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A dynamic subset of network interactions
underlies tuning to natural movements in
marmoset sensorimotor cortex

Dalton D. Moore 1, Jason N. MacLean 2,3,4, Jeffrey D. Walker 1,5 &
Nicholas G. Hatsopoulos 1,2,4,5

Mechanisms of computation in sensorimotor cortex must be flexible and
robust to support skilled motor behavior. Patterns of neuronal coactivity
emerge as a result of computational processes. Pairwise spike-time statistical
relationships, across the population, can be summarized as a functional net-
work (FN) which retains single-unit properties. We record populations of
single-unit neural activity in marmoset forelimb sensorimotor cortex during
prey capture and spontaneous behavior and use an encoding model incor-
porating kinematic trajectories and network features to predict single-unit
activity during forelimb movements. The contribution of network features
depends on structured connectivity within strongly connected functional
groups. We identify a context-specific functional group that is highly tuned to
kinematics and reorganizes its connectivity between spontaneous and prey
capture movements. In the remaining context-invariant group, interactions
are comparatively stable across behaviors and units are less tuned to kine-
matics. This suggests different roles in producing natural forelimbmovements
and contextualizes single-unit tuning properties within population dynamics.

The study of the relationship between population activity in primary
motor cortex (M1) and upper limb motor behavior has taken one of
two diverging approaches. On the one hand, single neuron tuning
properties have been characterized and then combined across the
population without considering the interactions between neurons1,2.
On the other hand, low-dimensional structure in population dynamics
has been linked tomovement but omits details of single neuron tuning
properties3,4. Although these divergent methodologies have each
proven useful, comparatively few studies have attempted to place
single neuron tuning properties in the context of broader M1 popu-
lation dynamics. Pairwise spike count correlations provide information
about motor behavior beyond what is provided by firing rates alone5

and improve encoding models that predict single-unit activity6. Syn-
chronous activity (measured at a finer timescale) in pairs of motor
cortical neurons similarly contains information about movement

direction7, while recent work demonstrated that the structure of
pairwise spike time correlations across the population carries beha-
viorally relevant information in M1 that progresses systematically over
the course of movement8. A large body of work in mostly primary
visual cortex has shown that recurrent interactions within local func-
tional groups can explain single-trial neural activity9, that both tuned
and untuned units are essential components of the functional network
(FN)10, and suggested that reliable pairwise correlations, rather than
first-order statistical features of spike trains, are the building blocks of
coding in visual cortex11. Note thatwe use the term functional group to
denote subsets of edges (weighted interactions between a source and
target unit) within the FN.

Our understanding of single-unit activity in the context of neu-
ronal interactions has been limited in many cases by the necessity for
trial averaging, by restrained and constrainedmovements due towired
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neural recording systems, by the difficulty in quantifying complex
kinematics, or by the constraints of analysismethods. Constrained and
over-trained behavioral tasks such as center-out reaching or pedaling a
wheel12,13 limit the variability in all movement parameters aside from
those under investigation and may impose an artificial ceiling on the
dimensionality of neural populationdynamics14. Even in the caseof less
stereotyped behaviors like random target pursuit15, reaching around
obstacles16, and reach tograsp tasks17, primates are restrained in a chair
with head fixation and require weeks of daily training to reliably exe-
cute movements. There is evidence to suggest that a significant por-
tion of M1 neurons encode a constrained, well-trained task differently
than free behavior18 and that over-training increases synchrony
between M1 neurons19. The extent to which findings discovered in the
constrained, trained setting will generalize to natural movements
remains unclear.

Here we use a wireless neural recording system and compu-
ter vision pose estimation tools to study unrestrained and untrained
arm movements executed by the common marmoset (Callithrix jac-
chus) during prey capture of moths20–23. Compared to classical task
paradigms, this behavior produces a richer set of movements with
variable directions, speeds, and amplitudes and obviates concerns
related to overtraining. Instead of assuming a fixed time lag between
neural activity and kinematic features12,24–30, we quantify single-unit
tuning properties using a temporally extended trajectory tuning
model15. At the same time, we incorporate neuronal interactions using
a functional network that describes pairwise spike time statistics in the
formof aweighted, directed graph.We show that the trajectory tuning
model extends to more naturalistic movements and explains neural
activity better than a simpler model. We demonstrate that tuning to
kinematics depends on the functional interactions between units –

particularly on structured strong connections. Finally, we identify a
context-specific functional group that reorganizes during natural
forelimbmovements necessary for prey capture. This context-specific
functional group is strongly interconnected and comprises units
tightly linked to kinematics with strong, positively correlated pre-
ferred trajectories.

Results
Each marmoset was allowed to voluntarily enter and exit the prey
capture apparatus attached to the top of the home enclosure (Fig. 1a).
Movement was recorded by high-speed cameras that were auto-
matically triggered using an infrared beam-breaker switch (see Meth-
ods). Spontaneous behavior in the home enclosure was recorded
continuously by a separate camera system. Spiking activity was
recorded throughout the recording session (TY: 175 units, Fig. 1b; MG:
73 units, Supplementary Fig. 1a), duringwhich themonkeywas actively
reaching for prey (TY: 101 reaches, MG: 56 reaches) or engaged in
undirected, spontaneous behavior. We observed clear modulation of
M1 and somatosensory cortical (S1) neurons (see Methods for esti-
mation of the boundary between areas); spike rates increased across
much of the population during extension of the hand and decreased
during movements back toward the partition (Fig. 1b, Supplementary
Fig. 1a). Reaches were randomly assigned to reachSet1 or reachSet2
and the corresponding spiking activity during reaches and during
spontaneous behavior was used to compute functional networks
denoted reachFN1, reachFN2, and spontaneousFN (Fig. 1c, d; Supple-
mentary Fig. 1b, c). Functional networks were computed using the
confluentmutual information (conMI) between the binned spike trains
of each neuron pair31, which quantifies the information about the spike
state of a target unit at time t or t + 1 that is gained from knowledge of
the spike state of a source unit at time t (Eqs. 3,4). The structures of
reachFN1 and reachFN2 were qualitatively indistinguishable in the
connection matrices, and both exhibited strong same-electrode con-
nectivity and gradually decreasing weights with increasing inter-
electrode distance. Given these similarities, we often refer to them

together as reachFN1/2. The structure of connectivity was different in
the spontaneousFN for both monkeys with depressed weights at
shorter inter-electrode distances – especially for same-electrode
functional connections (Fig. 1d, Supplementary Fig. 1c). We built gen-
eralized linearmodels (GLMs) to predict single-sample spiking activity
of individual units given a temporally-extended hand velocity trajec-
tory (i.e., velocities that either led or lagged the spike sample) and
average position of the hand throughout the trajectory, similar to
previous work in macaques15,17,32,33. We refer to these sets of models
with and without position terms as the full kinematics and trajectory
model, respectively (Fig. 1e). We also built models that approached a
time-independent preferred direction representation by sampling
brief velocity trajectories and average position between +100ms and
+150mswith respect to the spike sampling time, which is often treated
as the optimal lag between a motor cortical neuron’s firing and
velocity27,34. We call these the short kinematics (brief trajectory and
average position) and velocity (brief trajectory only) models (Fig. 1f).

Encoding models incorporating temporally extended velocity
trajectories and average position predict single-unit spiking
activity
For each unit in the population, we tested each kinematic encoding
model across 17 sets of lead and lag times in the trajectory samples –
the trajectory samples were 300–500ms in duration and ranged from
entirely lead to entirely lag kinematics (see Supplementary Fig. 2 for
summary of full analytical pipeline). For example, the [−300, 0]ms
model contained 300ms trajectories of entirely lead kinematics, the
[−250, +250]ms model contained 500ms trajectories centered on the
spike sample window, and the [−100, +300]ms model contained
400ms trajectories of mostly lag kinematics. For all models, a ran-
domly selected 80% of trajectory samples were used for training and
the remaining 20% of samples were used as held-out test data (the
train/test split was not related to reachSet1/2). We evaluated each
model using the area under the receiver operating characteristic curve
(AUC) computed on test data, a metric which ranges from ~0.5 (no
predictive power) to 1.0 (perfect prediction). For eachmodel and unit,
we fit and tested 500 independent GLMs using a resampled train/test
split to obtain a full distribution of results that was not biased by a
particular train/test split. We found that the full kinematics model
performed best when it incorporated both lead and lag kinematics,
particularly formodels containingmajority lag kinematics (Fig. 2a).We
report subsequent results for the [−100, +300]ms model due to its
high performance in both monkeys; we confirmed that results match
qualitatively across multiple lead-lag sets with similar performance.

We created two shuffled models for comparison with real data —

total shuffle and trajectory shuffle. For the total shuffle model we
permuted the kinematic samples to break the relationship between
kinematics and spikes. For the trajectory shuffle model we permuted
just the trajectory samples, leaving the relationship between average
position and spikes unperturbed. We assessed tuning to kinematics
and to the trajectory specifically for individual units by comparing all
train/test splits of the full kinematics model to paired total shuffle and
trajectory shuffle samples, respectively. For monkey TY, 172 of 175
units were significantly tuned to full kinematics (p <0.01, one-sided
sign test with Bonferroni correction) and 163 units were tuned to the
trajectory specifically (p <0.01). For monkey MG, 71 of 73 units were
tuned to full kinematics (p <0.01) and 59 units were tuned to the tra-
jectory (p <0.01). For comparisons between models using the brief
and full trajectories shown in Fig. 2b, c, we included only the units that
were tuned to trajectory details.

Next, we compared model performance at the population level.
The trajectory encoding model predicted spikes more accurately
than the velocity model (TY: p < 0.01, one-sided sign test; MG:
p < 0.01; Fig. 2b) and the full kinematics model was more accurate
than short kinematics (TY: p < 0.01; MG: p < 0.01; Fig. 2c), confirming
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previous studies and showing that activity of individual neurons is
more closely related to temporally-extended velocity trajectories
than to ballistic velocity at a fixed time. The full kinematics model
was significantly more predictive than the trajectory model (TY:
p < 0.01; MG: p < 0.01; Fig. 2d), as well as all the other kinematics
models we tested (Fig. 2e).

We treated the coefficients of the velocity trajectory terms in the
full kinematics model as instantaneous velocities and integrated them
to obtain the preferred position trajectory, or pathlet15. Units with high
AUC values were tuned to high amplitude preferred pathlets that were
consistent across train/test splits, while units with low AUC values had

no discernible preferred pathlet (Fig. 2f, g). We computed the Pearson
correlation between pathlets for all pairs of units and found that many
preferred pathlets tended to be strongly and positively correlated,
with a smaller peak of strong negative correlations (Fig. 2h). The
population was dominated by tuning to extension of the hand or, to a
lesser extent, hand retraction (Supplementary Fig. 3a); this agrees with
our observation of modulation related to extension on individual
reaches and explains the distribution of correlations shown here. The
full kinematics model incorporating a temporally extended hand
velocity trajectory and average position over the movement sample
was the best predictor of single-unit spiking activity, and individual
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units exhibited distinct preferred trajectories that tended to be
strongly correlated with a preference for positive correlations.

Network features improve the encoding model and strong
functional inputs correlate with kinematic tuning
Having established the best models for predicting spiking from kine-
matics alone across the population of single units, we next incorpo-
rated network terms into the best model and evaluated the resulting
change in model performance. Specifically, we incorporated the FN in
each target unit’s encoding model by taking the dot product of all
source unit spikes with the edge weights from the source units to the
target unit (Eq. 6) for the leading bin and the coincident bin—this
resulted in twonetwork features for each target unitmodel. Trajectory
samples belonging to reachSet1 were paired with network features
computed using edge weights from reachFN2, and vice versa. We did
this to ensure that trajectory and network features were independent
(did not co-vary) within a single sample. We created network features
using the computed FN rather than the alternative—fitting all pairwise
coupling coefficients in the GLM—for three reasons. First, using conMI
values as the coupling coefficients to produce network features con-
strained the encoding models to strict dependence on finely timed
spike-train statistics measured directly from the neural data rather
than onmaximum likelihood computations. Prior work has shown that
couplings taken from an FN approached optimality for most units in a
similarmodel35. Second, our approachallowedus tomanipulate the FN
directly to observe the effect on model performance and made pos-
sible the generalization experiments that we present in a later section.
Third, adding just two terms to each target unit model rather than 73
(MG) or 175 (TY) terms reduces the likelihood of overfitting themodel.
Our final kinematics+reachFNmodel contained the trajectory features
with 48 x–y–z velocity terms, three average position terms, and the
coincident and leading network feature terms (Eq. 5).

The inclusion of network activity improved the model sig-
nificantly across the population (TY: p < 0.01; MG: p < 0.01, one-sided
sign test; Fig. 3a). Performance of the full kinematics and kinematics
+reachFN models was similar across motor and somatosensory cor-
tical areas (Supplementary Fig. 4a, b). We found that performance of
the full kinematics model—which did not include network features—
improved with increasing average in-weight (TY: Pearson correlation
r =0.62; MG: r = 0.54; Fig. 3b). Additionally, model improvement from
adding network features was positively correlated with average in-
weight (TY: r = 0.60; MG: r =0.62; Supplementary Fig. 4c). While we
expected that a model incorporating network activity would exhibit
larger performance gains with stronger inputs, it is striking that the
units most strongly tuned to the full kinematics model (without net-
work features) also received stronger inputs. Unit pairs with strongly
correlated preferred trajectories also tended to have strong functional
connections (Fig. 3c). Importantly, the relationship between average
full kinematics AUC in a pair of units and their preferred trajectory
correlation was weak (Supplementary Fig. 4d), suggesting that even

thoughmodel performance and trajectory correlation of unitsmay not
be strongly linked to each other, the strength of the connections
between the units (weights) was independently associated with both
better performance and more aligned preferred paths. These findings
did not result from variations in unit firing rate or waveform signal-to-
noise ratio across the two monkeys, although there was a positive
correlation between signal-to-noise ratio and AUC for monkey TY only
(Supplementary Fig. 5). Taken together, these results demonstrate that
functional interactions influence single-unit activity, that a unit’s tun-
ing to kinematics increases with the degree to which it is inter-
connectedwith the surrounding network, and that strongly connected
units exhibit similar (or to a lesser extent, opposite) tuning properties.

We note here that all GLMs were L2-regularized using the penalty
weight (α) that maximized AUC on held-out test data, evaluated for
models using lead and lags of [−100, +300]ms and [−200, +300]ms
(Supplementary Fig. 6). Based on these results, we trained all kine-
maticsmodels with α =0:05 and all models incorporating the network
with α = 1 × 10�6. We note that stronger penalty weights tended to
reduce scaling coefficients for network terms in the kinematics
+reachFN model and caused performance to drop to the level of the
full kinematics model. This lends further evidence that functional
interactions provide additional predictive power.

The topology of strong functional interactions underlies
accurate prediction of single-sample activity
The finding that stronger average inputs correlated with stronger
tuning to kinematics and also to greater performance gains provided
by network features (Fig. 3b and Supplementary Fig. 4c) could mean
that single-unit predictionof activity relies simply on the total strength
of functional inputs; alternatively, model performancemaydepend on
the specific structure of the strong connections. Previous work in
murine visual cortex has shown that the precise structure of strong
connections in the FN are most informative of single-trial activity9,35.
Building on the methodology described by Kotekal and MacLean9, we
investigated the importance of structured strong connections by
selecting functional groups (FGs) comprising N% of the strongest
edges and manipulating these FGs in one of two ways—permuting
weights or permuting target units. Each edge in the network can be
represented by its source unit (Sn in Fig. 4a, b), target unit (Tn), and
weight (denoted by arrow size and hue), such that an edge α in the N%
of strongest edges can be represented by ðSα , Tα , wαÞ. These edges
comprise strong FGs that are unique to each target unit (the set of
edges is unique but the set of source units may overlap). Permuting
edge weights amongst unchanged source-target pairs leaves the
existing FGs intact but alters the weight multiplier applied to each
source unit’s activity (Fig. 4a). This permutation can be represented by
ðSα , Tα , wβÞ, wherewβ is sampled from the permuted weight values in
the FG. This manipulation tests the models’ reliance on the precise
relationship between input activity and edge weight. Permuting the
target unit, on the other hand, maintains the weight multiplier applied

Fig. 1 | Behavior, data collection and encoding model construction. a Top:
subject capturing prey in the apparatus. Behavioral video data was collected by five
(MG) or two (TY) cameras. Bottom: subject behaving freely and spontaneously in
the home enclosure. b Top: A raster plot shows the activity of 175 units recorded
fromTY, fromone second before to 3 s after the duration of a reach (reach 3). Units
are ordered as in (c). The green and blue bars above the raster indicate times
corresponding to spontaneous behavior (green) or prey capture (blue). The gra-
dient bars highlight periods of increased firing rates across the population. Bottom:
hand position for reach 3 (black), with reach onset indicated by the black dot and
the same gradient indicating neural modulation imposed on the kinematics. c A
sample of hand trajectories for six of 101 reaches, separated into reachSet1 (dark
blue) and reachSet2 (light blue). d FNs were computed from activity during either
reaches in the corresponding reachSet or during spontaneous behavior. Within

motor or sensory areas, units are orderedby the average in-weight to the target unit
for reachFN1/2. The color scale corresponds towji = conMI. Lower Right: Functional
weights versus inter-electrode distance (mean ± sem), with sample numbers ran-
ging from 4 samples at 4327 µm to 1176 samples at 894 µm (individual sample
numbers are available in the Source Data file). e A representative sample for the
trajectory and full kinematics models with τlead = 100ms and τlag = 300ms. Left:
wrist position for a single reach (black) overlaid with the spike sample time (white
circle) and corresponding trajectory sample including lead (blue) and lag (red)
movements subsampled at 40Hz. The black dot indicates the average position for
the trajectory sample. Right: velocity samples with the spike sample window and
trajectory center shown with a vertical black dashed or dotted line, respectively.
f The corresponding sample for the velocity and short kinematics models with
τlag1 = 100ms and τlag2 = 150ms. Source data are provided as a Source Data file.
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Fig. 2 | Full kinematics encoding model predicts single-unit activity. a–h Left:
monkeyTY. Right:monkeyMG. aMean ± semAUC for the full kinematicsmodel, all
lead-lag sets (n = 500 per set). The trajectorymodels range from 300ms to 500ms
in duration, and from lead-heavy samples on the left to lag-heavy samples on the
right. The arrow indicates the best-performing lead-lag set. Solid lines above the
data denote lead-lag sets for which AUC distributions were not significantly dif-
ferent than the best model (p >0.05, one-sided sign test with Bonferroni correc-
tion). b Scatterplot of the trajectory and velocity model AUC values for each unit,
averaged over 500 train/test splits. Each unit’s hue corresponds to average in-
weight in the FN, which will be explained in further detail in Fig. 3. Units above the
unity line were predicted better by the trajectorymodel. P-values are the result of a
one-sided sign test. The trajectorymodel predicted activity better than the velocity
model (TY: p ≈0.0; MG: p = 5.9 × 10−14; one-sided sign test). c The full kinematics
model predicted activity better than the short kinematics model (TY: p = 2.1 × 10−24;
MG: p = 7.7 × 10−4; one-sided sign test). In (b) and (c), the asterisk indicates that we

filtered out units that were not significantly tuned to the trajectory, leaving 163/175
units for TY and 59/73 units for MG. d The full kinematics model outperformed the
trajectory model due to the inclusion of average position terms (TY: p = 1.3 × 10−37;
MG: p = 2.9 × 10−19; one-sided sign test). e Summary of model performance for 163
units (TY) and 59 units (MG). Center line indicates the median value, whiskers
incorporate themiddle 95%of data, and circles show the 2.5%of data at each end of
the distribution. The full kinematics model produced AUC values significantly
higher than all other models (TY: in addition to p-values presented in (c, d), p ≈0.0
for full kinematics vs. velocity, p ≈0.0 for full kinematics vs. total shuffle andp ≈0.0
for full kinematics vs trajectory shuffle; MG: p = 2.8 × 10−19, p = 1.8 × 10−11, and p ≈ 0;
one-sided sign test). f The preferred trajectory pathlets for four units with high
AUCs. Each of 500 train/test splits is shown in blue and red corresponding to lead
and lag movements, and the average pathlet is shown in black. g The pathlets for
four units with the lowest AUCs. h Histograms of the Pearson correlation between
pathlets for all pairs of units. Source data are provided as a Source Data file.
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to source unit activity but changes the target unit receiving the input,
thus changing the FG of inputs to each single-unit model (Fig. 4b; for
example, S4 and its edgeweight were originally part of the FGof inputs
to T1 but moved into the FG of inputs to T2 after permuting target
units). This manipulation, represented as ðSα , Tβ, wαÞ for Tβ sampled
from permuted target units in the FG, tests the importance of target
units receiving input from specific FGs. After each manipulation, net-
work features computed from the permuted FN were substituted into
the kinematics+reachFN model. We did not re-train the GLM with
manipulated network features, but rather computed the AUC loss on
training data compared to the intact kinematics+reachFN model. Re-
training the GLM would optimize model coefficients to minimize
model error, which would obscure the effect of FN permutations. The
AUC loss resulting fromeachmanipulationwas compared to the effect
of an identicalmanipulationwithin a randomly selected FGofmatched
size. It was also compared to the effect of completely removing net-
work features from the model. This procedure was conducted for 250
resampled train/test splits for each unit, with each model using net-
work terms computed froma resampledpermutation of theweights or
edges in the FG.

For monkey TY, we found that correctly assigned weights in the
strongly connected FG carried more information than weights in the
randomFG for group sizes greater thanor equal to 20%of thenetwork,
excluding 30% (p < 0.01, one-sided sign test; Fig. 4c, top). Permuting
strong weights resulted in partial AUC loss for set sizes up to 40%,
beyondwhich includingweaker connections in themanipulation had a
similar effect as removing the network features entirely. Consequently,
the predictive power resided in the top 40% of strongest weights. For
monkey MG, we found that correctly assigned weights in the strongly

connected FG carried more information than weights in the random
FG for group sizes of 20%, 30%, 50% and 70–90% (p <0.01; Fig. 4c,
bottom). The effect of removing the FN terms from the model sig-
nificantly exceeded the effect of permuting strong weights for all but
one FG size—the 80% permuted FN (p < 0.01, one-sided sign test).

As with permuted weights, permuting target units led to higher
AUC loss as group size increased. In contrast with permuted weights,
the specific FG of strongly connected inputs to each target unit was
particularly important for smaller group sizes. Disruption of strongly
connected FGs had a larger effect than random permutation for group
sizes of 10–40% and 60% in monkey TY and group sizes of 5–10%,
20–50%, and 80–90% inmonkeyMG (p <0.01). The effect of removing
FN terms from the model significantly exceeded the effect of per-
muted target units for FG sizes up to 10% in monkey TY and up to 70%
in monkey MG.

A comparison of the results of permuting weights and permuting
target units reveals subtle differences in the effect of each manipula-
tion; these differences are present in both monkeys but clearer for
monkey TY. Within FGs comprising the strongest 15% of edges, the
weights were interchangeable compared to permuting any random
15% of weights in both monkeys. However, permuting strong weights
did result in significantly higher loss than random as the group size
increased to incorporate successively weaker edges, meaning the
weights were no longer interchangeable. In contrast, correct assign-
ment of source-weight pairs to a specific target unit within the original
FG was critical for smaller groups of strong edges as compared to
randomly selected groups (beginning at 10% of strongest edges for
monkey TY and 5% for monkey MG). The loss due to permuting target
units plateaued and became non-significant compared to

a b c
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0.0044
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Fig. 3 | Network features improve the encoding model and first order FN
structure is linked to kinematic tuning. a–c Top: monkey TY. Bottom: monkey
MG. a Adding the reachFN network features to the full kinematics model improves
prediction of single-unit activity (TY: p = 2.24 × 10−16 by one-sided sign-test; MG:
p = 1.22 × 10−16). Each unit’s hue corresponds to average in-weight in the FN.

b Performance of the full kinematics model (which contains no network feature
terms) increases with average in-weight to the unit in the FN (TY: r =0.62, Pearson
correlation; MG: r =0.54). c A scatterplot of all edge weights versus the pairwise
preferred trajectory correlation. Source data are provided as a Source Data file.
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permutations within randomly selected FGs as the group size
increased, meaning the specific composition of FGs was interchange-
able in these larger groups incorporating successively weaker edges.
This suggests that prediction depends more on FG membership than
on weights for the most strongly inter-connected FGs, while the pre-
cise pairing of input activity and weights becomes more important for
larger FG sizes. These results demonstrate that thepredictionof single-
unit activity depends on the precise topology of strongly connected
FGs rather than average in-weight alone. We also showed that dis-
rupting the topology of strongly connected FGs resulted in AUC loss
comparable to complete removal of network features, suggesting that

most available information was present in a subset of strong connec-
tions (this effect was most striking for permuted target units in mon-
key TY). Taken together, these results provide evidence that the
specific structure of interactions captured by the FN are informative of
single-unit activity in sensorimotor cortical populations, particularly
for strongly connected FGs.

A context-specific functional group reorganizes during prey
capture
Although these results and prior work demonstrate the importance of
strongly connected functional groups in the FN, previouswork has also
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Fig. 4 | The topology of strong functional interactions underlies accurate
prediction of single-sample activity. a Diagram of weight permutation. Top: two
original functional groups of source units (Sn) and their input edge weights to
target units (Tn). Solid green arrows indicate membership in the strongest N% of
edgeweights, with larger and darker arrows indicating a largerweight. Dashed gray
arrows constitute the remaining edges in the FN. Bottom: the strongest edges were
permuted freely, even across functional groups, while source-target unit pairswere
unchangedwithin functional groups. Note that for simplicity the diagram does not
depict reciprocal connections or the interconnectivity of functional groups. b Top:
same original functional group shown in (a). Bottom: source-weight pairswere held
constant, but the target unit receiving input from the pair was permuted freely. In
other words, source-weight pairs were reassigned to a new target unit, resulting in
entirely new functional groups. c Top: percent AUC loss on the original training set

(mean ± sem for across 175 units at each percent) resulting from permuting the
strongestN%ofweights (dark green) or a randomN%(light green) versus the sizeof
the permuted functional group for monkey TY. The black line with gray shading
indicates the AUC loss due to removal of all network terms (No FN,mean± sem, 175
units). Green lines above the plot indicate functional group sizes for which per-
muting the strongest weights resulted in significantly greater loss than permuting
random weights (p <0.01, one-sided sign test, with exact p-values provided in the
Source Data file). Black lines indicate group sizes for which the effect of removing
the network feature terms entirely was significantly greater than permuting the
strongweights (p <0.01). Bottom: same formonkeyMG, showing percent AUC loss
due to permutations and with No FN as mean ± sem across 73 units. d Same as (c)
for the effect of permuting target units in the original functional groups. Source
data are provided as a Source Data file.
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shown that the FN depended on the specific kinematics8. Conse-
quently, we evaluated how specific a FN was to prey capture, which we
refer to as reach, as compared to a wide range of non-prey capture
behaviors which we refer to as spontaneous. We trained a kinematics
+spontaneousFNmodel by computing network feature terms from the
dot product of the spontaneousFN with the spiking activity associated
with reach trajectory samples. We then tested this model on network
features computed with reachFNs to compare generalization of the
kinematics+spontaneousFN model against the performance of the
original kinematics+reachFN model. Essentially, we asked whether
functional interactions computed during spontaneous behavior were
informative during prey capture. We observed that the kinematics

+spontaneousFNmodel generalized well for most units – in fact, there
was only a subset of the population for which it clearly could not
generalize (TY = 39/175 units, MG=9/73; Fig. 5a). We call this subset
the context-specific functional group and call the remaining units
context-invariant. The classifier threshold separating the two groups
was selected by identifying the kink in the plot of sorted AUC differ-
ence between the models (Supplementary Fig. 7a) which corre-
sponded to the point at which the marginal change in AUC difference
was low for all subsequent units.

We isolated the context-specific and context-invariant functional
groups for reachFN1 and spontaneousFN (Fig. 5b, c, f, g). InmonkeyTY,
we found that the edge-wise FN changes from spontaneousFN to
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Fig. 5 | A context-specific functional group reorganizes during prey capture.
a–d Monkey TY. a The kinematics + reachFN encoding model versus the network
encoding model trained with spontaneousFN network features and tested on
reachFN network features. Units above the dotted line are defined as the context-
specific functional group (green, 39/175 units), and the remaining are context-
invariant units (orange, 136/175 units). b The context-specific functional networks,
with reachFN1 on top and spontaneousFN on bottom. The color scale of edge
weights is displayed under (a). c The context-invariant reachFN1 and sponta-
neousFN. d The cumulative distribution of the difference in edge weights between

reachFN1 and spontaneousFN for the context-specific, context-invariant, and full
(purple) groups. Distribution comparisons are inset as colored pairs of boxes. The *
indicates significant differences in the median with p <0.01 (two-sided median
test). All comparisons had p ≈0.0. e–h Corresponding results for MG, with 9/73
units in the context-specific functional group. h The * indicates significant differ-
ences in themedian with p <0.01 (two-sidedmedian test), as in (d). P-values are 6.9
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reachFN1 were significantly different between the context-specific and
context-invariant functional groups and between each functional
group and the full FN (p <0.01 for all comparisons, two-sided median
test; Fig. 5d). The context-specific functional group skewed more
toward an increase in weights, while the context-invariant group
skewed towarddecreasingweights. These effectswere recapitulated in
monkey MG (p <0.01 for all comparisons; Fig. 5h) with the same
directional effects. These and subsequent results are consistent for
reachFN2 and are not reported for brevity.

The context-specific functional group (FG) which reorganized
during prey capture was also more tightly linked to forelimb move-
ment. We found that the full kinematics model more accurately pre-
dicted spiking activity for units in the context-specific FG than for
context-invariant units (p <0.01, TY and MG, two-sided median test;

Fig. 6a), as well as the full set of units in monkey TY (p < 0.01) but not
MG (p > 0.05). Preferred trajectories weremore strongly and positively
correlated within the context-specific FG than within the context-
invariant or full FNs (p < 0.01; Fig. 6b), while the context-invariant FG
skewed toward weaker and negative correlations (p <0.01 compared
to the full FN). The shift toward strong positive trajectory correlations
in the context-specific group appears to be due to preferential inclu-
sion of units tuned to extension movements (Supplementary
Fig. 3b, c). The results shown in Figs. 5 and 6 were not a result of either
increased modulation around reach onset (Fig. 6c) or different ratios
of average firing rates during reaching versus spontaneous behavior
(Fig. 6d) in the context-specific FG. We note that for Fig. 6c, d we
compared AUC-matched FGs, meaning that we used only the units in
the context-invariant group with full kinematics AUC exceeding the
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correspond to the context-specific functional group, the context-invariant group,
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jectory correlation, using the same legends and statistical methods as in (a). P-
values are ~0.0 (TY andMG) for context-specific vs. context-invariant, ~0.0 (TY and
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invariant vs. full. c Distribution of unit modulation at reach onset for the context-
invariant functional group (orange) overlaid with the context-specific functional
group (green),with p-values comparing themedians of the distributions (two-sided
median test). d Ratio of unit average firing rates during reaching over rates during
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lowest AUC in the context-specific group. We did this to ensure a fair
comparison, given that the modulation and firing rate ratio both cor-
related weakly with full kinematics AUC (r =0.13 and r =0.20, respec-
tively, not shown). Finally, we examined the location of context-
specific and context-invariant units on the corticalmap and found that
members of each FG were spread across estimated motor and soma-
tosensory areas (Fig. 6e). For bothmonkeys, themajority ofunits in the
context-specific group were recorded from channels which also
recorded context-invariant units, confirming that FGmembership was
not the consequence of channel differences.

To rule out the possibility that results from Figs. 5 and 6might be
explained simply by the higher distribution of AUC values in the
context-specific FG, we repeated some analyses using AUC-matched
sets. To do so, we included all pairs of units within the context-
invariant and full FNs for which both units had full kinematics AUCs
exceeding the lowest full kinematics AUC in the context-specific FG.
AUC-matched comparisons of preferred trajectory correlations (Sup-
plementary Fig. 8a) and edge-wise weight differences (Supplementary
Fig. 8b) recapitulate the results shown in Fig. 6a and Fig. 5d, h,
respectively, that compared unmatched distributions. Finally, the
context-specific FG did not comprise all the units performing well in
the full kinematics or kinematics+reachFNmodel but were intermixed
with well-explained context-invariant units (Supplementary Fig. 8c).

Instead of examining just a single broad class of spontaneous
behavior, we computed and analyzed functional networks (FNs) for
specific behavioral classes from themarmoset’s natural repertoire. We
selected and annotated two behaviors, rest and locomotion, which
were prominent in the spontaneous behavior recordings, and com-
puted FNs from the associated spike trains. Both the restFN and
locomotionFN exhibited qualitatively similar structure to the sponta-
neousFN, with lower functional weights across many inter-unit dis-
tances for the restFN and a weight versus distance relationship for the
locomotionFN that resembled reachFN1/2 (Supplementary Fig. 9a and
Supplementary Fig. 10a). We also elaborated on the analysis of prey
capture by isolating periods of extension and retraction during prey
capture reaches. We found that extension periods aligned closely with
the periods of firing rate modulation shown in Fig. 1b and Supple-
mentary Fig. 1b, and that the median tangential speed across all
moments of extension (TY: 15.9 cm/s, MG: 13.7 cm/s) was significantly
greater than the median tangential speed during retraction (TY:
12.9 cm/s, MG: 11.2 cm/s; p <0.01, median test; Supplementary Fig. 9b
and Supplementary Fig. 10b). We compared the FNs computed from
these periods to the spontaneous FNs and reachFN1/2 and found that
both the retractionFN and extensionFN exhibited similar structure and
weight-distance relationships to reachFN1/2, although the retrac-
tionFN contained generally lower weights than the extensionFN across
all distances (Supplementary Fig. 9c and Supplementary Fig. 10c). We
computed the weighted graph alignment score (Eq. 7) between all
pairs of FNs and found that the restFN and locomotionFN clustered
together with the spontaneousFN while the extensionFN and retrac-
tionFN clustered togetherwith reachFN1/2 (Supplementary Fig. 9d and
Supplementary Fig. 10d). Finally, we observed lower firing rates in the
population during spontaneous behavior and rest, higher rates during
locomotion, and the highest rates for reaching periods (Supplemen-
tary Fig. 9e and Supplementary Fig. 10e). Importantly, these results
indicate that the dynamics underlying reaching are prevalent during
both extension and retraction periods of prey capture but are different
than the dynamics underlying rest, locomotion, and general sponta-
neous behavior.

We repeated the generalization experiments discussed in
Figs. 5 and 6 by trainingmodelswith network features computed using
the restFN or locomotionFN. These experiments produced similar
context-specific FGs which largely overlapped with the context-
specific group identified from the general spontaneousFN. For mon-
key TY, a larger context-specific group was identified using the restFN

and comprised most of the context-specific group in Fig. 5a plus
additional units (Supplementary Fig. 11a and Supplementary Fig. 7b).
The context-specific group was strongly inter-connected during
reaching but not during rest, and the graph alignment scores between
behaviors revealed an accentuated separation between spontaneous
behaviors and reaching behaviors within the context-specific FG
(Supplementary Fig. 11b, c). All subsequent qualitative and statistical
results presented in Figs. 5 and 6 remained true for this context-
specific group –we present a subset of these results in Supplementary
Fig. 11d. A smaller context-specific FG was identified using the loco-
motionFN, which also overlapped with the original group and repli-
cated qualitative and statistical results presented in Figs. 5 and 6
(Supplementary Fig. 11e-h). We found similar results in monkey MG
(Supplementary Fig. 12a–h).

Discussion
We have shown that precisely timed single-unit activity during fore-
limb movements can be predicted accurately by an encoding model
incorporating functional interactions, a temporally extended hand
velocity trajectory, and the average hand position taken over the tra-
jectory. We also demonstrated that tuning to kinematics depends
fundamentally on functional interactions between units – particularly
on structured strong connections.This builds onpastwork inmacaque
motor cortex demonstrating that movement-related information is
present in pairwise spike count correlations5,6, and provides com-
plementary insights to recent work showing that the structure of fine-
timing spike correlations in a FN contains movement-related infor-
mation and evolves systematically over the course of behavior8.
Finally, we identified a context-specific functional group within which
functional interactions reorganize to produce the natural forelimb
movements during prey capture, and a context-invariant functional
group within which interactions were preserved across behavioral
contexts.

The fact that the functional interactions amongmost of the neural
population remain invariant across awide rangeof behavioral contexts
is consistent with ex vivo experiments36 and anesthetized studies37,38.
However, we also identified a comparatively small subset of neurons
whose interactions vary dynamically across contexts, forming a
strongly connected functional group during an ethologically relevant
behavior (prey-capture). Together this suggests that dynamic ela-
boration around a stable functional backbone corresponds to the
control of natural behavior. Moreover, the context-specific module
carries more movement-related information than the context-
invariant module. Our work provides evidence for context-invariant
and context-specificmodules (functional groups) through the study of
a wide range of natural behaviors in the marmoset sensorimotor cor-
tex. These distinct functional groups and their relationship to motor
control motivate future research leveraging naturalistic behavior
across contexts.

Given evidence that neural activity recorded in association with
highly constrained and over-trained tasks may not generalize com-
pletely to naturalistic, unrestrained behavior14,18,19,29, it was not guar-
anteed that the results of our full kinematicsmodel wouldmatch those
from a planar reaching task15. However, as in that study, we found that
the trajectory model predicted single-unit activity more accurately
than a velocity model and that the full kinematics model was most
accurate for trajectories including a range of lead and lag kinematics.
In fact, the same [-100, +300]ms model that performed best for M1
units in macaques executing a random-target pursuit task was also
amongst the best-performing models here. We show that the model’s
accuracy extends beyond M1 to predict units across sensorimotor
cortex; this aligns with studies demonstrating similar encoding39 and
decoding40 of distal limbmovements of thewrist and digits for units in
M1 and area 3a. We also found that significantly tuned units exhibited
distinct preferred trajectories in addition to average position tuning.
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Since the trajectory tuning model extended to naturalistic behavior, it
served as a useful foundation for investigating the additional infor-
mation provided by the functional network.

Inclusion of network features in the kinematics+reachFN model
significantly increased predictive power over the full kinematics
model, and performance of the full kinematics model increased with
stronger average functional inputs from other units—despite no direct
link built into the full kinematics model. Furthermore, we demon-
strated that the prediction of single-unit activity depends on the pre-
cise topology of strongly connected functional groups rather than
average in-weight alone. This agrees with a similar study in murine
visual cortex which demonstrated that the topology of the functional
group containing the largest 25% of edge weights was critical to the
performance gained by incorporating network features9. We also
showed that all the informationprovided by network features could be
eliminated by disruptions to the topology of strongly connected
functional groups. For monkey TY, information was concentrated in
the strongest 10% of functional inputs and the strongest 40% of strong
weights. For monkey MG, information was concentrated in the stron-
gest 70% of both weights and functional inputs.

Work by Levy et al.10 showed that both tuned and untuned units in
the visual cortex play essential roles in the FN, and that untuned units
were central to the structure of the network. This is in contrast with
two results presented here: that strongly interconnected units tended
to be more tuned to kinematics, and that members of the context-
specific functional group were both more strongly connected to each
other and more tightly linked to kinematics. This suggests that
untuned units may play a different role in sensorimotor cortex than in
visual cortex, which is consistent with the finding that areas and
behaviors with different computational constraints exhibit distinct
population dynamics41,42. We posit that this difference is related to the
generation of temporally smooth population dynamics that are
necessary for the production of motor behavior3,4,13.

We identified a subset of the population, the context-specific
functional group, for which the kinematics+spontaneousFN model
could not generalize to match the kinematics+reachFN model when
the animal engaged inprey capture reaching. Surprisingly, the context-
specific group comprised less than 25% of the population, while
interactions measured during spontaneous behavior generalized well
to explain interactions during prey capture for the remaining units.
When we compared the context-specific group to the context-
invariant and full groups, we discovered that the context-specific
functional group was more strongly interconnected in the reachFN,
contained pairs of units with more positively correlated preferred
trajectories, and reorganized its connectivity patterns significantly
between the spontaneousFN and reachFN. The structure of interac-
tions between context-invariant units was comparatively consistent
across spontaneous and reaching behavior. Additionally, the context-
specific functional group was more strongly tuned to forelimb kine-
matics than the context-invariant group. Importantly, parallel gen-
eralization experiments using the restFN and locomotionFN inplace of
the spontaneousFN resulted in overlapping context-specific functional
groups that replicated the results shown in Figs. 5 and 6, demon-
strating that most units are context-invariant even when comparing
rest to prey capture and, conversely, that the context-specific func-
tional group captures differences in the underlying dynamics guiding
prey capture reaching versus the movements involved in locomotion.

The simplest explanation for the context-specific functional
group is that itmayplaya differential role in extensionmovements.We
showed in Fig. 1b that firing rates modulated across much of the
population during extension of the hand into the prey capture work-
space and showed in Supplementary Fig. 3b that the context-specific
functional group was dominated by units tuned to extension. Inter-
estingly, studies of decorticate human and non-human primate sub-
jects have found hypertonicity of flexion in the upper limbs in the

absence of cortical inputs to the spinal cord, suggesting a preferential
role for cortex in guiding extensionmovements43,44.We also found that
functional interactions during both the extensionFN and retractionFN
were alignedwith reachFN1/2 computed from the entire reach, but that
the extensionFN was more closely aligned with reachFN1/2 within the
context-specific group. Dynamic extensions of the hand – and the
muscle activations involved in suchmovements – are overrepresented
duringprey capture but comprise a smaller proportionof spontaneous
behavior. Movement intensity and grasping may also play a role.
Extension movements exhibited significantly higher speeds than
retraction movements, suggesting the context-specific functional
group’s involvement in producing the most rapid and dynamic
movements. Grasping often occurred coincidently with hand exten-
sion, raising the possibility that many units including those in the
context-specific functional group were tuned to grasp as well as hand
extension (although grasp was not quantified by DLC pose estimation
in this study). Future work might attempt to elicit experimental
behaviors that involve extension and grasp in different contexts. These
movements were not common enough in undirected, spontaneous
behavior to allow for comparison with prey capture reaching.

Work by Dann et al.45 showed that modularity in the functional
network links large groups of interconnected units in a single cortical
area to smaller groups in other areas, suggesting a mechanism for
information flow between areas. It could be that members of the
context-specific functional group described here, which span motor
and sensory regions and are tightly coupled by preferred trajectory
correlations and strong edge weights, participate in flexible modules
to facilitate inter-area communication.

The differences between the context-specific and context-
invariant groups aligns with recent work demonstrating that reliable
pairwise correlations, rather than first-order statistical features of
spike trains, are the building blocks of coding in visual cortex11. The
reorganization of the context-specific functional group, which was
strongly tuned to kinematics, demonstrates a link between precisely
structured interactions and kinematic encoding in sensorimotor
cortex.

An alternative (and more speculative) interpretation of the
context-specific and context-invariant functional groups is that they
might be differentially involved in processes identified by the popu-
lation dynamics framework. The functional interactionsmaking up the
context-invariant groupwere relatively consistent across reaching and
spontaneousmotor behaviors in the homeenclosure. It is possible that
these stable pairwise interaction patterns could preferentially con-
tribute to the generation of low-dimensional and rotational dynamics
that evolve in a predictable fashion with low-tangling13. The context-
specific group, on the other hand, may contribute to deflections in the
neural trajectory correlated with muscle activity13 or to moving the
fixed point about which rotational dynamics unfold in neural space46.
In that framework, the position of the fixed point determines the angle
of rotations – which unfold at a conserved frequency – and varies
systematically with direction of movement, suggesting a link between
classical tuning and population dynamics. Similarly, the context-
specific functional group presented here was strongly tuned to kine-
matics. It is important to note that no studies in the dynamical systems
framework have identified distinct subsets of the population that
contribute differentially to separate dimensions or features. This may
mean the context-specific and context-invariant functional groups do
not, in fact, map directly onto features identified by this approach. On
the other hand, previous dynamical systems work studied constrained
and over-trained motor behaviors that may exhibit different neural
activity patterns than those during naturalisticmovements used in the
current work18,19. Behaviors in those studies span a smaller and repe-
ated range of speeds, postures, and amplitudes; do not rely on con-
tinuous online adjustments to track evasive targets; and are externally
cued with instructed delay periods rather than internally cued by
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ongoing motivation for capture of live prey. Furthermore, prior work
did not use neural recordings from rich spontaneous behavior as a
comparison with goal-directed behavior. Thus, future work to inves-
tigate the impact of the context-specific and context-invariant func-
tional groups on population dynamics requires data suitable for all
relevant contexts. This work should span spontaneous behavior, nat-
uralistic forelimb movements, and trial-based reaches, and include
simultaneous recordings of muscle activity. It may be that a different
functional group is engaged preferentially for each context as well as
class of spontaneous behavior; alternatively, structured interactions
within the context-invariant group might be conserved across beha-
viors while the context-specific group reorganizes based on the
demands of each behavior. The latter findingmight illuminate possible
links between the distinct functional groups and dynamical systems
features.

Methods
Subjects
These experiments were conducted with two common marmosets,
Callithrix jacchus (a 10-year old, 370 g male designated TY and an 8
year old, 350g female designatedMG). All methods were approved by
the Institutional Animal Care and Use Committee of the University of
Chicago.

Data collection—behavior and cameras
A custom-built, modular apparatus designed for prey capture and
other goal-directed tasks47 was attached at the top of the home
enclosure. Subjects were allowed to enter the apparatus and engage in
prey capture voluntarily. When the subject was prepared and alert, the
experimenter dispensed a single moth into the apparatus to initiate a
prey capture episode. The next prey was dispensed when the previous
prey was either captured and eaten or had escaped the apparatus.
Marmoset TY visited the apparatus 49 times (average duration = 31 s,
total time = 25.4min) and completed ~2.1 left-handed extended
reaches/visit (101 total extended reaches, average duration = 2.9 s,
total time = 4.9min). An extended reach in some cases included mul-
tiple extension/retraction cycles in quick succession that were not
separated into individual reaches (e.g. reach 3 in Fig. 1b). The apparatus
visits occurred sporadically throughout the 94-minute recording ses-
sion and reaches/visit were fairly consistent throughout the session.
Marmoset MG visited the apparatus 18 times (average duration 98 s,
total time = 29.5min) and completed ~3.1 right-handed extended
reaches/visit (56 total extended reaches, average duration = 2.9 s, total
time = 2.7min). The pattern of apparatus visits was similar for MG
across the 126-minute recording session, except for a 44-min period
lasting from the 42nd minute to the 86th minute during which the
entrance to the apparatus was closed (the entrance was closed to give
the marmoset a break and increase engagement when prey capture
resumed). The subject was engaged in spontaneous behavior in the
home enclosure or in the apparatus when not directly alert and
responsive to the prey capture task. Spontaneous behavior included
but was not limited to leaping, hanging, grooming of self or partner,
locomotion or resting in the home enclosure and visual exploration,
non-reaching movements, or fine manipulation of prey in between
capture episodes in the apparatus. We annotated a subset of these
behaviors and present FNs computed from rest and locomotion, as
well as subsequent generalization experiments, in the Supplementary
Figs. Rest periods—consisting mainly of perched stillness and minor
postural adjustments without significant limb motion—were scattered
throughout the session and totaled 42.4min for TY and 66.7min for
MG. Locomotion (which included strict locomotion, brief climbing or
leaping between perches in the midst of locomotion, and some pos-
tural adjustments within periods of rest) was similarly intermittent
across the session and totaled 13.0min for TY and 4.7min for MG. A
recording session lasted approximately ~1.5 h for TY and ~2.5 h forMG.

High-speed cameras (Blackfly S, 200 frames s−1, 1440 × 1080
resolution; Teledyne FLIR) were used to record video for pose esti-
mation by DLC. For monkey TY, two cameras were positioned to
optimize visibility of the left upper limb and recorded at 150 fps. For
monkey MG, five cameras recorded at 200 fps—two cameras for each
side viewandone front-facing camera to improve coverage for reaches
occluded in the side views. Image acquisition was triggered by the
marmoset activating an infraredbeam-break sensorwhen approaching
the partition within the apparatus. Additional cameras were used to
record behavior in the home enclosure from a wider angle—two cam-
eras at 30 fps for monkey TY and 4 cameras at 60 fps for monkey MG.

Data collection—neural recording
Each subject was implanted with a 96-channel Utah Array (Blackrock
Microsystems, Salt Lake City, UT) using stereotaxic coordinates48 to
target the forelimb area of the primary motor cortex in the right (TY)
or left (MG) hemisphere. The surgical procedure is described in detail
byWalker et al.22 Neural data was collected using a Blackrock Cereplex
Exilis, which houses a digital amplifier, wireless transmitter and Li-ion
rechargeable battery capable of powering ~90min of continuous
recording in a compact headstage. A quick-connect solution designed
in-house facilitated the removal/attachment and charging cycle with
minimal experimenter intervention and disruption to the marmosets’
natural behaviors (see Walker et al.22, which describes many of the
design concepts which were adapted for the Exilis headstage). Addi-
tional battery life was provided in the MG recordings by a detachable
external battery circuit designed in-house. Data was transmitted to 8
receiving antennas, then processed by additional products from
Blackrock Microsystems. All data was recorded as raw 30 kHz con-
tinuous signals.

Data collection—ICMS and receptive field mapping
The extent of motor and sensory areas on the TY array were estimated
from results of intra-cortical microstimulation (ICMS) and receptive
field mapping of tactile and proprioceptive feedback, which were
conducted at night during quiet restfulness. For ICMS, a low current
was used to identify muscle groups for which stimulation evoked
movement. Then the current was reduced to identify the specific
muscle target of the channel and the lowest current that evoked a
response. For receptive field mapping, the skin was lightly brushed
with a cotton-tipped applicator (tactile) or the muscle body was pal-
pated (proprioceptive). This was repeated 20 or more times for each
muscle/body region using a 5 s on/5 s off protocol. Peri-stimulus time
histogramswere computed from the repetitions andmapped onto the
array for manual inspection. Cortical area boundaries were estimated
by comparing the composite maps of ICMS and receptive field map-
ping to prior cortical mapping results in marmosets48–51.

Only receptive field mapping was completed for the MG array.
The boundary between motor and sensory areas was estimated based
on these results and by comparison to the combined mapping results
of the TY array. We have noted the lower degree of confidence in the
exact boundary with a dotted line in Supplementary Fig. 4 and Fig. 6.
We note that the precise location of the boundary does not affect any
results and is only used for display purposes on array maps, raster
plots, and functional network connection matrices.

Data processing—spike sorting
Spike sorting was performed on raw neural data at 30 kHz using Spike
Interface52. Ironclust (https://github.com/flatironinstitute/ironclust)
was the primary sorter, with SpykingCircus53 and waveclus54 used to
cross-reference for consistent units that were identified across all
sorters. Inter-spike interval and signal-to-noise ratio thresholds (ISI
violation rate <0.5, SNR > 5) were applied to automatically pre-classify
units as multi-unit activity, then units identified by all three sorters
were automatically classified as well-isolated single units. All
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automatically sorted spikes were manually curated using phy (https://
github.com/cortex-lab/phy).

Data processing—kinematics
A DeepLabCut network (DLC)20 with Resnet-50 base architecture was
trained on 2343 labeled images from TY and MG recording sessions.
Three labels were applied to each side of the wireless headstage
housing (for head-tracking in future work), three to the upper limb on
each side (shoulder, elbow and wrist), and three to corners of the
apparatus to establish a coordinate system — a total of 15 labeled
points. The model was iteratively trained and refined until pose esti-
mation was consistent throughout all significant upper-limb move-
ments in the prey capture workspace. Anipose was used to apply the
DLC network to videos and to perform subsequent 2D filtering and
3D calibration and triangulation, as described in Moore et al.23 and
Karashchuk et al.21

We added multiple steps of post-processing to reduce the effect
of brief tracking lapses in outputs from the well-trained DLC network
(such as spurious jumps and brief occlusions). Each step was applied
independently to all markers and video events. We first filtered out
timepoints with reprojection error greater than 20 pixels (35 for MG)
and fewer than two cameras tracking the label, leaving only well-
tracked segments of kinematic data. We removed very brief segments
shorter than 50ms, then filled tracking data back in for inter-segment
gaps shorter than 200ms (these steps in conjunction eliminated
epochs dominated by poor tracking but containing intermittent, brief
high-likelihood tracking which often caused problems during inter-
polation). Most lapses were fixed or removed correctly after these
simple steps. Next, we removed any remainingmarker jumps using the
reprojection error and position data together. Then we replaced any
brief inter-segment gaps that remained with either original tracking
data – if that data matched a linear interpolation closely—or with the
interpolation. Finally, we trimmed long segments with a high percen-
tage of interpolated data at the beginning and end of video events—
these segments corresponded to the marmoset maintaining an
occluded posture in the back of the apparatus before or after prey
capture. The processed data was smoothed with a 3rd order, 70ms
Savitsky-Golay filter. We identified reaching segments by finding
y-position peaks that indicated extension of the hand into the prey
capture space and assessing when hand speed crossed a threshold
before and after each peak.

The continuous position of the shoulder marker was subtracted
from hand marker position to isolate hand movements from postural
changes, then differentiated to obtain the isolated hand velocity.

Trajectory encoding model
To build the encoding model for each neuron, we used a generalized
linear model that estimated the set of coefficients to maximize the
likelihood of correctly predicting the spike count within a 10ms spike
sampling window given the corresponding sample of kinematics55.
Each kinematic sample was the monkey’s hand velocity trajectory and
average position over a kinematic sampling window of length
τlead + τlag , with the kinematic and paired spike samples centered at t0.
Samples of spikes and kinematics were extracted every 30ms
throughout reaching segments, resulting in around 8000 samples for
monkey TY (8149 for the [−100, +300]ms model) and 4000 samples
for monkey MG (4250 for the [−100, +300]ms model). Instantaneous
velocity trajectories were down-sampled to 40Hz based on the
observation that the power spectrum of velocities mostly fell below
25Hz. Each velocity sample can be formalized as:

v̂t0 = v
*

t0 � τlead
� �

, . . . , v
*

t0 +nΔt
� �

, . . . , v
*

t0 + τlag
� �� �

ð1Þ

where v
*

t0 +nΔt
� �

is the instantaneous 3-dimensional velocity vector
at time t0 +nΔt andΔt =25ms. The full kinematicsmodel relates these

terms and the average position vector p
*

to the conditional spike
intensity of target unit i:

Pðspikeiðt0Þjv̂t0 , p
*Þ= expðγ + k

*

�v̂t0
+ c

* �p*Þ ð2Þ

where k
*

is referred to as the preferred velocity trajectoryof theneuron
and c

*
is the vector of coefficients for the average position terms. The

preferredpath, or pathlet, of the neuron is obtainedby integrating k
*

in
time as if it were a vector of three-dimensional velocities.

GLMs were implemented using the Python statsmodels package
and fit with L2-regularization. We trained all kinematics models with
penalty weight α =0:05 and all models incorporating the network
with α = 1 × 10�6.

Area under the receiver operating characteristic curve
To assess the predictive power of each encodingmodel, we computed
receiver operating characteristic (ROC) curves that quantified the
relationship between theprobability of correctly predicting a spike (hit
probability) versus the probability of incorrectly predicting a spike
when it was absent (false positive probability). We used 80% of spike-
kinematics sample pairs to train the model for each unit and used 20%
as held-out test data.Wepredicted the conditional spike intensity from
the encodingmodel given the 20% of held-out kinematics samples and
compared predictions to the held-out spike samples using a set of
thresholds to predict spikes when the conditional spike intensity
crossed the thresholds. We then computed the area under the ROC
curve (AUC), which measures the predictive value of the model and
canvary from0.5 (nopredictive power) to 1.0 (perfectprediction). The
train/test split was sampled randomly 500 times with replacement,
resulting in 500 encoding models for each unit.

Functional network computation
We created weighted, directed FNs by computing pairwise spike time
statistics between recorded units.We binned the recorded spike trains
into 10ms bins, assigning a value of 1 if at least one spike occurred in
that bin, and 0 otherwise. We then computed the confluent mutual
information (conMI) between the binned spike trains31. ConMI quan-
tifies the information about the firing state of target unit i at time t or
t + 1 that is gained from knowledge of the firing state of a source unit j
at time t:

wji = conMIji =
X

j tð Þ2f0, 1g

X
i t̂ð Þ2f0, 1g

p j tð Þ, i t̂� �� � � log2
p j tð Þ, i t̂� �� �

p j tð Þð Þ � p i t̂
� �� �

" #

ð3Þ

where i t̂
� �

=
1, if i tð Þ= 1OR i t + 1ð Þ= 1
0, otherwise

�
ð4Þ

Incorporating the functional network into the encoding model
We computed reachFN1 from half of the reaching segments chosen at
random and reachFN2 from the other half. We paired the kinematics
from reachSet1 with the FN computed during reachSet2, and vice
versa, to eliminate the concern that kinematics and the FN features
might co-varywithin a single sample. We also computed the FN during
the remainder of the session inwhich themarmosetwas behaving in an
undirected, spontaneous manner either in the apparatus or the home
enclosure (spontaneousFN). Each FN was represented as a square
matrix of directed edge weights (the conMI) between nodes (units),
with target units represented along the rows and source units along
the columns. Activity in the functional group was incorporated in the
encodingmodel by computing the dot product ofweightswith spiking
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activity, represented in sum notation here:

P spikei t0
� � j v̂t0

, p
*
, F0, F1

� �
= exp γ + k

*

�v̂t0 + c
* � p* +β0F

0 +β1F
1

� �

ð5Þ

F0 =
X
j

wjis
0
j and F1 =

X
j

wjis
1
j ð6Þ

where wji is the edge weight (the conMI value) from source unit j to
target unit i, and s0j and s1j are spike activity in the source unit at times t
and t � 1, respectively. Thus, F0 and F1 are the coincident and leading
network features and β0, β1 are the corresponding scaling terms fit in
the GLM.

Manipulating functional network structure (permutation
experiments)
To determine if the topology of the functional group is essential to
predictions of single trial activity, we shuffled the functional group in
twoways; we identified functional groups comprising either the topN%
of strongest connections in the FN or a randomly selected group of the
same size.We shuffled the strongweights to determine the importance
of strong weights for prediction while preserving the corresponding
underlying edges. Formally, we enumerated the edges within the
selected functional group as f S1, T 1, w1

� �
, . . . , ðSk , Tk , wkÞg, where a

directed edge from source neuron Sα to target neuron Tα exists with
weight wα for α 2 ½1, k�. This enumeration contains all tuples
Sα , Tα , wα

� �
such that wα is in the top N% of strongest weighs (or a

randomly selected N% of weights). We then applied a uniformly ran-
dom permutation σ 2 Gk (where Gk is the finite symmetric group on k
points) to act on the weights, furnishing the enumeration
fðS1, T 1, wσð1ÞÞ, . . . , ðSk , Tk , wσðkÞÞg. If we let β= σðαÞ, we have all tuples
ðSα , Tα , wβÞ representing directed edges from neuron Sα to neuron Tα

with permuted weights in the functional group.

Similarly, to isolate the importance of the functional edges in
prediction, we shuffled the strongest N% (or randomly selected) edges
of the functional group. We applied a uniformly random permutation
σ 2 Gk to the list of target neurons, resulting in the enumeration
fðS1, Tσð1Þ, w1Þ, . . . , ðSk , TσðkÞ, wkÞg. If we let β= σðαÞ, we have a new set
of tuples ðSα , Tβ, wαÞ representing permuted edges that preserve the
weight with respect to the source neuron. This changes the functional
group of inputs to target unitTβ and tests the importance of specific
functional inputs for prediction.

Weighted graph alignment score
Similarity between two FNs, M and N with k neurons, was measured
using a node-identity preserving graph alignment score (GAS), as
described in previous work8,10,56:

GAS=
2
Pk

i = 1

Pk
j = 1 minðMij , NijÞPk

i = 1

Pk
j = 1ðMij + NijÞ

ð7Þ

For an unweighted graph, GAS measures the ratio of overlapping
edges to the total number of edges. In the weighted case, the
numerator represents the sum of the minimum edge weight between
each pair of nodes, and the denominator is the total sum of the edge
weights.

Identifying extension and retraction
Extension was defined as any period in which the distance from the
shoulder to the wrist was increasing, while retraction referred to peri-
ods in which the distance decreased. A Gaussian filter with standard

deviation of 11 samples was applied to smooth the distance signal, then
the derivative was used to identify periods of extension and retraction.

Statistical tests
We used three statistical tests to evaluate significance of results. We
used the sign test for paired tests, including comparisons of
unit performances in two encoding models and comparing FN per-
mutations. We used the median test to compare the medians
across distributions for context-specific, context-invariant and full
FNs. We chose the median test because it is conservative and valid
for distributions with different sample sizes and variance. We
used the Pearson correlation to quantify preferred trajectory corre-
lations and to evaluate the correlation between pairs of features
(for example, full kinematics AUC vs average in-weight). For corre-
lations, we considered |r| <0.2 to be uncorrelated, |r| in [0.2, 0.5] to be
weakly or moderately correlated, and |r| > 0.5 to be strongly
correlated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated using monkey MG in this study have been depos-
ited in the DANDI Archive under accession code https://dandiarchive.
org/dandiset/001062. Data availability for monkey TY is delayed due
to the dataset’s use in manuscripts currently in preparation. Source
data for figures are provided in the Source Data file. Source data are
provided with this paper.

Code availability
Code used for data analysis and visualization is available on Github
(https://github.com/hatsopoulos-lab/marmoset-trajectory_and_
network_encoding_model), with the version at time of submission
archived at https://doi.org/10.5281/zenodo.13840245.
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