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The Grover algorithm is a crucial solution for addressing unstructured search problems and has 
emerged as an essential quantum subroutine in various complex algorithms. By using a different 
approach with previous studies, this research extensively investigates Grover’s search methodology 
within non-uniformly distributed databases, a scenario frequently encountered in practical 
applications. Our analysis reveals that the behavior of the Grover evolution differs significantly when 
applied to non-uniform databases compared to uniform or ‘unstructured databases’. Based on the 
property of differential equation, it is observed that the search process facilitated by this evolution 
does not consistently result in a speed-up, and we have identified specific criteria for such situations. 
Furthermore, we have extended this investigation to databases characterized by coherent states, 
confirming the speed-up achieved through Grover evolution via rigorous numerical verification. In 
conclusion, our study provides an enhancement to the original Grover algorithm, offering insights to 
optimize implementation strategies and broaden its range of applications.

The Grover algorithm, conceived by L. K. Grover in 19971, marked a significant advancement in the field of 
quantum computing2, particularly in addressing the challenge of query complexity. In the classical paradigm, 
searching an unstructured database typically necessitates n steps, where n is the size of the database. Grover’s 
groundbreaking algorithm, however, revolutionizes this approach by reducing the required steps to merely 

√
n

. This quantum search algorithm has emerged as a cornerstone in the development of quantum computational 
routines, celebrated for its ability to significantly amplify the amplitude of the quantum state that encodes the 
desired information. The versatility and applicative potential of the Grover algorithm have been demonstrated 
across a spectrum of challenging problems. For instance, it has provided innovative solutions to the satisfiability 
problem3, as well as in the burgeoning field of quantum machine learning4. Further applications include tackling 
constrained polynomial binary optimization5 and enhancing quantum amplitude estimation techniques6, 
showcasing a clear computational superiority over traditional methods. Recent explorations have extended the 
utility of the Grover algorithm7 to the domain of adiabatic quantum computing8–10, underscoring its adaptability 
and relevance in the rapidly evolving landscape of quantum research. This paper specifically delves into the 
algorithm’s seminal application in database searching, highlighting its transformative impact and ongoing 
significance in the quest for efficient quantum computing solutions. Through this focus, we aim to illuminate 
the enduring value and broad applicability of Grover’s algorithm1,11,12, from its initial proposal to its current and 
potential future contributions to quantum computing and beyond.

The search problem unfolds as follows: within a given database, each element is distinctly indexed. When 
the database is of finite size, locating a specific element necessitates iterative queries to its index. Typically, the 
query count scales with the database size. Grover’s seminal work explored this quandary in the realm of quantum 
computing. Through specific evolution operators, the amplitude of the basis state housing the target data can 
be boosted to unity. The steps required for such enhancement scale proportionally to the square root of the 
database size, ensuring a guaranteed quadratic acceleration. This concept has been integrated into numerous 
platforms13–15, with additional advancements showcased in recent proposals16–19.

The initial discourse on the search dilemma predominantly centers on managing unstructured databases, 
following a conventional approach in theoretical computational discussions that remains detached from specific 
physical contexts. However, as we transcend the limits imposed by current computing platforms and strive for 
advancements, particularly in the evolution of novel computing architectures, data encoding states may not 
uniformly distribute. Thus, delving into the potential enhancements of the Grover search algorithm in such 
scenarios presents an opportunity to broaden its utility and applicability significantly.
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Moving forward, we conduct an analysis of the aforementioned issue. The database under scrutiny is 
comprehensive, characterized by distributions spanning various types. Similar topics have been discussed 
before20,21, in which a general form of the Grover evolution is given. Different from the previous method, we 
analysis the necessary steps for executing the search operation by using the asymptotic differential equation 
of the algorithm. By using the property of differential equation, we methodically identify the prerequisites 
for achieving acceleration through Grover evolution. Subsequently, we showcase two illustrative examples to 
elucidate our observations: the first example validates the harmony between our theory and Grover’s established 
results, while the second one exemplifies that employing the Grover search on a database governed by coherent 
state probabilities leads to acceleration compared to conventional methods. It indicates our algorithms can be 
carried out in non-universal quantum computation like linear optical system used in implementing Boson 
sampling. The initial state can be prepared as weak coherent states depending on cutting of N. This is followed 
by an elaborate exposition of our overarching methodology.

Grover search on weighted databases
Consider a database {x1, . . . , xM }, with integer M. An arbitrary element xn in the database is a real number, 
which represents a certain characteristic of objects. In the original version of search problems, all xms are 
distinct to each other. A example of the problem could be as follows. One could consider the above database as 
a collection of the length data of many pencils, and xn represents the length of the nth pencil. If the length of 
pencils are measured precisely enough, there will be no pencils with the same lengths. Hence, the search for the 
series number of the pencil with a particular length in the database could be the described by the search problem 
of this kind. However, in practice, some characters of the objects do not need to be handled at an extremely 
high precision. Going back to the pencil example, if one re-perform the statics and categorize the lengths of 
the pencils into several length intervals, there would be more than one pencil in one interval. Furthermore, 
if the pencils whose lengths fall into one length interval are numbered identically, a natural target under this 
case could be finding the series number of a demanded length interval. This goes into the problem of what 
we called the weighted database search. Formally, suppose that there are N distinguished types of elements in 
a database, denoted by y1, . . . , yN . Therefore, the database can be given by {(y1, p1), . . . , (yN , pN )}, where 
p1, . . . , pM  represent the proportions of distinct characteristics y1, . . . , yN  in the total database. An illustration 
of the search problem on the databases is given by Fig. 1.

To search for a certain characteristics in {(y1, p1), . . . , (yN , pN )} by using classical algorithms, the required 
number of steps s is proportional to the reciprocal number of its proportion. Therefore, in general, s satisfies

	
min

j=1,...,N

{
1
pj

}
⩽ s ⩽ max

j=1,...,N

{
1
pj

}
.� (1)

To perform the same task by using Grover evolution22, one can consider the following state

	
|D⟩ =

N∑
n=0

P (n)|n⟩.� (2)

{|1⟩, |2⟩, · · · , |N⟩} is a set of orthonormal basis and |D⟩ is a superposition of them. P(n) is the complex 
amplitude of the basis state |n⟩, yielding that |P (n)|2 = pn, and 

∑N

n=0 |P (n)|2 = 1. Notice that Eq. (2) can 
represent a state whose amplitudes of each basis state can be arbitrary. In the usual consideration of quantum 
computing, it is not always easy to prepare a state according to the distribution of given database. It is known 
that, for instance, the quantum state for encoding unstructured database, as considered by Grover, can be 
efficiently prepared by Hadamard gates on qubits. Also, the database distributed like a coherent state, which is an 
exponential distribution modified by several factors, can be prepared by displacements on harmonic oscillators 

Fig. 1.  An illustration of the search problem on unstructured database (a) and weighted database (b). “0” 
and “1” mark the ordinary and the target data sample respectively. The widths of the squares of the samples 
represent the proportions.
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in a continues-variable quantum computing setup. We will discuss the two cases later. In a general sense, a 
quantum computer could be any of quantum systems that can be well controlled. Hence, the initial state of 
the system, such as its ground states, might be not distributed uniformly in its natural basis. This could also 
be applied for searching the database with the same or close distribution, as indicated by Eq. (2). Because our 
aim in this work is discussing the Grover search based on Eq. (2) in a general sense, we do not go further into 
the preparation strategy of states with other distribution. We would like to discuss them broadly in our future 
investigation.

According to the idea of Grover search, the amplitude of the target state can be amplified by repetitive evolution 
so that the search can be completed by only one step. Then, the total step number of performing the search equals 
to the repeat number of the evolution operators. Suppose that the target state is |k⟩, the basic two operators for 
evolution are defined by

	 UD = 2|D⟩⟨D| − 1, Uk = 1 − 2|k⟩⟨k|.� (3)

The amplification operator required by Grover search is defined by G:=UDUk . Suppose that after performing G 
for t times on |D⟩, the whole state evolves to |k⟩. Then, the step number for searching |k⟩ is given by t.

The next key problem is to compare the step numbers of the two methods, validating whether a speed-up 
exists. For such purpose, we analyze the above evolution under G as follows. Applying G once to the state |D⟩
, one has

	 G|D⟩ = (1 − 4|P (k)|2)|D⟩ + 2P (k)|k⟩.� (4)

Furthermore, if G is applied for r times, a recurrence relation can be obtained,

	 Gr|D⟩ = ar|D⟩ + br|k⟩,� (5)

where

	

ar = [1 − 4|P (k)|2]ar−1 − 2P ∗(k)br−1,

br = br−1 + 2P (k)ar−1.
� (6)

For sufficient large r, the amplification leads to that ar → 0 and br → 1. This asymptotic behavior can be seen 
by approximating ar  with a continuous function fa(x) with real variable x, such that fa(r) = ar . Apply the 
approximation ar − ar−1 ∼ ∂fa/∂x, and the same for br . Thereafter, two partial differential equations can be 
obtained, shown by

	

∂fa

∂x
= −4fa|P (k)|2 − 2fbP ∗(k),

∂fb

∂x
= 2faP (k).

� (7)

Substitute the second equation to the first equation, one has

	
∂2fa

∂x2 + 4|P (k)|2 ∂fa

∂x
+ 4|P (k)|2fa = 0.� (8)

Notice that such equation is a standard second-order partial differential equation. Its solution has been discussed 
thoroughly. In general, the solution of can be given by

	

fa = C1eq1x + C2eq2x, ∆ > 0
fa = (C1 + C2x)eq1x, ∆ = 0
fa = eγx(C1 cos βx + C2 sin βx), ∆ < 0

� (9)

where q1,2 = (−4|P (k)|2 ±
√

∆)/2 with ∆ = 16|P (k)|4 − 16|P (k)|2. C1 and C2 are constants depending 
on initial conditions. γ and β are the real and imaginary part of complex q1,2 when ∆ < 0. In our case, 
|P (k)| < 1 so that ∆ < 0. The case when |P (k)| = 1 means that state |k⟩ can be searched with one step, which 
is trivial and is not considered here. Thus, the solution to Eq. (8) is

	 fa = e−2|P (k)|2x(C1 cos (2∆̃x) + C2 sin (2∆̃x)),� (10)

where ∆̃ =
√

|P (k)|2 − |P (k)|4. The dynamics given by Eq. (10) is a damping oscillation. The period of the 
oscillation is T = π/∆̃. It indicates that in the time of T, there is a moment when fa takes its maximum, 
approaching to be one. Therefore, the steps number for the search is in the order of T. The speedup of the Grover 
search under the condition can be verified by comparing the order of T and s. More strictly, one has the condition
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max

k=1,...,N

{
∆̃−1(k)

}
< min

j=1,...,N

{
1
pj

}
.� (11)

The condition given by Eq. (11) indicates a global speed up over the classical treatment. Notice that we omit the 
constant factor π because it does not affect the order. If one limits the problem to searching the kth element in 
the database, the condition can be loosen to

	
∆̃−1(k) <

1
pk

= 1
|P (k)|2 .� (12)

Then, because |P(k)| is not zero generally,

	 |P (k)| <
√

1 − |P (k)|.� (13)

Such a condition indicates a local speed up over the classical treatment, which is only effective for searching 
one element. Obviously, the inequality holds when |P (k)| < 1/2. It is easy to satisfy such condition when N is 
sufficiently large.

In what follows, we provide two specific examples of the above general analysis. In the first example, we show 
that the original unstructured search by Grover’s idea can be obtained from our consideration. In the second, we 
show the results when the distribution of database is that of a coherent state. We also check the effectiveness of 
the contentious form given by Eq. (7) in the two examples.

Two examples
I. Back to unstructured search. The case of unstructured search can be easily obtained by setting P (k) = 1/

√
N

. The solutions of Eq. (6) and the approximation in this example are compared in Fig. 2, when N = 20. The 
amplitude of ar  and br  are obtained by solving Eq. (6) step-by-step under the condition a1 = 1 − 4|P (k)|2 and 
b1 = 2P (k). The approximation fa(x) and fb(x) are obtained by using the 3rd equation of Eqs. (9) under the 
condition fa(0) = 1 − 4|P (k)|2 and fb(0) = 2P (k). From the plots, it can be seen that the locations of the 
maximum of ar  and br  are nearly the same with those of fa and fb. Hence, the approximation is valid.

Then, the scale of the step number for the search problem can be estimated by

	
∆̃ =

√
1
N

− 1
N2 =

√
N − 1

N2 .� (14)

When N is big enough, one has 
√

(N − 1)/N2 ≈ 1/
√

N . Therefore, the step number for Grover search is in 
the order of 

√
N . It worth mentioning that, in such a case, because |P (k)| = 1/

√
N → 0 for big N, the factor 

e−2|P (k)|x is close to one. It guarantees fa finally approaches to one.
The classical search algorithm on the unstructured database is basically checking each elements in the 

database one by one. Because the probability of finding one element is 1/N, the step number for the searching 
by classical treatment is in the order of N. Hence, a quadratic speedup can be observed by comparing the order 
of the two step numbers.

II. Grover search by using coherent state. In this part, we consider the case when the distribution of database 
{(y1, p1), . . . , (yN , pN )} satisfies (or partially satisfies) the distribution of the coherent state. The coherent state 
in the particle number basis can be expressed by

Fig. 2.  The plot of (a) the amplitude ar  and (b) br  obtained by solving Eq. (6) when P (k) = 1/
√

N . The plot 
of the approximation fa(x) and fb(x) obtained by solving Eq. (7) are shown in (c) and (d).
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|α⟩ = e− 1

2 |α|2
∞∑

q=0

αq

√
q!

|q⟩,� (15)

where α is a complex number. Such a state is a natural state in optical amplification cavity. Notice that there are 
infinite basis states in the coherent state. Therefore, for finite databases, one can consider encoding them into 
parts of the state (15). Define the N-dimensional database state |α′⟩,

	
|α′⟩ = Nq

q1+N∑
q=q1

e− 1
2 |α|2

αq

√
q!

|q⟩,� (16)

where Nq  is the normalization factor, given by

	
Nq =

[
q1+N∑
q=q1

e−|α|2
|α|2q

q!

]− 1
2

.� (17)

Thus, for a target state |k⟩ in the database, one has,

	

|P (k)| = e− 1
2 |α|2

|α|k√
k!

· Nq

= |α|k√
k!

[
q1+N∑
q=q1

|α|2q

q!

]− 1
2

. (q1 ≤ k ≤ q1 + N)
� (18)

Notice that, when q1 is large enough, |α|k/
√

k! slowly varies with k. Thus, the case will go back to the 
unstructured database, as shown in the first part of this section. When q1 is not large enough, the magnitude of 
|P(k)| is given by α and q1. We numerically provide several cases shown in Fig. 3. The solutions of Eq. (6) and the 
approximation in this example are compared in Fig. 4. The searching target is the basis state when k = 3, and the 
rest parameters are set to be the same with those for Fig. 3. The amplitude of ar  (br) and its approximation fa(x) 
(fb(x)) are obtained by the same method of the first example. The initial conditions are also the same. From the 
plots, it can be seen that the locations of the maximum of ar  and br  are also approximately the same with those 
of fa and fb. The major difference lies in the damping of fa and fb, resulted from the factor e−2|P (k)|2x. In the 
finite cases, one could just neglecting the factor for the estimation of the locations of the maximum. Because 
such a factor has no affection on the locations. Further, as in the first example, it can be seen that the factor 
approaches to one when |P(k)| is small enough. Such a condition is better met if the database is large. Therefore, 
the method can be used to estimate the scale of step number when the size of database goes to infinity.

By substituting the probability distribution to ∆̃, the order of the step number can be estimated by the 
magnitude of ∆̃. The step number of the classical treatment is obtained by 1/pk  when searching for yk . In order 
to show a clear comparison, we firstly compare the reciprocal of the step numbers of the two cases, and the 
results is shown in Fig. 5. In fact, reciprocal of the step number in classical search for yk  is just its probability pk . 
Extended from the classical concepts, the reciprocal of the step number in Grover search, which is ∆̃, represents 
an effective probability of “searching for yk”. The comparison between the two reciprocals are equivalent to the 
comparison of the step number, but with an inverse trend. The smaller step number indicates a larger reciprocal, 
and vice versa. From the results, we can see that in general, the Grover evolution is a better strategy over the 
classical treatment. An exception occurs in Fig. 5a, when searching for the first element. This is because α is 
relatively small in such a case. We secondly compare the natural logarithm of the step numbers of the cases, and 
the results are shown in Fig. 6. By Fig. 6, a clear advance in steps number can be observed, and the exception 
also occurs in (a). The results in Figs. 5 and 6 indicate that the Grover search on a database distributed in the 
probability given by the coherent state is able to show an advance over the classical methods. According to our 
conditions in the second section, such an advance belongs to the local speedup.

Fig. 3.  The probability distribution of |α′⟩ when |α| = 0.8, 1.6, 2.4, and 3.2. We take q1 = 1 and N = 20. 
The cases of other q1 and N are similar.
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Conclusion
By using the property of differential equation, we investigate the application of Grover’s algorithm for weighted 
database searches, a prevalent scenario in practical settings. We calculate the requisite steps for the Grover search 
and contrast these calculations with classical methodologies. Our analysis differs from the previous method, by 
considering the asymptotic behaviour of the Grover evolution. This allows us to introduce the tools for analysing 
differential equations, so that performance of the Grover search on unstructured database can be well assessed. 
Through detailed analysis, we pinpoint the specific conditions conducive to acceleration through Grover’s 
algorithm. To illustrate our discoveries, we showcase two compelling examples. The first example validates 
our theoretical framework by aligning closely with Grover’s seminal outcomes. In the second example, we 
demonstrate how implementing Grover’s search on a database governed by a probability distribution resembling 
a coherent state yields significant speed enhancements compared to traditional methods. Meanwhile, we specify 
that the approximation strategy are effective in the samples, by comparing the results with the explicit solutions 
of the difference Eq. (6). These results represent a significant advancement of analysing Grover algorithm, 
enriching its implementation strategies and broadening its scope of potential applications.

Fig. 5.  The comparison of the reciprocals of step numbers when searching a basis state |k⟩ (k = 1, ..., 20) by 
classical and Grover treatments. The y-axis represents the reciprocal of the step numbers. The value of α is 0.8 
in (a), 1.6 in (b), 2.4 in (c), and 3.2 in (d).

 

Fig. 4.  The plot of (a) the amplitude ar  and (b) br  obtained by solving Eq. (6) when P(k) is given by Eq. (18). 
The plot of the approximation fa(x) and fb(x) obtained by solving Eq. (7) are shown in (c) and (d). We set the 
target state to be the one when k = 3, and the other parameter setup is the same with the plot in Fig. 3.
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Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
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