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A B S T R A C T

TG-43-based dose calculations disregard tissue heterogeneities and finite scatter conditions, prompting the 
introduction of model-based dose calculation algorithms (MBDCAs) to improve accuracy in high-dose-rate (HDR) 
brachytherapy. This study evaluated the effectiveness of MBDCAs over TG-43 in HDR 192Ir brachytherapy of 
extended scalp lesions. Treatment planning dose calculations were compared with Monte Carlo (MC) data. TG-43 
exhibited a dose overestimation ranging from 10% to 23% as the distance from the implant increased, while a 
better agreement from 2% to 6% was observed between the MBDCA and MC, supporting the adoption of MBDCAs 
for dose calculations in broad scalp lesions.

1. Introduction

Despite the literature supporting the implementation of model-based 
dose calculation algorithms (MBDCAs) in brachytherapy treatment 
planning [1], the TG-43 formalism [2] remains the preferred approach 
due to its simplicity and practicality. TG-43 relies on the superposition of 
single-source dose distributions in an unbounded water geometry, yet 
factors like tissue heterogeneities, finite patient dimensions, and the 
presence of needles/applicators are disregarded. Although site-specific 
studies have not shown significant clinical effects on average [3,4], 
TG-43 may be less accurate in certain applications, such as High-Dose- 
Rate (HDR) intraoperative and surface brachytherapy, where source 
dwell positions lie near the edge of a bounded heterogeneous geometry 
surrounded by air, limiting full scatter conditions.

Raina et al. [5] reported a TG-43 dose overestimation in intra
operative HDR 192Ir treatments due to the lack of full scatter conditions, 
which increased with prescription distance (up to 13 % of the pre
scription dose for 1.5 cm), leading to the suggestion of bolus use or dose 
prescription amendment. Boman et al. [6] compared the TG-43 and 

MBDCA options of a commercial treatment planning system (TPS) in 
HDR 192Ir brachytherapy superficial treatments, indicating a significant 
TG-43 dose overestimation when full scatter conditions do not apply, 
with deviations up to 15 % for larger molds. TG-43 dose overestimations 
were also evident in the comparison between the TG-43 and MBDCA 
options of a commercial TPS by Scherf et al. [7] and Placidi et al. [8] for 
HDR 192Ir treatments of perinasal skin tumor and eyelid cancer, 
respectively. To avoid underdosage, Placidi et al. [8] suggested the use 
of bolus when a MBDCA is not available.

The Monte Carlo (MC) studies by Vjiande et al. [9] and Granero et al. 
[10] showed differences less than 5 % between TG-43 and MC in ge
ometries simulating HDR 192Ir skin treatments. Based on these works, 
the American Brachytherapy Society (ABS) recommends that a bolus is 
not needed for HDR skin brachytherapy [11]. Since rather small appli
cators were simulated in these studies however, and in light of the 
aforementioned experimental and clinical works showing clinically 
significant TG-43 inaccuracies, this recommendation may be too gen
eral, and further investigation on the impact of improved dose calcula
tion accuracy for cases with larger applicators would be beneficial.
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Such investigation was the purpose of the present work, comparing 
TG-43 to a collapsed cone superposition MBDCA and MC simulation for 
a HDR 192Ir mold brachytherapy treatment of scalp lymphoma. These 
cases are interesting due to the large extent of the lesions requiring 
custom molds with pronounced curvature and a large number of dwell 
positions.

2. Materials and methods

2.1. Treatment planning

This study involved a HDR surface brachytherapy application for the 
scalp performed at the Radiotherapy Clinic of the University Medical 
Center Freiburg (Germany), using the 192Ir mHDR-v2 source model in a 
microSelectron HDR v3 afterloader (Elekta AB, Sweden). The prescribed 
dose was 36 Gy administered in 18 fractions. The clinical target volume 
(CTV) covered almost the entire scalp (Fig. S1a in Supplementary Ma
terial). An individualized mold (Fig. S1b, c in Supplementary Material) 
was shaped to station the source in 840 dwell positions using 26 6F 
plastic needles (Elekta AB). The mold was made from overlapping layers 
of a thermoplastic material (Efficast 2.4 mm maxi, Orfit Industries, 
Belgium, thickness: 2 mm, mass density: 1.13 g/cm3). Radiolucent 
buttons (Elekta AB), also made of thermoplastic material (acrylonitrile 
butadiene styrene, mass density 1.03 – 1.07 g/cm3) were used to fix the 
needles within the mold.

The source dwell positions were activated based on Al-markers. 
Prescription depth (3–5 mm tissue depth) was defined using dose 
points generated 10 mm from the activated source dwell positions. TG- 
43-based dose planning was performed using the OncentraBrachy 
V4.3.0.410 (Elekta AB) TPS.

2.2. Retrospective dose calculations

The treatment planning data was exported in DICOM RT format and 
imported into OncentraBrachy V4.6.0.026 TPS (Elekta AB). Dose re- 
calculations were performed using both the TG-43 and the Advanced 
Collapsed cone Engine (ACE) [12] dose calculation algorithms of the 
TPS. ACE calculations were performed in both high-HA and standard-SA 
accuracy level [12]. Dose was calculated as dose to water in water Dw,w 
with full scatter by TG-43, and as dose to medium in medium Dm,m in the 
ACE calculations, using a 1x1x1 mm3 grid. For the ACE calculations, the 
density assignment was HU-based, while the material composition was 
assigned based on the TG-186 report [1]. In short, CTV and normal skin 
were defined as mean skin, bones as cortical bone, brain, eyes, and optic 
nerves as mean male soft tissue, lenses as eye lens, and the mold as 
water, since Scherf et al. [7] showed negligible variation of the dose 
parameters related to the planning target volume (PTV) for different 
typical mold materials with respect to water. The calculation time was 
approximately 10 min for TG-43, and approximately 2–3 days and 3 h 
for HA and SA ACE, respectively.

2.3. MC dose calculations

Simulations were performed using MCNP v6.1 [13] with input files 
prepared using BrachyGuide [14] to parse the information from the 
treatment plan in DICOM RT format. A summary of methods used in the 
simulation [15] is in Table S1 in Supplementary Material. Differences 
between ACE and MC results due to the different material composition 
assignment schemes (e.g. the mold was assigned as soft tissue in MC) are 
negligible for the 192Ir energies when the effect of density is ruled out 
[16,17].

2.4. Dose calculation comparison

TG-43 and ACE were compared with MCNP in terms of local dose 
differences on a voxel-by-voxel basis, and dose-volume histogram (DVH) 

indices for the CTV and the OARs (Table S2 in Supplementary Material). 
Since, generally, the accepted degree of accuracy for clinical dose 
calculation in HDR brachytherapy is within 5 % [1,9,18], differences 
above this threshold were deemed as clinically significant.

2.5. Ethics

Informed consent for publication was obtained in written form from 
a 64 years old male with a primary cutaneous germinal center lym
phoma (follicular B-cell lymphoma) of the scalp.

3. Results

The voxel-based comparison in Fig. 1 shows a considerable TG-43 
dose overestimation relative to MCNP data, that exceeded type A MC 
uncertainty (max. 2 % k = 1, see Table S1 in Supplementary Material) 
for the vast majority of voxels, and increased with distance from the 
implant from approximately 4 % (within the mold) up to a maximum of 
23 % within the lenses. HA ACE and MCNP were found in excellent 
agreement within the CTV and bones, with differences of approximately 
2 %. This agreement deteriorated slightly with increasing distance from 
the implant, but remained within 5 % within the brain and the lenses. 
Slightly higher differences, up to 6 %, were only observed in low dose 
regions such as the eyes and the optic nerves.

The comparisons in Fig. S3 in Supplementary Material further 
highlight the systematic TG-43 overestimations. Median local dose dif
ferences of TG-43 relative to MCNP varied from +9.6 % for the CTV to 
+22.4 % for the right lens. Normal skin was the only structure pre
senting considerable negative differences near the patient chin and 
throat. The median local dose differences between HA ACE and MCNP 
were more evenly distributed, ranging from +2.2 % for the CTV and the 
bones, to +6.1 % for the right optic nerve. Although HA ACE also 
exhibited a slight tendency to overestimate the dose with respect to 
MCNP, the observed differences within the CTV and the most proximal 
OARs to the implant were mostly comparable with type A MC 
uncertainty.

Table 1 summarizes DVH indices calculated for the CTV and the 
OARs using TG-43, SA and HA ACE and MCNP, and corresponding 
percentage differences using the latter as reference. Within the CTV, 
both TG-43 and ACE overestimated the minimum dose delivered at 
given percentages of the CTV. This overestimation was however up to 7 
% for TG-43, 1.7 % for HA ACE and 1.8 % for SA ACE. Similarly, the 
minimum dose delivered at different volumes of the normal skin 
exhibited differences greater than 5 % between TG-43 and MCNP and up 
to 1.1 % between ACE and MCNP. Differences of DVH indices between 
TG-43 and MCNP were greater for the remaining OARs, exceeding 20 % 
for OARs at relatively increased distance from the implant such as the 
eyes and eye lenses. Corresponding differences between ACE and MCNP 
remained under 6 %. These findings agree with the DVH comparison in 
Figs. S4 and S5 of Supplementary Material. Data in Table 1 also suggest a 
close agreement between HA and SA ACE results (see the corresponding 
voxel-based comparison in Fig. S6 in Supplementary Material).

4. Discussion

A TG-43 dose overestimation was observed in a HDR 192Ir skin 
brachytherapy application characterized by a large lesion with pro
nounced curvature, treated with a large number of catheters/source 
dwell positions. The potentially significant overestimation for the CTV 
(about 10 % or the equivalent of two fractions) is attributed to the TG-43 
overestimation of scatter dose on account of its full scatter geometry 
assumption [19,20]. This effect even counterbalanced the increased 
mass energy absorption of bone over water [21,3], and led to a TG-43 
dose overestimation in bone. TG-43 dose overestimation increased 
with distance from the implant due to the increase of relative impor
tance of scatter over primary dose combined with the disregard of 

G. Rossi et al.                                                                                                                                                                                                                                    Physics and Imaging in Radiation Oncology 32 (2024) 100673 

2 



increased attenuation in bone. It should be mentioned however that, 
apart from the lenses, where the maximum dose values were close to the 
dose tolerance limit [22,23], the significant TG-43 dose overestimation 
observed within the eyes and optic nerves was not clinically relevant, as 
toxicity in these OARs is anticipated at substantially higher dose levels 
[22,23].

ACE was found in close agreement with MCNP, especially within the 
CTV, the normal skin and the bones (within 2 %). This agreement 
deteriorated slightly at larger distances from the implant, with ACE also 

tending to slightly overestimate dose. This is probably due to the di
mensions of the phantom used for the calculation of the dose deposition 
kernel for multiple scatter being greater than those in the treatment 
geometry [24] combined with ray artifacts evident in ACE calculations 
at larger distances from the source [25,26,27].

The latter are artifacts due to the angular discretization employed by 
both currently available MBDCAs to enhance calculation speed, in the 
form of dose overshoot along the finite number of directions used. They 
are more pronounced for small numbers of dwell positions at points 

Fig. 1. Colormap representations of the local dose differences between (a) TG-43 and (b) HA ACE with MCNP results on an axial slice, with selected percentage 
isodose lines (20 %, 40 %, 50 %, 100 %, 150 %) superimposed (red contour: CTV, black contour: external, blue contour: mold, magenta contour: bones, yellow 
contour: brain, green contour: eyes). Corresponding results are shown on a sagittal plane in Fig. S2 of Supplementary Material. Dose profiles along the y-axis 
calculated on the same axial slice at (c) x  = 0.02 mm and (d) x  = -37.98 mm using MCNP, HA ACE and TG-43 are also presented. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)
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where scatter dose gradient is high and primary dose is small. They can 
be mitigated with the increase of directions and voxel size at the expense 
of computational time and potential volume averaging effects, respec
tively. Given the increased number of dwell positions considered in this 
work, SA and HA ACE calculations achieved comparable accuracy with 
the former taking considerably less time.

Scherf et al. [7] and Placidi et al. [8] reported smaller differences 
between TG-43 and ACE within the target, while Vijande et al. [9] and 
Granero et al. [10] reported smaller differences between TG-43 and MC 
simulation compared to our findings, yet significantly smaller molds 
were used in these studies. Differences observed between TG-43 and 
MCNP within the CTV in this work are in accordance with those 
observed by Raina et al. [5] at a 5 mm prescription distance. Boman et al. 
[6] showed a TG-43 dose overestimation within the CTV by approxi
mately 16 % compared to Acuros, which was relatively larger than the 
10 % overestimation observed between the TG-43 and MCNP results of 
this work, probably due to the different loading patterns in the two 
studies.

The above findings suggest that recommendations against using 
bolus in HDR skin brachytherapy may be too general [11], and there 
have been studies suggesting specific bolus thickness [8] albeit for 
specific applications of relatively reduced lesion size. For increased 
treated lesion sizes, such as in this work, the bolus required to achieve 
acceptable dose calculation accuracy using TG-43 might be patient- 
specific and/or impractical.

According to our results, an alternative approach is the use of a 
MBDCA for individualized, patient-specific dose planning, provided that 
the MBDCA is carefully commissioned [28] and first used in parallel to 
TG-43 to ascertain the validity of prescription for typical cases.
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