Fig. S2B). We further evaluated the differences in immune cell infiltration between two clusters through 
CIBERSORT and ssGSEA. The results of CIRBERSORT showed that several crucial immune cell infiltration of C1 was 
significantly lower than C2, including CD8 + T cells. However, M2 macrophages of C1 were significantly higher than 
C2 (Fig. 2F, Fig. S2C). ssGSEA showed similar results, with a higher proportion of regulatory T cells but low infiltration 
level of CD8 + T cells in C1 than in C2 (Fig. S2D).

3.2 � Genetic mutation landscape of disulfidptosis‑related genes

The top 30 disulfidptosis-related genes with the highest SNP mutation rate in all samples between the two types were 
calculated in Fig. 3A. CNV mutation analysis was also performed. The findings of our study revealed that CNVs were 
observed in genes associated with disulfidptosis. Specifically, solute carrier family 3 (amino acid transporter heavy 
chain), member 2 (SLC3A2) showed a significant association with the copy number amplification, while serpin pepti-
dase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2 (SERPINE2) exhibited the highest 
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frequency of CNV deletions, as depicted in Fig. 3B. The chromosomal distribution and mutations of disulfidptosis-
related genes were also demonstrated in Fig. S3A. Moreover, common crosstalk among disulfidptosis-related genes 
was observed by String (Fig. S3B).

Fig.2   Patients were divided 
into two clusters A NMF was 
performed, and 501 TCGA-
HNSCC patients were divided 
into two groups accord-
ing to the expression of 77 
disulfidptosis-related genes. 
B A heat map showed the dif-
ferential expression of some 
disulfidptosis-related genes 
between C1 and C2. C UMAP 
dimension reduction diagram. 
D Kaplan–Meier plots showed 
C1 associated with poor 
prognosis. E ESTIMATE results. 
F CIBERSORT results showed 
different immune cell infiltra-
tions between C1 and C2
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3.3 � Establish a disulfidptosis‑related prognostic model

Lasso regression analysis was utilized to select features and reduce the number of disulfidptosis-related genes in the 
risk model. Through optimization of the regularization parameter lambda, a total of five significant disulfidptosis-related 
genes were identified and subsequently incorporated into the final risk model (Fig. 4A, Table S2). TCGA patients were 
used to validate the prognostic significance of the model. The high-risk group exhibited a more unfavorable prognosis 
than the low-risk group in the train cohort and test cohort. The same pattern was also observed when combined with 
train cohort and test cohorts (Fig. 4B). The ROC curve of overall cohort suggested that risk score may be a valuable tool in 
HNSCC prognosis prediction (Fig. 4C). Besides, the number of dead patients increases following the elevation of risk score 
(Fig. 4D). Figure 4E showed the expression level of 5 modeling genes in high and low-risk groups. We further included 
52 clinical patients in the validation of the model. As expected, high-risk patients showed poorer prognoses (Fig. 4F).

Fig.3   Mutation of disulfidptosis-related risk genes A Comparison of the top 30 disulfidptosis-related genes with the highest SNP mutation 
rate between two clusters. B Deletion and acquisition of disulfidptosis-related genes
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3.4 � Evaluation of sensitivity to immunotherapy & chemotherapy

TIDE was used to predict the response to high/low-risk group patient immunotherapy. The results showed that the 
high-risk group exhibited a higher possibility of immune escape but a worse response to immunotherapy (Fig. 5). 
PRRophitic was used to predict the sensitivity of different drugs. Fig. S4A showed the more sensitive drugs in the 

Fig.4   A disulfidptosis-related 
prognostic model A Lasso 
regression was performed, 
and five risk disulfidptosis-
related genes were selected 
(GYS1, STAG3, CHMP1B, 
GSTO1, and CCNC). B Kaplan–
Meier plots showed prognosis 
differences in train, test, and 
overall cohorts. C The ROC 
curve of the overall cohort. 
D Distribution of patients’ 
survival status. E A heat map 
showed the expression level 
of 5 modeling genes. F Verifi-
cation of risk model. The rep-
resentative HNSCC slice; left, 
200 X magnification; right, 400 
X magnification. AUC, Area 
Under Curve. GYS1, glycogen 
synthase 1; STAG3, stromal 
antigen 3; GSTO1, Glutathione 
S Transferase Omega 1
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high-risk group, while Fig. S4B showed the more sensitive drugs in the low-risk group. However, the sensitivity of 
patients in the high-risk and low-risk groups to paclitaxel and cisplatin did not show statistically significant differ-
ences (P > 0.05).

3.5 � scRNA profiling of disulfidptosis‑related genes

UMAP and plot1cell were used to visualize the annotated clusters, and six-cell groups were obtained. Epithelial, fibro-
blasts, and T/NK cells constituted the main components of TME (Fig. 6A). The markers of cell group annotation were shown 
in Fig. 6B. We first analyze the distribution characteristics of two clusters of patients by combining them with bulk and 
scRNA data. A higher infiltration of B cells and T/NK cells in C2 patients was observed. Besides, a significantly different 
distribution of myeloid cells, epithelial cells, and fibroblasts between C1 and C2 was also observed. Heterogeneous T/NK 
cells and fibroblasts had a significant impact on the prognosis of patients. In contrast, the existence of the B cell group 
seemed to be related to the favorable prognosis (Fig. 6C). To further quantify the expression levels of disulfidptosis-related 
genes, the disulfidptosis-score was calculated. The results showed that the scores of epithelial and fibroblast groups were 
significantly higher than those for other groups (Fig. 6D, E). The cells with the highest gene expression set in the first 25% 
were defined as high expression, and the others were defined as low expression. High expression levels were observed 
mainly in the epithelial and fibroblast groups (Fig. 6F).

Epithelial cells were extracted and classified into two subgroups by using CopyKAT (Fig. 7A). Normal epithelial cell 
group (diploid) showed a higher expression level of disulfidptosis-related genes, and its disulfidptosis-score was higher 
than cancer cells (aneuploid) (Fig. 7B, C). We then further determine the expression feature of disulfidptosis-related genes 
in fibroblast cells. Five CAF subgroups were identified (2 myofibroblast CAFs, two iCAFs, and smooth-muscle cells, Fig. 7D). 
Six genes were typically expressed in particular cell subtypes. For instance, aldo–keto reductase family 1 member C1 
(AKR1C1) was found to be enriched in myofibroblast CAFs (myCAF) 1. In contrast, actin alpha cardiac muscle 1 (ACTC1) 
was increased in smooth muscle cells (Fig. 7E). High expression level was mainly observed in the iCAF subgroup, follow-
ing the myCAFs, while the disulfidptosis-score of smooth-muscle cells was lowest (Fig. 7F, G).

3.6 � The trajectory analysis revealed that CAF‑differentiation regulators

The CAF cells were extracted, and conducted trajectory analysis. The pseudo time was performed, and three states of the 
fate trajectory of relatedness in their expression patterns were identified (Fig. 8A). Interestingly, among the five modeling 
genes, the CCNC and CHMP1B expression was determined to change following CAF differentiation significantly (Fig. 8B).

3.7 � Spatial distribution characteristics of disulfidptosis‑related genes

The spatial transcriptome analysis was further performed. CCNC and CHMP1B had high expression levels and spatial 
differences among sections (Fig. 8C). We further clarified the distribution characteristics of each cell subgroup in the 
selected section. There were few stromal cells and immune cells in the area where malignant cells are concentrated. 
However, a significant co-localization phenomenon was observed among CAF, endothelium, and plasma cells (Fig. 9A, B). 

Fig.5   Comparison of Immunotherapy Response Between Two Groups Based on TIDE Results. A Higher score on the vertical axis of TIDE 
indicates an increased probability of immune escape. The results show that the high-risk group has a greater probability of immune escape
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Fig.6   Single-cell RNA-seq 
analysis A UMAP for dimen-
sionality reduction. Six groups 
were identified. B Primary 
markers of each cell group. 
C The results of the Scissors. 
D The box chart showed the 
disulfidptosis-score of six 
groups (analysis of vari-
ance, P < 0.0001). E, F Visual 
disulfidptosis-related genes 
expression in UMAP dimen-
sionality reduction map
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Fig.7   The expression char-
acteristics of disulfidptosis-
related genes in epithelial 
and fibroblast A UMAP for 
dimensionality reduction. Two 
epithelial subgroups were 
identified. B Difference of 
disulfidptosis-score between 
two subgroups. C A heat-
map showed the differential 
expression of disulfidptosis-
related genes. D Fibroblasts 
were clustered into five 
subgroups. E Six unique 
markers of 5 subgroups were 
identified. F, G The disulfidp-
tosis-related gene expres-
sion difference between 5 
fibroblast subgroups (analysis 
of variance, P < 0.0001)
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Fig. 8   Trajectory analysis of CAF cells A Pseudotime analysis. A.1 showed three stages in the CAF cell differentiation process. A.2 showed the 
position of 5 subgroups of CAF cells. A.3 showed the time sequence. Black represented the first position. B Expression of CCNC/CHMP1B in 
CAF cell differentiation. C The expression of CCNC and CHMP1B in tissue section
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Fig.9   The spatial transcriptome A The spatial localization characteristic of multiple cell subgroups. B, C The characteristic cell reference pro-
files. D The results of spatial locus vector field. The arrow represents the gradient of expression level, and the direction of the arrow indicat-
ing higher expression level
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Figure 9C showed the characteristic cell references profiles, such as CAF-endothelial, CAF-plasma, and endothelial-
plasma. Figure 9D showed the spatial locus vector field, indicating that the expression of disulfidptosis-related genes 
had significant spatial specificity.

4 � Discussion

HNSCC has become a global health concern due to its high invasiveness and prone to lymph node metastasis [36]. The treat-
ment needs to be improved for patients with advanced-stage, recurrent or metastatic HNSCC. Further understanding of tumor 
progression, anti-cell death, and therapeutic resistance, as well as pursuing new effective molecular targets, are critical to 
improving the prognosis of HNSCC. A significant characteristic of tumor cells is that cell death disorder under the condition of 
high proliferation [37]. Identifying cell death mechanisms could widen our understanding of cellular homeostasis and provide 
novel insights into cancer treatment. Disulfidptosis is a newly discovered form of cell death characterized by the abnormal 
disulfide cross-linking of actin cytoskeletal protein [19]. Although this study identified a series of disulfidptosis-related genes, 
the expression characteristics and functions in HNSCC are still unclear. Here, the NMF method was used to classify TCGA-HNSCC 
patients based on the expression of 77 disulfidptosis-related genes, and 2 clusters were identified. C1 patients showed worse 
prognosis and higher stromal component but lowered CD8 + T cell infiltration than C2. Common crosstalk among disulfidptosis-
related genes was demonstrated. Besides, LASSO regression analysis was conducted, and a useful prognostic model containing 
only five risk disulfidptosis-related genes was established. High risk-group showed an unfavorable prognosis and a higher 
possibility of immune escape but a worse response to immunotherapy. In addition, the high-risk group was determined to be 
sensitive to more chemotherapy drugs. Compared with previous LASSO prognostic models, our model incorporates fewer risk 
genes, enhancing its potential for clinical practicality. Although its AUC value is slightly lower than previous studies [38, 39], it 
achieves satisfactory predictive accuracy with a streamlined gene set. This balance between model simplicity and effectiveness 
suggests that our model may serve as a valuable tool in clinical prognostic assessments.

Previous studies on cell heterogeneity usually rely on bulk data, immunohistochemistry, flow cytometry, etc. The 
development of scRNA technology and computer-aided analysis has robustly improved the accuracy and conveni-
ence of cell heterogeneity research. Because the traditional bulk analysis can only provide the average value of gene 
expression, mainly reflecting the phenotypic subset of dominant cellular groups [40]. Three scRNA data were included 
in this study. Six cell groups were identified. We set an indicator named disulfidptosis-score to evaluate the expres-
sion characteristic of 77 disulfidptosis-related genes. Epithelial and fibroblast cells had higher disulfidptosis-related 
gene expression than other groups. Moreover, two epithelial cell subgroups were identified by extracting epithelial 
cells and further clustering; the normal epithelial cell group (diploid) exhibited a higher expression of disulfidptosis-
related genes. These results may indicate that several disulfidptosis-related genes were reticent in cancer cells, thus 
escaping disulfidptosis and maintaining cell survival. Furthermore, five CAF cell subpopulations were obtained by 
extracting fibroblasts and clustering. iCAF subgroup showed a higher disulfidptosis-score, followed by myCAF. Fur-
thermore, the expression of six genes was found to be associated with specific subtypes of CAFs. Chemokine (C–C 
motif ) ligand 2 (CCL2) could indicate iCAFs, and ACTC1 may be a marker of smooth muscle cells.

Metabolic reprogramming commonly arises in TME [41, 42]. TME alterations and tumor metabolism are closely linked 
through a bidirectional signal pathway involving tumor cells and CAFs [43]. CAFs represent the predominant stromal cell 
type in TME and exhibit significant heterogeneity and plasticity [44]. Emerging evidence indicates that CAF significantly 
influences tumor metabolism by dysregulating various metabolic pathways, including glucose metabolism [45] CAFs 
tend to produce lactic acid by glycolysis, even under aerobic conditions [46]. Metabolites such as lactic acid can provide 
sufficient nutrition for tumor cells. However, effector T cells can not play an anti-tumor role in an environment of high 
lactic acid [47]. Lactic acid has been proven to be closely related to the poor prognosis of various tumors [48, 49]. This also 
explains that the C1 group showed a high stromal score, while the infiltration of CD8 + T cells was significantly reduced.

Besides, the carbon use mode of proliferating cells is largely different from that of static cells. In cell proliferation, 
the main purpose of reducing carbon is to synthesize various biological molecules [50]. In addition, many biosyn-
thetic reactions are reduction reactions in nature, and the proliferating cells must allocate some carbon substrates 
for NADPH production [51]. Tumor cells in a proliferative state have low demand for ATP and can obtain energy from 
lactic acid metabolism [52]. It is believed that tumor cells use glucose metabolism for NADPH production, maintain 
a highly proliferative state and inhibit disulfidptosis. The interaction between cancer cells and CAFs involves cross-
talk that alters the metabolic pathways of cancer cells, specifically promoting the reprogramming of glycolysis. This 
metabolic adaptation enhances cancer cell survival and proliferation, potentially contributing to the aggressiveness 
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and progression of cancer. Targeted CAF has become a feasible treatment strategy for increasing the response to 
immunotherapy, chemotherapy, and radiotherapy.

Through trajectory analysis, two potential targeted proteins against CAFs were identified. CCNC is a member of the 
cyclin family of proteins, which interacts with cyclin-dependent kinase eight and induces phosphorylation of the carboxy-
terminal domain of the large subunit of RNA polymerase II [53]. Overexpression of CCNC in tumor and tumor-adjacent 
tissues compared with that in normal tissues was observed and infer serve as promising targets for managing breast 
cancer [54]. Some studies indicate that CCNC could be a response to chemosensitivity in gastric cancer [55]. CHMP1B 
belongs to the chromatin-modifying protein/charged multivesicular body protein (CHMP) family, which is related to 
protein domain-specific binding [56]. CHMP1B has been proven to be related to esophageal squamous cell carcinoma 
and colorectal cancer [57, 58]. The spatial transcriptome analysis was conducted to offset the loss of spatial information 
of scRNA. CCNC and CHMP1B had high expression levels and spatial differences among sections. Furthermore, a signifi-
cant co-localization phenomenon was observed among CAF, endothelium, and plasma cells. Cadamuro et al. proved 
that fibroblasts promote the expansion of the lymphatic vasculature and tumor cell intravasation. This critical process 
could be blocked by inducing CAF apoptosis [59]. Targeted CAF has become a feasible treatment strategy for increasing 
the effectiveness of clinical treatment.

Although this study has comprehensively clarified the expression characteristics and functions of disulfidptosis-related 
genes in HNSCC, some limitations still exist. This study mainly relies on computer-aided analysis, and the limited sample 
size introduces potential biases in clustering and risks of overfitting in LASSO regression models. Besides, our model has 
a slightly lower AUC value, necessitating extensive validation across large sample sizes to determine its clinical appli-
cability. Moreover, additional in vitro and in vivo experiments are required to clarify the biological function of specific 
disulfidptosis-related proteins. The spatial locus vector field analysis suggested that disulfidptosis-related genes have 
significant spatial specificity. Given that computer-aided results cannot fully capture the complexities of the TME, further 
investigations into effect of disulfidptosis by crosstalk between cancer cells and TME are needed.

Collectively, a new PCD mode characterized by the abnormal disulfide bonds actin cytoskeletal protein and collapse 
of F-actin was defined, and its related genes have recently been identified. Based on transcriptome, scRNA, and spatial 
transcriptome data, our study has comprehensively revealed the expression characteristics and functions of disulfidp-
tosis-related genes in HNSCC using a series of computer-assisted bioinformatics analyses. A useful prognostic model 
was successfully constructed and verified in our patient cohort; high-risk patients showed poor prognosis and worse 
response to immunotherapy but sensitivity to more chemotherapy drugs. In addition, the results of scRNA suggested 
that disulfidptosis-related genes were highly expressed in epithelial and fibroblasts. Among them, the expression of 
normal epithelial cells was higher than cancer cells, and the expression of iCAF group was higher than that of myCAF and 
smooth muscle cells. The spatial transcriptome analysis comprehensively showed the interaction between tumor cells 
and TME and the spatial distribution characteristics of disulfidptosis-related genes. The results showed that CAFs might 
participate in metabolic reprogramming, inhibit disulfidptosis, restrain immunity, and promote angiogenesis. CCNC and 
CHMP1B were identified as potential regulatory genes for CAF differentiation. Our study focuses on disulfidptosis, a novel 
PCD mode, and preliminarily reveals the role and mechanism of disulfidptosis-related genes in HNSCC.

Acknowledgements  The authors thank the contributions from the TCGA and GEO network.

Author contributions  Conceptualization, Chifeng Zhao, Haoran Zhu and Zhenxing Zhang; Formal analysis, Chifeng Zhao, Haiqian Zhu, Xuhui 
Xu and Conglin Hu; Funding acquisition, Zhenxing Zhang; Project administration, Haiqian Zhu and Zhenxing Zhang; Supervision, Zhenxing 
Zhang; Writing—original draft, Chifeng Zhao, Haoran Zhu and Haiqian Zhu; Writing—review and editing, Haiqian Zhu and Zhenxing Zhang.

Funding  This study was supported by the Taizhou Social Development Science and Technology Project (No.23ywa20).

Data availability  The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can 
be directed to the corresponding author.

Code availability  R software was used in this study. The relevant R package was explained in the Materials and Methods.

Declarations 

Ethics approval and consent to participate  The research protocol was approved by the Ethics Committee of Taizhou Central Hospital (2020-KT01-
E). All procedures were performed strictly in compliance with the Declaration of Helsinki 1964 or equivalent ethical principles. All patients 
involved in this study had given their informed consent before study.

Consent for publication  All authors approved the final manuscript and the submission to this journal.



Vol.:(0123456789)

Discover Oncology          (2024) 15:739  | https://doi.org/10.1007/s12672-024-01629-2	 Research

Competing interests  The authors declare no competing interests.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which 
permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to 
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You 
do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party 
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If 
material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

References

	 1.	 Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 
2019;16(11):669–83.

	 2.	 Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 
2020;6(1):92.

	 3.	 Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269–82.
	 4.	 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortal-

ity worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
	 5.	 Cohen EEW, Bell RB, Bifulco CB, Burtness B, Gillison ML, Harrington KJ, et al. The Society for Immunotherapy of Cancer consensus statement 

on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer. 2019;7(1):184.
	 6.	 Diao P, Jiang Y, Li Y, Wu X, Li J, Zhou C, et al. Immune landscape and subtypes in primary resectable oral squamous cell carcinoma: prog-

nostic significance and predictive of therapeutic response. J Immunother Cancer. 2021;9(6): e002434.
	 7.	 Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28(7):2029–44.
	 8.	 Gibellini L, Moro L. Programmed cell death in health and disease. Cells. 2021;10(7):1765.
	 9.	 Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y. Programmed cell death tunes tumor immunity. Front Immunol. 2022;13: 847345.
	10.	 Strasser A, Vaux DL. Cell death in the origin and treatment of cancer. Mol Cell. 2020;78(6):1045–54.
	11.	 Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct 

Target Ther. 2022;7(1):286.
	12.	 Messmer MN, Snyder AG, Oberst A. Comparing the effects of different cell death programs in tumor progression and immunotherapy. 

Cell Death Differ. 2019;26(1):115–29.
	13.	 Li J, Huang S, Zeng L, Li K, Yang L, Gao S, et al. Necroptosis in head and neck squamous cell carcinoma: characterization of clinicopatho-

logical relevance and in vitro cell model. Cell Death Dis. 2020;11(5):391.
	14.	 Rioja-Blanco E, Arroyo-Solera I, Álamo P, Casanova I, Gallardo A, Unzueta U, et al. CXCR4-targeted nanotoxins induce GSDME-dependent 

pyroptosis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2022;41(1):49.
	15.	 Zhao YY, Lian JX, Lan Z, Zou KL, Wang WM, Yu GT. Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure 

in HNSCC. Oral Dis. 2021;29:14077.
	16.	 Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31(51): e1904197.
	17.	 Zhang Z, Zhu H, Zhao C, Liu D, Luo J, Ying Y, et al. DDIT4 promotes malignancy of head and neck squamous cell carcinoma. Mol Carcinog. 

2023;62(3):332–47.
	18.	 Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein 

Cell. 2021;12(8):599–620.
	19.	 Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 

2023. https://​doi.​org/​10.​1038/​s41556-​023-​01091-2.
	20.	 Zhang Z, Zhu H, Wang X, Lin S, Ruan C, Wang Q. A novel basement membrane-related gene signature for prognosis of lung adenocarci-

nomas. Comput Biol Med. 2023;154: 106597.
	21.	 Zhou J, Zhang B, Zhang X, Wang C, Xu Y. Identification of a 3-miRNA signature associated with the prediction of prognosis in nasopharyn-

geal carcinoma. Front Oncol. 2022;27(11): 823603.
	22.	 Yan S, Wang W, Zhu B, Pan X, Wu X, Tao W. Construction of nomograms for predicting pathological complete response and tumor shrink-

age size in breast cancer. Cancer Manag Res. 2020;10(12):8313–23.
	23.	 Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment 

selection. Genome Med. 2021;13(1):152.
	24.	 Li X, Wang CY. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021;13(1):36.
	25.	 Li Y, Feng Y, Luo F, Peng G, Li Y. Positive regulators of T cell functions as predictors of prognosis and microenvironment characteristics of 

low-grade gliomas. Front Immunol. 2023;13:1089792.
	26.	 Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small 

cell lung cancer. Nat Commun. 2018;9(1):5361.
	27.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome 

Res. 2018;28(11):1747–56.
	28.	 Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat 

Med. 2018;24(10):1550–8.
	29.	 Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression 

levels. PLoS ONE. 2014;9(9): e107468.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1038/s41556-023-01091-2


Vol:.(1234567890)

Research	 Discover Oncology          (2024) 15:739  | https://doi.org/10.1007/s12672-024-01629-2

	30.	 Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, 
and species. Nat Biotechnol. 2018;36(5):411–20.

	31.	 Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy number and clonal substructure in human tumors from single-
cell transcriptomes. Nat Biotechnol. 2021;39(5):599–608.

	32.	 Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, et al. Single-cell analysis reveals new evolutionary 
complexity in uveal melanoma. Nat Commun. 2020;11(1):496.

	33.	 Bergenstråhle J, Larsson L, Lundeberg J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC 
Genomics. 2020;21(1):482.

	34.	 Ru B, Huang J, Zhang Y, Aldape K, Jiang P. Estimation of cell lineages in tumors from spatial transcriptomics data. Nat Commun. 
2023;2(14):568.

	35.	 Ravi VM, Will P, Kueckelhaus J, Sun N, Joseph K, Salié H, et al. Spatially resolved multi-omics deciphers bidirectional tumor-host interde-
pendence in glioblastoma. Cancer Cell. 2022;40(6):639–55.

	36.	 Khan W, Haragannavar VC, Rao RS, Prasad K, Sowmya SV, Augustine D, et al. P-Cadherin and WNT5A expression in assessment of lymph 
node metastasis in oral squamous cell carcinoma. Clin Oral Investig. 2022;26(1):259–73.

	37.	 Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368(6487):5473.
	38.	 Li Y, Tao L, Xin J, Dai Y, Chen X, Zou J, et al. Development and experimental verification of a prognosis model for disulfidptosis-associated 

genes in HNSCC. Medicine (Baltimore). 2024;103(12): e37308.
	39.	 Xue H, Sun Q, Zhang H, Huang H, Xue H. Disulfidptosis features and prognosis in head and neck squamous cell carcinoma patients: 

unveiling and validating the prognostic signature across cohorts. J Cancer Res Clin Oncol. 2024;150(3):156.
	40.	 Kanzaki R, Pietras K. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine. Cancer Sci. 2020;111(8):2708–17.
	41.	 Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 

2021;11(17):8322–36.
	42.	 Becker LM, O’Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, et al. epigenetic reprogramming of cancer-associated fibroblasts deregulates 

glucose metabolism and facilitates progression of breast cancer. Cell Rep. 2020;31(9): 107701.
	43.	 Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-

associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86.
	44.	 Desbois M, Wang Y. Cancer-associated fibroblasts: key players in shaping the tumor immune microenvironment. Immunol Rev. 

2021;302(1):241–58.
	45.	 Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, et al. Cancer cells metabolically “fertilize” the tumor 

microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle. 
2011;10(15):2504–20.

	46.	 Pereira BA, Vennin C, Papanicolaou M, Chambers CR, Herrmann D, Morton JP, et al. CAF subpopulations: a new reservoir of stromal targets 
in pancreatic cancer. Trends Cancer. 2019;5(11):724–41.

	47.	 Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by 
indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619–21.

	48.	 Niu D, Luo T, Wang H, Xia Y, Xie Z. Lactic acid in tumor invasion. Clin Chim Acta. 2021;522:61–9.
	49.	 Zhang Z, Hu Y, Chen Y, Chen Z, Zhu Y, Chen M, et al. Immunometabolism in the tumor microenvironment and its related research progress. 

Front Oncol. 2022;12:1024789.
	50.	 Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669–80.
	51.	 Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 

2022;21(2):141–62.
	52.	 Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between metabolism and cancer biology. Cell. 2017;168(4):657–69.
	53.	 Song Z, Xiaoli AM, Li Y, Siqin G, Wu T, Strich R, et al. The conserved Mediator subunit cyclin C (CCNC) is required for brown adipocyte 

development and lipid accumulation. Mol Metab. 2022;64: 101548.
	54.	 Broude EV, Győrffy B, Chumanevich AA, Chen M, McDermott MS, Shtutman M, et al. Expression of CDK8 and CDK8-interacting genes as 

potential biomarkers in breast cancer. Curr Cancer Drug Targets. 2015;15(8):739–49.
	55.	 Fang S, Jin X, Zhou C, Gong Z. Cyclin C: anew responser for chemosensitivity in cancer. Clin Transl Med. 2022;12(4): e833.
	56.	 Crespo-Yàñez X, Aguilar-Gurrieri C, Jacomin AC, Journet A, Mortier M, Taillebourg E, et al. CHMP1B is a target of USP8/UBPY regulated by 

ubiquitin during endocytosis. PLoS Genet. 2018;14(6): e1007456.
	57.	 Wang M, An S, Wang D, Ji H, Geng M, Guo X, et al. Quantitative proteomics identify the possible tumor suppressive role of protease-

activated receptor-4 in esophageal squamous cell carcinoma cells. Pathol Oncol Res. 2019;25(3):937–43.
	58.	 Ma L, Yu H, Zhu Y, Xu K, Zhao A, Ding L, et al. Isolation and proteomic profiling of urinary exosomes from patients with colorectal cancer. 

Proteome Sci. 2023;21(1):3.
	59.	 Cadamuro M, Brivio S, Mertens J, Vismara M, Moncsek A, Milani C, et al. Platelet-derived growth factor-D enables liver myofibroblasts to 

promote tumor lymphangiogenesis in cholangiocarcinoma. J Hepatol. 2019;70(4):700–9.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	The characteristics and functional significance of disulfidptosis-related genes in head and neck squamous cell carcinoma
	Abstract
	1 Introduction
	2 Material and methods
	2.1 Data source
	2.2 Acquisition of disulfidptosis-related genes set
	2.3 TCGA sample clustering, dimension reduction, and survival analysis
	2.4 TME analysis
	2.5 SNP variation analysis of disulfidptosis-related genes
	2.6 Protein interaction analysis of disulfidptosis-related genes
	2.7 Least absolute shrinkage and selection operator (LASSO) regression to build a prognosis model
	2.8 qRT-PCR validation
	2.9 Prediction of response to immunotherapy and chemotherapy
	2.10 Quality control, cell type clustering, and identification of main cell types
	2.11 Scissor
	2.12 Disulfidptosis-score
	2.13 Identification of cancer cells
	2.14 Trajectory analysis
	2.15 Space transcriptome analysis
	2.16 Statistics

	3 Results
	3.1 Classification of patients according to the disulfidptosis-related genes
	3.2 Genetic mutation landscape of disulfidptosis-related genes
	3.3 Establish a disulfidptosis-related prognostic model
	3.4 Evaluation of sensitivity to immunotherapy & chemotherapy
	3.5 scRNA profiling of disulfidptosis-related genes
	3.6 The trajectory analysis revealed that CAF-differentiation regulators
	3.7 Spatial distribution characteristics of disulfidptosis-related genes

	4 Discussion
	Acknowledgements 
	References


