
STATE-OF-THE-ART REVIEW

Translation regulation in response to stress
Thomas D. Williams1,2 and Adrien Rousseau1

1 MRC-PPU, School of Life Sciences, University of Dundee, UK

2 Sir William Dunn School of Pathology, University of Oxford, UK

Keywords

mRNA; proteostasis; signalling; stress;

translation

Correspondence

T. D. Williams and A. Rousseau, MRC-PPU,

School of Life Sciences, University of

Dundee, UK

Tel: +44 1382 384109

E-mail: thomas.williams@path.ox.ac.uk,

arousseau@dundee.ac.uk

Website: https://www.ppu.mrc.ac.uk;

https://www.path.ox.ac.uk/

(Received 9 November 2023, revised 7

December 2023, accepted 22 January 2024)

doi:10.1111/febs.17076

Cell stresses occur in a wide variety of settings: in disease, during industrial

processes, and as part of normal day-to-day rhythms. Adaptation to these

stresses requires cells to alter their proteome. Cells modify the proteins they

synthesize to aid proteome adaptation. Changes in both mRNA transcrip-

tion and translation contribute to altered protein synthesis. Here, we dis-

cuss the changes in translational mechanisms that occur following the

onset of stress, and the impact these have on stress adaptation.

Proteome adaptation upon stress

Environmental fluctuations cause all cells to be fre-

quently subjected to multiple stresses in varying com-

binations and levels of severity. Common stresses

include changes in temperature, osmolarity, reactive

oxygen species and nutrient availability. To survive

and proliferate, cells must adapt to and counter stres-

ses as they arise. Altering the cellular proteome

(Fig. 1) is key for stress adaptation across life [1,2].

Extensive work has established roles for stress-induced

changes to the cellular mRNA pool across a wide

variety of stresses, including in animals [3–5], plants

[6–8] and fungi [9–11]. Protein production is also chan-

ged through regulation at the translational level. Alter-

ations (or a lack thereof) in mRNA levels and

translation efficiency affect protein production [12,13].

Protein levels are further regulated by degradation,

which can be induced for specific proteins upon stress

[14,15]. In this review, we discuss how mechanisms of

eukaryotic translation change with stress, and the

effect on mRNA translation.
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Translation in unstressed conditions

Canonical translation (Fig. 2) is widely described, with

initiation considered the major rate-limiting step

[16,17]. To initiate translation (Fig. 2A), a ternary

complex (TC) consisting of initiator-methionine (i-met)

tRNA, eIF2 and GTP is formed. This binds to the

40S small ribosomal subunit through eIF3 and eIF5.

eIF1 and eIF1A also bind to the 40S to form the 43S

pre-initiation complex (PIC). The PIC binds the eIF4F

cap-binding complex (composed of eIF4G, eIF4E and

eIF4A) on the 50cap of an available mRNA to form

the 48S initiation complex. This interaction is medi-

ated through eIF3 and eIF5 binding to eIF4G, while

ATP-bound eIF4A allows formation of an open com-

plex [18–20]. The 48S complex initiates scanning along

the mRNA in this open conformation, with the eIF4A

helicase unwinding the mRNA secondary structures,

facilitated by its interaction with eIF4B [21]. Whether

the eIF4F complex remains bound to the cap (or alter-

natively if eIF4E disconnects from the other eIF4F

components while remaining bound to the cap) during

scanning is an open question. Notable, but relatively

small, 40S mRNA footprints indicative of queueing

occurring during scanning are observed, suggesting

that this disconnection from the cap can occur, allow-

ing multiple PIC complexes in the mRNA 50 UTR

[22,23]. Binding of eIF4E to the PIC increases scan-

ning activity of the eIF4A helicase, implying a benefit

for maintenance of the connection between the com-

plete eIF4F complex and PIC [24]. The exact scanning

mechanism may vary according to factors including

mRNA secondary structure and modifications,

although this remains to be determined. Once a suit-

able start codon is identified via codon-matching with

the i-met tRNA, the TC’s GTP is hydrolysed to GDP,

and eIF2 is released. The 48S shifts from an open to a

closed conformation, locking i-met tRNA and mRNA

together at the peptidyl transferase (P-) site [25]. Initia-

tion factors are replaced by the 60S large ribosomal

subunit to form the 80S ribosome via an intermediate

complex containing eIF5B [26].

During translation elongation (Fig. 2B), codon-

matched charged tRNAs, delivered by eEF1A, bind the

mRNA in the aminoacyl (A-) site of the ribosome [27].

mRNA translocation occurs via 40S conformational

changes, assisted by eEF2, which move the tRNA from

the A-site to the P-site [28,29]. The tRNA-conjugated

amino acid is added to the C-terminal end of the pep-

tide chain and translocation occurs again to move the

free tRNA to the exit (E-) site, where it is ejected. A

new tRNA can then bind in the A-site to restart this

process.

When a stop codon is reached, there are no codon-

matched tRNAs, so translation termination and ribo-

some disassembly occur (Fig. 2C). The eukaryotic

release factor complex (composed of eRF1 and eRF3-

GTP) binds in the A-site and terminates protein syn-

thesis by hydrolysing the bond between the final tRNA

and its amino acid [30–32]. Subsequent release of

eRF3 and binding of an ABC-ATPase protein and

ATP hydrolysis splits the 80S back into 40S and 60S

subunits, which are recycled for subsequent rounds of

translation [33,34]. Poly(A)-binding protein (PABP)

binds eIF4G, eIF4B and the 30 mRNA poly(A) tail to:

circularize the mRNA; stabilize the interaction of

eIF4E with the 50cap and boost translation termina-

tion efficiency to boost ribosome occupancy and trans-

lation [35–38]. Closed loop formation is particularly

biased towards shorter mRNAs [39]. Further, PABP

can interact with both 40S and 60S ribosomal sub-

units, potentially limiting their diffusion away from

the mRNA and promoting re-initiation [40].

Many of these mechanisms are altered in either effi-

ciency or character upon stress to change the rates and

selection of mRNA for translation. Below, we discuss

how changes in mRNA availability and mechanisms of

translation affect the pool of translating mRNAs and

Fig. 1. Mechanisms of proteome adaptation upon stress. (i)

Transcription is altered upon stress. Production of stress-responsive

mRNAs is increased, while housekeeping mRNA production is

decreased. (ii) mRNA decay further contributes to transcriptome

adaptation. (iii) The altered transcriptome is subject to further regula-

tion at the level of translation to specifically enhance production of

stress-responsive proteins. (iv) Protein degradation further aids prote-

ome adaptation by selectively removing proteins. Dashed lines show

where stresses inhibit processes. Housekeeping genes mRNAs are

indicated in yellow while the proteins are in green. Stress-responsive

genes mRNAs are indicated in pink while the proteins are in red.
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protein production. In Box 1 and Fig. 3, we highlight

some techniques and approaches which can be used to

assess translation so researchers new to the field can

get an overview of available methodologies.

Effect of stresses on mRNA
availability

Stress-induced formation of RNA-containing

granules

For translation to occur, both the translation machinery

and mRNA must be available. Several stresses cause

rapid sequestration of these components into stress

granules (SGs: mRNA, translation initiation complexes

and RNA binding proteins (RBPs)) and P-bodies (PBs:

mRNA and RBPs such as those involved in mRNA

decay) mediated by liquid–liquid phase separation of

RBPs [54,55]. While SGs formed upon different stresses

share a name and common components, there are sig-

nificant compositional differences. SGs formed follow-

ing eIF4A inhibition have relatively low levels of

mRNAs, eIF4G and eIF3B compared to SGs formed

following sodium arsenite treatment [56]. The impor-

tance of stress-induced eIF2a phosphorylation to SG

formation is also context dependent [56]. Care must,

therefore, be taken when extrapolating SG function

between stresses. Although most mRNAs in SGs are

translationally repressed, stress-activated (ATF4) and

inhibited (50TOP containing RPL32) mRNAs can be

translated within these structures, with only a moderate

decrease in the translationally active proportion com-

pared to cytosolic mRNAs [57]. Phase-separated gran-

ules supporting translation in non-stressful conditions

Fig. 2. Canonical mechanism of translation. (A) Translation Initiation. The ternary complex, 40S ribosomal subunit and eIF3, eIF5, eIF1, eIF1a

form the 43S pre-initiation complex (PIC). The eIF4F complex, composed of eIF4A, eIF4G and eIF4E, binds the mRNA cap and poly-A bind-

ing protein (PABP) to circularize the mRNA. The 43S PIC binds the eIF4F complex and scans along the mRNA until the initiator methionine

(i-met) tRNA of the ternary complex recognizes an AUG codon. The 60S ribosomal subunit is then recruited to form the 80S ribosome with

the i-met tRNA in the peptidyl transferase (P)-site. (B) Translation elongation. (i) Following initiation or a round of translation, a ribosome has

one tRNA in the P-site. (ii) A codon-matched amino-acylated (aa-)tRNA is recruited to the acceptor (A)-site by eEF1a. (iii–iv) mRNA transloca-

tion occurs, mediated by eEF2, moving the tRNAs from the P- to the Exit (E)-site, and A- to P-site, adding one amino acid to the peptide

chain. The E-site tRNA is released and the process repeats from (i) until a stop codon is reached. (C) Translation termination. Once a stop

codon is reached, it is recognized by the eRF1/3 complex, which causes the peptide chain to be released. The ribosome is then split for

recycling.
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have also been widely reported across eukaryotes [58–
63]. Microscopy resolution remains a limiting factor for

identifying small and/or more diffuse stress granules

over the cytosolic background. While fundamental

questions are being re-opened about the nature of SGs

as a translationally inactive mRNA storage compart-

ment, further investigations are required to determine

whether, and to what extent, other mRNAs are trans-

lated within SGs.

In contrast to SGs, PBs are devoid of translating

mRNA and translation factors, instead containing pro-

teins associated with mRNA decay and translational

repression [57,64]. Despite this, PBs do not seem to be

sites of general mRNA degradation, and mRNA decay

occurs when PB formation is prevented [65,66]. Indeed,

some mRNAs are stabilized upon stresses which induce

PB formation: possibly by PBs sequestering mRNA

degrading enzymes [66–68]. This has larger effects on

some mRNAs (e.g. nonsense-mediated decay-regulated

mRNAs) than others. Degradation of other mRNAs is

regulated by alternative splicing, notably the HAC1

mRNA in S. cerevisiae (XBP1 in mammals) following

ER stress, alternative splicing of which prevents degra-

dation, allowing translation and unfolded protein

response (UPR) initiation [69,70]. Other mRNAs are

similarly regulated [71–73]. Together with alterations at

the transcriptional level, altered mRNA decay and

splicing change the pool of mRNAs available for trans-

lation. For some mRNAs, this may be important to off-

set changes to translation efficiency, while for others it

is the primary way of regulating protein output [74].

Stress regulation of mRNA–RNA-binding protein

interactions

mRNAs interact extensively with RNA-binding pro-

teins (RBPs), which can regulate mRNA translational

capacity [75]. This includes, but is not limited to, factors

involved in translation initiation, many of which have

reduced mRNA association following stress [76,77].

Other proteins known to affect translation, such as the

S. cerevisiae translational repressor Puf3, have altered

overall levels bound to mRNA following stress [76]. In

most cases, additional studies to determine the specific

mRNAs these proteins differentially interact with are

yet to be performed. In follow-up studies which have

been performed, work has focused on either identifying

mRNAs bound to a particular protein or using genetic

manipulation followed by assessment of protein levels

[78,79]. Other stress-regulated RBPs include metabolic

proteins, such as thymidylate synthase and iron regula-

tory proteins, some of which regulate levels of certain

proteins, including their own, either through regulation

of mRNA stability or translation initiation [80,81].

While many RBPs contain defined RNA recognition

motifs, many do not. It is becoming more apparent that

proteins without canonical RNA recognition motifs can

interact with diverse mRNAs through phase separation,

either in SGs/PBs or other similar bodies, and are thus

able to manipulate their translation and sequestration

into these structures [63,82–84]. The molecular proper-

ties of the mRNAs which facilitate this remain unclear,

although mRNA is more effective than other types of

RNA at interacting with phase-separated bodies, per-

haps indicating an importance for both length and a rel-

ative lack of secondary structure [84].

Additional RNA-containing structures involved in

translation can have altered interactions with proteins

which affect their function. This includes different ribo-

somal protein paralogues (discussed in the ‘translation

elongation’ section and reviewed in [85]), and tRNAs.

To deliver amino acids to the ribosome, tRNAs require

aminoacylating. Under stress conditions, methionine-

tRNA-synthetase loses specificity and mis-charges non-

Box 1. Techniques to monitor translation

Translation is a highly dynamic, multi-step process,

readouts of which can be impacted by other processes

(e.g. protein degradation). A further complicating fac-

tor is that there is no fixed rate of translation: much

like transcription, translation occurs in bursts with

periods of high and low activity [41,42]. A large vari-

ety of techniques can be employed to measure transla-

tion; from the whole translatome to individual

mRNAs. These range from comparing protein and

mRNA levels to determine how much protein is pro-

duced per mRNA, while recognizing and controlling

for the contribution of protein degradation (Fig. 3A)

[43], incorporation of radioactive amino acids, chemi-

cally modified amino acids, or aminoacyl tRNA ana-

logues into newly synthesized peptide chains (Fig. 3B)

[44–48], investigation of mRNA–ribosome interactions

(Fig. 3C) [49–51], and live or fixed cell microscopy of

specific mRNA translation (Fig. 3D) [41,52,53]. Each

technique has advantages and disadvantages for deter-

mining mRNA translation efficiency, and each

requires a healthy degree of scepticism and appropri-

ate controls when interpreting results due to several

additional factors which can impact the observations.

Researchers wishing to explore translation for the first

time are advised to look through the methods

highlighted here to help identify the one(s) most

appropriate for their particular question.
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Met tRNAs with methionine, which can be used in

translation. This occurs across species, possibly to aid in

countering increased ROS [86–88]. Under certain stress

conditions, tRNAs can be bound and cleaved by angio-

genin, removing them from the tRNA pool [89]. Altered

interactions between RNAs, tRNA and RBPs following

stress have major impacts on translation.

Effect of stresses on translation
initiation

Translation initiation is regulated by altered cellular sig-

nalling upon stress: principally through changing trans-

lation initiation component availability. The major

stress-regulated signalling pathways involved in altered

translation upon stress are highly evolutionarily con-

served. These include the integrated stress response

(ISR) kinases, TORC1 (target of rapamycin complex 1

and its mammalian counterpart mTORC1 – collectively

referred to here as TORC1), AMP-activated protein

kinase (AMPK) and protein kinase A (PKA). The regu-

lation of these kinases is multi-layered with substantial

interplay (Fig. 4A). While we discuss the roles of these

kinases individually, their interplay is key to producing

complex and highly regulated changes to cellular trans-

lation. For example, both TORC1 inhibition and ISR

activation are necessary for the expression of Nanog-

291 and Snail-85 mRNAs upon stress simulation in

breast cancer cells [90]. Depending upon the mRNA

and its specific properties, translation can either be

Fig. 3. Methods to measure translation. (A) Comparing mRNA and protein levels to look for changes in translation of either one specific

protein or multiple proteins using genomic and proteomic techniques. Protein degradation must be accounted for. (B) Labelling freshly

synthesized peptide chains with aminoacyl-tRNA analogues or labelled amino acids and quantifying the incorporation. (C) Assessing mRNA–

ribosome interactions, either of specific mRNAs or transcriptome wide. (D) Direct microscopy visualization of translation of specific mRNAs

through technologies such as SunTag, shown, which uses colocalization analysis of nascent chain (labelled with a fluorescent anti-SunTag

nanobody) and mRNA (labelled with green-fluorescent protein tagged PP7 coat protein, PCP-GFP).
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up- or downregulated by the same altered signalling,

allowing a consolidated translational response to the

stress. This response can change over the lifetime of

the stress with different signalling outputs apparent in

cells under acute and chronic stress [91–94]. In the fol-

lowing sections, we detail these and other changes to the

mechanisms and location of translation initiation.

Integrated stress response

The ISR is mediated by kinases which reduce, but do

not eliminate, ternary complex (TC) assembly through

inhibiting the ability of eIF2 to bind GTP [95]. The

mechanisms of ISR activation are varied. In mammalian

cells, the ISR is triggered by the activation of any one

of four kinases (PERK, PKR, HRI, Gcn2) which are

descended from the ancestral Gcn2, the only form

found in yeast [96,97]. PERK is activated by ER stress

and hypoxia [98–100]. PKR is activated by double-

stranded RNA and interferon signalling (notably during

viral infection), and possibly ER and oxidative stresses,

although the evidence is circumstantial [101–104]. HRI

is activated by heat, osmotic, oxidative, haem deficiency,

mitochondrial and proteotoxic stresses [99,105–111].

Fig. 4. Changes to translation upon stress. (A) Stress impacts signalling from various kinases to alter translation. Arrowheads indicate

activation, while barred lines indicate inhibition. ISR is the integrated stress response. (B) Inhibition of ternary complex formation by the ISR.

ISR kinases phosphorylate eIF2a to sequester the eIF2 GEF and eIF2B, preventing GDP to GTP transition and re-binding of initiator tRNA.

(C) Regulation of ATF4/GCN4 translation by upstream open reading frames (ORFs) is dependent on ISR signalling. Following initiation and

termination from uORF1, the restriction of ternary complex (TC) availability under conditions of ISR activation prevents premature re-

initiation at uORF2. This allows translation initiation from the start codon of the coding sequence (CDS) ORF. In mouse ATF4 mRNA, uORF2

overlaps the CDS ORF. For GCN4 mRNA, the uORF1 represented here is analogous to the first ORF pair (uORFs1&2) while uORF2 is analo-

gous to the second ORF pair (uORFs3&4). (D) Impacts of the stress-inhibited kinase TORC1 signalling on translation. (i) TORC1 inhibition

restricts 43S pre-initiation complex formation through ISR activation (see Fig. 4B) and reduced ribosome biogenesis (RiBi) through decreased

S6Kinase activation. In S. cerevisiae, the TORC1-inhibited phosphatase Sit4 can counter the ISR kinases. (ii) TORC1 inhibition restricts avail-

ability of the eIF4F components eIF4G (via increased degradation) and eIF4E (through eIF4E-BP1 sequestration). (iii) TORC1 inhibition, and

reduced S6Kinase activation, decreases eIF4B activation of eIF4A and prevents degradation of the eIF4A inhibitor PDCD4. (iv) Inhibition of

TORC1, and resulting S6Kinase inhibition, allows eEF2Kinase to inhibit the ability of eEF2 in mRNA translocation.
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Gcn2 is regulated by amino acid availability, interaction

with the P-stalk of non-translating ribosomes, cytoskele-

tal perturbation, infection, TORC1 regulation of down-

stream phosphatases and phosphorylation by AMPK,

in addition to oxidative, and possibly other stresses, in

yeasts [112–120]. In the most well-described mechanism

of Gcn2 activation, Gcn2 interacts with Gcn1 and the

yeast-specific Gcn20, which recruit free tRNAs to Gcn2

at the ribosomal A-site: a reaction that is enhanced

under conditions where the availability of an alternative

binding partner is limited (Yin1/IMPACT for Gcn1,

eEF1a for Gcn2) [119,121–123]. Gcn2 has additionally

been described as a TORC1 inhibitor through regulating

translation of Sestrin2 (which interferes with TORC1

localization), eIF2a phosphorylation and potentially by

directly phosphorylating TORC1 itself [124–126].
Activated ISR kinases phosphorylate the eIF2 com-

plex subunit eIF2a at Serine 51. This phosphorylation

creates an alternate binding site for the eIF2 guanine

nucleotide exchange factor (GEF) eIF2B, sequestering

it and preventing GDP to GTP exchange on eIF2

[127]. GDP-bound eIF2 has much lower affinity for

the i-Met tRNA and thus TC formation is inhibited

(Fig. 4B) [128]. Reduced TC availability rapidly

decreases translation initiation, allowing the cell time

for transcriptome modification for stress-adaptive

translation. It additionally acts to decrease production

of proteins which are liable to exacerbate stresses, such

as the mitochondrial complex I protein NDUFAF2:

the decrease of which limits oxidative stress [129]. Acti-

vation of the ISR during parasite infection can lead to

reduced host-cell nutrient usage, thereby enhancing

pathogen growth, while for other infections the ISR

inhibits pathogen multiplication [120,130].

While translation initiation is decreased by eIF2a
phosphorylation, TC levels are reduced rather than

absent, allowing some initiation to occur. By modulat-

ing the level of ISR activation, cells can fine-tune TC

availability as appropriate for the conditions [131].

Altered TC availability does not uniformly reduce

translation, and thereby changes the proteome compo-

sition in cells with activated ISR. Altered translation

in response to ISR activation is best described for the

upstream ORF (uORF)-regulated transcription factors

ATF4 and its yeast equivalent Gcn4. In mouse ATF4

mRNA, there are two uORFs: one distal from the

start codon, and one proximal which encodes a pep-

tide overlapping the start codon (human ATF4 mRNA

contains three uORFs: two distal and one proximal).

GCN4 has four uORFs, which can be thought of as

occurring in pairs (1 and 2, 3 and 4) with similar func-

tionality to those in ATF4 mRNA [97].

GCN4/ATF4 mRNA translation (Fig. 4C) initiates

at the distal uORF(s) through canonical translation

mechanisms and swiftly terminates. Following transla-

tion termination, a subset of the 40S ribosomes

remains bound to the mRNA, aided by an interaction

between a sequence-specific part of the mRNA and

eIF3, which can remain bound to the 40S for the ini-

tial ~ 75 amino acids [132,133]. These 40S complexes

resume scanning and reacquire a TC, which can inter-

act with eIF3, to initiate at a downstream site [134].

When the TC is more abundant, this occurs rapidly,

and translation is initiated at the proximal uORFs.

Following termination at these uORFs, the 40S does

not maintain its mRNA interaction and no further

reinitiation occurs. When the TC is less abundant, it

takes longer to acquire a new TC. Scanning conse-

quently proceeds past the uORFs and initiates at the

GCN4/ATF4 start codon. Spacing between the uORFs

is critical for this regulation [135]. Delivery of i-Met

tRNA can be performed upon TC formation inhibi-

tion by the eIF2D/DENR complex, in the absence of

which ATF4 expression is drastically reduced in Dro-

sophila fat cells [136]. In contrast, eIF2D recycles 40S

subunits and inhibits reinitiation in S. cerevisiae,

although this role may be sequence dependent [137]. It

is important to acknowledge that not all uORFs are

involved in translational regulation: recent evidence

indicates that only a small, albeit important, subset of

uORFs regulate translation [138]. Other mRNAs with

only one inhibitory uORF are more likely to have this

uORF bypassed under stress [139]. Specific translation

of Gcn4/ATF4 and other transcription factors allows

transcriptional rewiring prior to the resumption of

translation from a newly stress adapted transcriptome,

contributing to stress adaptation.

Intriguingly, despite the TC’s importance for trans-

lation initiation, inducing eIF2a phosphorylation in

the absence of stress does not necessarily inhibit trans-

lation [140,141]. Analysis of a mutant which sustains

bulk translation at normal rates upon TORC1 inhibi-

tion despite high levels of phosphorylated eIF2a impli-

cated defective regulation of eIF4G, which has been

recently linked to isoform-specific stress adaptive

translation [141,142]. Furthermore, other studies have

shown that upon prolonged stress ATF4 expression

can decrease while eIF2a phosphorylation remains

high, potentially due to a reduction in the number of

ribosomes [91,92]. Underscoring the interplay between

the different signalling elements discussed here, ATF4

protein expression can also be induced by activating

TORC1 in a poorly understood process dependent on

eIF4E availability and involving mRNA stabilization

5108 The FEBS Journal 291 (2024) 5102–5122 ª 2024 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Translation regulation in response to stress T. D. Williams and A. Rousseau



and increased uORF skipping independently of TC

availability, although the transcriptional targets are

distinct [143,144]. Countering the ISR are the PP1

phosphatases which are active against P-eIF2a when

associated with either the constitutively expressed

CReP (also known as PPP1R15B) regulatory subunit,

or the ISR-induced GADD34 (also known as

PPP1R15A) regulatory subunit and G-actin, which

helps stabilize the complex [145–147]. In this way, the

ISR acts to limit its own activation. Therefore, while

great importance is ascribed to ISR activation, it is

important to remember that this always occurs within

a network of multiple interacting regulators (Fig. 4A).

Target of rapamycin complex 1

TORC1 regulates various downstream signalling path-

ways, or branches, which collectively promote ana-

bolic, and inhibit catabolic, processes when TORC1 is

active [148]. These branches include autophagy,

S6Kinases and PP2A phosphatases, regulation of

which are highly conserved from yeast to humans,

demonstrating a central role in eukaryotic biology.

TORC1 signalling couples environmental status and

nutrient availability with anabolic functions essential

for cell growth, including translation. TORC1 activity

towards either of the two most investigated down-

stream effectors, S6Kinase and eIF4E-BP1, is inhibited

by various stresses, including oxidative, envelope, hyp-

oxic, osmotic, nutrient, heat, metabolic and ER stres-

ses [9,12,149–157]. S6Kinase signalling can also be

activated by mild oxidative and ER stresses [149,158].

In mild stress conditions of nutrient limitation, akin to

those found in the wild, S. cerevisiae TORC1 activity

becomes oscillatory [93]. Other TORC1 effectors are

regulated by some, but not all, of these stresses [9].

TORC1 activity is, thus, highly responsive to changing

cellular conditions.

The majority of TORC1 is activated in the presence of

amino acids through recruitment to the lysosome/vacuole

by a GTPase complex. Once there, TORC1 is activated

by the Rheb small GTPase, which is responsive to envi-

ronmental status, particularly the presence of growth fac-

tors in mammalian cells. The link between Rheb and

TORC1 has been lost in S. cerevisiae (although not

S. pombe) and various other lower organisms, indicating

that environmental status can be sensed through alterna-

tive mechanisms such as AMPK activation [159–161]. No

Rheb homologue in plants is known, although a putative

RhebGEF with the expected distribution and effect on

growth has been identified [162]. While most TORC1 is

at the lysosome/vacuole, a minority is found elsewhere in

the cell, with these pools likely to have their own distinct

functional effects and downstream signalling [163–165].
Little is known about how these non-lysosomal/vacuolar

pools are regulated and respond to stress, although Rheb

localized to alternative membranes and the nucleoplasm

is likely involved [165–167].
TORC1 inhibition restricts subunit availability for

the PIC and eIF4F complexes, as well as scanning and

elongation (Fig. 4D). TORC1 inhibition activates the

ISR by Gcn2 dephosphorylation through the PP6C

phosphatase in mammalian cells, and an unidentified

phosphatase in S. cerevisiae [114,115]. ISR activation,

in turn, can inhibit TORC1 [124–126]. The S. cerevisiae
PP2A phosphatase Sit4, which is activated by TORC1

inhibition, can counter ISR kinases to increase TC

availability [113]. Further restriction of PIC formation

(Fig. 4Di) is mediated by the S6Kinase branch of

TORC1 signalling controlling the ribosome biogenesis

(RiBi) transcriptional programme [168]. S6Kinases are

named for their ability to phosphorylate ribosomal pro-

tein S6 (Rps6). In mammalian cells, Rps6 phosphoryla-

tion itself, likely in the nucleus, is important for RiBi,

although in S. cerevisiae, this regulation occurs primar-

ily through the S6Kinase Sch9 regulating transcriptional

repressors, with the alternate S6Kinase Ypk3 being

responsible for the majority of Rps6 phosphorylation

[169–173]. Phosphorylated Rps6 in the 40S may aid in

translation initiation, with a potential bias for shorter

and 50TOP mRNAs [174].

Availability of the eIF4F cap-binding complex, com-

posed of eIF4A, eIF4E and eIF4G, is regulated by

TORC1 signalling (Fig. 4Dii). eIF4E, the cap-binding

subunit, is alternately bound by eIF4E-binding proteins,

most notably eIF4E-BP1 in mammalian cells. TORC1

directly phosphorylates eIF4E-BP1, preventing this

binding from occurring and allowing eIF4F complex

formation [175]. When TORC1 activity is reduced,

eIF4E-BP1 phosphorylation is reduced, allowing it to

bind and sequester eIF4E, limiting translation initia-

tion. Intriguingly, unlike the majority of TORC1 signal-

ling events, the evolutionary history of eIF4E binding

protein phosphorylation remains unclear. eIF4E bind-

ing proteins in yeasts and nematodes are not thought to

be regulated by TORC1, unlike in flies, mammalian

cells and amoebae [176–179]. However, a recent report

found that the S. cerevisiae phosphorylation of the

eIF4E-binding protein Caf20 is regulated by TORC1,

although this does not cause eIF4E sequestration [180].

TORC1 activity controls the phosphorylation state of

the eIF4F member eIF4G, which helps recruit the PIC

to mRNA [44,181]. S. cerevisiae eIF4G levels are con-

trolled by TORC1 through autophagy-mediated degra-

dation, while mammalian eIF4G is degraded in a

caspase-dependent manner in conditions where TORC1

5109The FEBS Journal 291 (2024) 5102–5122 ª 2024 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

T. D. Williams and A. Rousseau Translation regulation in response to stress



is inhibited, although whether the caspases act on

eIF4G directly, or through promotion of autophagy

remains unknown [141,182,183]. Intriguingly, the eIF4F

complex also physically interacts with TORC1 and can

facilitate reduced TORC1 activity in amino-acid-starved

conditions [184,185].

TORC1 promotes scanning and elongation via

S6Kinase activation (Fig. 4Diii–iv). S6Kinase enhances

phosphorylation of eIF4B, which then promotes

eIF4A helicase activity and translational scanning

[186]. S6Kinase further promotes degradation of the

eIF4A inhibitor PDCD4 [187]. eEF2Kinase is phos-

phorylated and inactivated by S6Kinase, preventing it

from inhibiting eEF2 [188]. Although this would be

expected to mostly impact elongation, eEF2 activity is

also important for ribosome recycling and translation

initiation [189]. S6Kinase inhibition is equally impor-

tant for decreasing translation in stressed cells: a

phospho-mimetic form of the S. cerevisiae S6Kinase

Sch9 (simulating the ‘TORC1 active’ state) largely pre-

vents translation downregulation, assessed by poly-

some profiling, upon TORC1 inhibition [171]. While

TORC1 activity has a major role in regulating eIF4F-

dependent translation initiation, the effect of TORC1

inhibition, and its signalling branches, on translation

in response to most stresses remains to be determined.

AMP-activated protein kinase

AMPK is activated in response to stresses which reduce

cellular ability to produce ATP (including hypoxia,

amino acid starvation and TORC1 inhibition) by bind-

ing AMP/ADP [190,191]. AMPK activation affects

translation by both inhibiting TORC1, its downstream

S6Kinase, and activating the ISR [113,155,156,159].

AMPK activation by exercise is associated with eIF4E-

BP1 dephosphorylation, causing a change in the trans-

lation of certain mRNAs, although it remains unproven

whether this is AMPK dependent and whether the

pathway is mediated through TORC1 activity modula-

tion or a parallel mechanism [192]. AMPK further pro-

motes eEF2 phosphorylation, inhibiting translation

elongation and ribosome recycling, by both activating

eEF2Kinase and sequestering the eEF2Kinase phos-

phatase PP6C, which is intriguingly activated by

TORC1 inhibition [114,189,193,194].

Protein kinase A

PKA is regulated by intracellular levels of cAMP,

becoming activated when cAMP binds the inhibitory

regulatory subunits, releasing the catalytic subunits

[195,196]. Glucose stimulates cAMP production by

boosting ATP generation, leading to PKA activation in

S. cerevisiae [196–198]. While glucose induces mamma-

lian PKA activity towards some substrates, glucose

withdrawal can also stimulate PKA [199–201].
Glucose withdrawal causes both autophagic degrada-

tion of a PKA inhibitory subunit and ER stress, another

PKA-activating signal [200,202,203]. PKA interacts

with other stress-regulated signalling: TORC1 relieves

PKA inhibition in S. cerevisiae, while in mammalian

cells, PKA inhibits TORC1 and AMPK signalling

[199,204–206]. TORC1 and PKA have substantially

overlapping downstream target proteins outlining a sim-

ilar function in promoting cellular anabolism [207].

PKA phosphorylates eIF4B, likely promoting eIF4A

activity and thus translation initiation [208]. Counterin-

tuitively, the S. cerevisiae PKA catalytic subunits Tpk2

and Tpk3 are required for translation inhibition upon

glucose starvation, and affect translation of certain

mRNAs following heat stress: possibly by recruiting

specific eIF4G subunits, which can affect stress-adaptive

translation, to the eIF4F complex [142,209–211]. The
PKA response to stress is multi-faceted, with a deeper

knowledge of the subsequent impacts upon translation

still a work in progress. The multitude of downstream

targets makes this work exceedingly challenging.

eIF4F-independent translation initiation

Although ribosome recruitment via the eIF4F complex

is the dominant mode of ribosome docking onto

mRNA, alternatives exist. These alternatives become

particularly relevant following stress when many com-

ponents of the eIF4F complex are depleted either

through degradation (eIF4G), sequestration (eIF4E) or

dissociation (eIF4A) [141,175,212,213].

Following viral infection cells shut down translation

initiation to try to restrict viral amplification. To cir-

cumvent this, many viral mRNAs contain internal

ribosome entry sites (IRESs), mRNA secondary struc-

tures which can recruit ribosomes in the absence of

eIF4F bound to an mRNA 50 cap [17,214]. In at least

some instances, IRES binding of eIF3 is involved in

this recruitment, while other IRES sequences can

recruit eIF4F components [215]. Interestingly, an IRES

does not have to be upstream of the start AUG codon

to promote translation: ribosome recruitment to the

30UTR can drive increased translation by facilitating

ribosome delivery to the 50UTR [216]. There are addi-

tionally hundreds of known eukaryotic IRESs,

although care must be taken before concluding that

any sequence has IRES activity [217,218].

While IRESs frequently contain large structural ele-

ments, they do not have to be structured. PABPs, which
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bind to both eIF4G and A-rich sequences, can bind to

unstructured A-rich 50UTRs in mRNAs and recruit

ribosomes for increased translation upon stress

[219,220]. As different eIF4G proteins are differentially

involved in stress-adaptive translation from mammalian

to yeast cells, it is possible that isoform-specific differ-

ences in the PABP binding region could regulate IRES

translation of these targets [142]. A-rich mRNA

sequences can also be methylated upon stress by

METTL3, allowing binding of ABCF1 to the mRNA in

the 50UTR away from the cap. ABCF1 likely recruits

eIF4G for cap-independent initiation [221]. IRES

sequences can circumvent eIF4F-dependent translation

initiation downregulation (thus maintaining translation)

or upregulate translation of IRES-containing mRNAs

following stress [222]. IRESs can even facilitate transla-

tion of different protein isoforms [223].

eIF3, in addition to the ability to promote IRES-

regulated translation, can bind the mRNA cap and

recruit ribosomes for eIF3-dependent translation

through the eIF3d subunit [224]. This method of ribo-

some recruitment becomes a major route for transla-

tion initiation for cells under various stresses [225–
227]. Whether there is a bias of eIF3d binding towards

stress-adaptive mRNAs remains unknown. Recruit-

ment of ribosomes to mRNA in such a distinct man-

ner is likely to contribute to different translational

efficiency of mRNAs following stress.

Stress-induced translation from alternative start

codons

While we have so far discussed translation initiation at

AUG sites, initiation can also occur at alternative start

codons, particularly at similar sequences like CUG

[228]. Translation initiation site mapping indicates that

up to 50% of translation initiation occurs at non-

AUG sites. Although it is possible that many of these

sites are either initiation errors or artefacts of the

experimental conditions, many likely encode short

ORFs with regulatory functions [229]. A recent excel-

lent review on this topic is available elsewhere [230].

Translation from non-AUG start codons can be

enhanced upon stress, including from two examples

upstream of uORF1 on GCN4 mRNA, which may

help promote Gcn4 expression [231]. In mammalian

cells, the mitochondrial ribosome protein L18 can be

translated from a downstream CUG codon upon stress

to generate a cytosolic isoform, which helps promote

heat shock protein translation [232]. Translation from

non-AUG initiation sites, therefore, may facilitate

translational adaptation to stress.

Translation of stress-adaptive mRNAs at

translation hot spots

To boost translation upon stress, defined mRNAs can

be recruited to translational platforms, including at

regions of dense actin [1,63,82,233–235]. Several pro-

teins involved with these platforms have a high

propensity for phase separation. Stress conditions which

promote mRNA relocalization to SGs/PBs may simi-

larly promote localization of certain mRNAs to these

regions to increase stress-responsive translation initia-

tion. Similar phase-separation-driven promotion of the

translation of translation factors is observed in

unstressed conditions [59]. Such an increase in transla-

tion could be mediated by local activation of mTORC1

allowing increased local availability of the eIF4E cap-

binding protein for longer bursts of active translation,

although this remains speculative [41,236]. Evidence of

whether these hotspots occur in mammalian cells under

stress, and how extensively they are used in S. cerevisiae

remains to be established.

Effect of stresses on translation
elongation

For efficient elongation, there must be sufficient codon-

matched aminoacylated tRNAs alongside space in the

A-site for them to bind. eEF2 is important for translo-

cation of the ribosome, thus vacating the A-site for the

subsequent round of tRNA binding. eEF2 activity is

inhibited by phosphorylation from eEF2Kinase which

has low activity under unstressed conditions. eEF2Ki-

nase activity is constrained by phosphorylation from

the TORC1-activated S6Kinase (Fig. 4Div) [188,237].

Upon stress, eEF2Kinase is no longer repressed but is

activated by AMPK [194]. eEF2Kinase then phosphor-

ylates and inhibits eEF2. This inhibition is countered

by the TORC1-repressed phosphatase PP6C, which

activated AMPK sequesters [114,193]. This interplay

allows fine-tuning of eEF2 activity according to the

type and severity of stress.

tRNAs can be modified under stress conditions to

allow for greater wobble at the third base, mitigating

against reduced tRNA availability and promoting

translation of select transcripts [238,239]. For some

tRNAs, this is insufficient: upon oxidative stress there

is a reduction in Trp tRNA availability, leading to

ribosome stalling and collisions at the single Trp UGG

codon [240]. The increase in uncharged Trp tRNAs

additionally leads to ISR activation, affecting transla-

tion initiation. Increased collisions could lead to erro-

neous translation through frameshifting, but this
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is mitigated by ribosome-bound factors such as

Slf1 [241].

Several ribosomal proteins have paralogues, resulting

in numerous possible ‘flavours’ of ribosome, which

have different preferences for mRNAs to translate [85].

Such a role has been reported in different tissues, and

within single cells [242,243]. Modulation of ribosome

heterogeneity can be controlled by post-translational

modifications affecting ribosomal proteins or rRNA,

with impacts upon mRNA translation [244–246]. This
can be at the level of elongation rates through codon

selection or through initial mRNA binding, including

through IRESs [243,246,247]. Switching of the preva-

lent ribosome ‘flavours’ can occur in stressed yeast cells,

and is seemingly more pronounced in the translating

pool of ribosomes than the non-translating pool [248].

Stresses, therefore, affect the type of ribosomes and

their interaction with tRNAs to favour elongation of

specific mRNAs upon stress.

Effect of stresses on translation
termination

Reducing translation termination is a possible further

mechanism to increase the abundance of stalled ribo-

somes and decrease translation. Large-scale proteomic

studies identified no changes in levels of the release

factor complex proteins eRF1 and eRF3, or the ribo-

some recycling protein ABCE1 following UPR induc-

tion in mammalian cells [249,250]. eRF1, eRF3 and

ABCE1 remain largely cytosolic following stress,

although a fraction of eRF1 and eRF3 have been

observed in yeast PBs, and all three are marginally

associated with mammalian SGs [251–254]. Termina-

tion factor recruitment to SGs upon oxidative stress is

coincident with an increase in stop codon readthrough

and free 80S ribosomes, suggestive of a defect in trans-

lation termination and subsequent ribosome splitting

[142,254]. Supporting a stress-induced reduction in

ribosome recycling, there is an increase in free, dor-

mant, 80S ribosomes following TORC1 inhibition,

potentially mediated by Stm1 in yeast and SREBP1 in

mammalian cells [255]. How these changes to termina-

tion protein availability affect protein translation needs

further investigation through targeted experiments to

increase their availability upon stress.

Future perspectives

Knowledge of the what and how of stress-induced

changes in translation is a critical challenge to our

understanding of organismal homeostasis. This broad

area, covering alterations in the translation efficiency

of an individual mRNA, larger scale proteome realign-

ments and the underlying molecular mechanisms

remains a field ripe for discovery. Changes to these

processes during the course of ageing and disease will

likely have clinical relevance and are an important

area for future research. Several kinases are known to

play a role in translation, but determining the role that

changes in their activity play upon stress to affect

translation remains, beyond the well-characterized

ISR, largely unclear. Recent technological advances in

RBP identification are likely to aid the identification

of further important pathways, while the growing

awareness of translational hotspots will add more

detail to that currently known. The large spread of

technical approaches available will power exciting dis-

coveries for many years to come.
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