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Abstract
Background Ductal carcinoma in-situ (DCIS) is a pre-invasive form of invasive breast cancer (IBC). Due to improved 
breast cancer screening, it now accounts for ~ 25% of all breast cancers. While the treatment success rates are over 
90%, this comes at the cost of considerable morbidity, considering that the majority of DCIS never become invasive 
and our understanding of the molecular changes occurring in DCIS that predispose to invasive disease is limited. 
The aim of this study is to characterize molecular changes that occur in DCIS, with the goal of improving DCIS risk 
stratification.

Methods We identified and obtained a total of 197 breast tissue samples from 5 institutions (93 DCIS progressors, 
93 DCIS non-progressors, and 11 adjacent normal breast tissues) that had at least 10-year follow-up. We isolated DNA 
and RNA from archival tissue blocks and characterized genome-wide mRNA expression, DNA methylation, DNA copy 
number variation, and RNA splicing variation.

Results We obtained all four genomic data sets in 122 of the 197 samples. Our intrinsic expression subtype-stratified 
analyses identified multiple molecular differences both between DCIS subtypes and between DCIS and IBC. While 
there was heterogeneity in molecular signatures and outcomes within intrinsic subtypes, several gene sets that 
differed significantly between progressing and non-progressing DCIS were identified by Gene Set Enrichment 
Analysis.

Conclusion DCIS is a molecularly highly heterogenous disease with variable outcomes, and the molecular events 
determining DCIS disease progression remain poorly defined. Our genome-wide multi-omic survey documents 
DCIS-associated alterations and reveals molecular heterogeneity within the intrinsic DCIS subtypes. Further studies 
investigating intrinsic subtype-stratified characteristics and molecular signatures are needed to determine if these 
may be exploitable for risk assessment and mitigation of DCIS progression. The highly significant associations of 
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Background
Ductal carcinoma in situ (DCIS) is a non-obligate pre-
cursor of invasive breast cancer (IBC), characterized by 
abnormal ductal epithelial cells that have not invaded 
through the ductal basement membrane and are there-
fore considered noninvasive. Widespread mammo-
graphic screening has resulted in the dramatic increase in 
diagnosis of DCIS [1, 2], which currently accounts for up 
to 25% of newly diagnosed breast cancer in the US [3, 4]. 
Treatment for this pre-invasive lesion varies widely and 
ranges from surveillance in low grade cases to total mas-
tectomy with or without adjuvant radiation (RT) and/or 
endocrine therapy (ET) In higher grade cases. While the 
success rate of optimal treatment protocols for DCIS is 
over 90%, this comes at the cost of significant morbidity 
[5]. Considering that the majority of DCIS never become 
invasive carcinomas [6–9], less aggressive treatment pro-
tocols would spare patients at low risk for developing 
invasive cancer from significant morbidity [10].

The molecular events determining disease progression 
remain poorly defined. Breast cancer-specific markers 
may not be characteristic of the early events determin-
ing which DCIS is destined to progress. Even in stud-
ies focusing specifically on DCIS, most of the data are 
derived from samples that harbor synchronous invasive 
cancer [5, 11, 12], and are therefore unlikely to be fully 
representative of DCIS in patients without invasive can-
cer [13].

Several decades of investigations have identified a set 
of clinical and pathological variables that have prognos-
tic value, such as age, extent of disease, estrogen receptor 
(ER) status, nuclear grade, and surgical resection mar-
gins, but these have proven insufficient to allow meaning-
ful treatment stratification [5, 14, 15], and 75% of women 
receive RT without clear guidance on who can safely 
avoid it [4].

Molecular characterizations of DCIS have led to the 
development of biomarker panels that improve risk 
assessment. The Oncotype DX® DCIS Score (EXACT Sci-
ences, Madison, WI, USA) is a 12-gene assay that esti-
mates 10-year in-breast recurrence risk (IBR) in women 
identified as having low risk DCIS treated with breast-
conserving surgery alone [16, 17]. However, given the 
narrow selection criteria of these trials, the Oncotype DX 
DCIS Score is currently only applicable to post-surgery 
DCIS patients at low risk for recurrence, which has lim-
ited its clinical use so far. Another currently available 
assay, DCISionRT® (PreludeDx, Laguna Hills, CA, USA), 

uses a recurrence risk score based on a combination of 
clinical and pathologic factors. The initial studies were 
performed retrospectively on DCIS patients treated with 
breast conserving surgery ± RT and were shown to be 
prognostic for risk of recurrence and predictive for RT-
benefit [18]. Importantly, neither assay has been tested in 
prospective, randomized clinical trials and their role in 
clinical management of DCIS remains to be determined.

In this study, we identified a large multi-institutional 
case-control cohort of DCIS tissue samples without 
concurrent or prior IBC, including patients receiving 
adjuvant therapy (RT and/or ET), that either progressed 
to ipsilateral or contralateral IBC, or had no evidence 
of recurrence or progression (DCIS or IBC) for over 10 
years. Our aim is to improve our understanding of the 
molecular events leading to ipsilateral or contralateral 
IBC occurring at the preinvasive stage of DCIS by per-
forming a comprehensive multi-omic genome-wide sur-
vey of their molecular landscapes as well as comparing 
them with a well-established IBC cohort provided by The 
Cancer Genome Atlas (TCGA) [19].

While DCIS broadly anticipates the expression, DNA 
methylation, and copy number patterns that character-
ize IBC, it exhibits distinctive features as well. All five 
PAM50 subtypes are represented in our cohort, although 
the distribution of subtypes in this cohort differs from 
what is usually seen in IBC. We concur with the observa-
tion by Bergholtz and colleagues [20] that characteristic 
features of Basal IBC are absent in Basal DCIS and pro-
vide additional evidence that these diseases may have dis-
tinct histories. An analysis of splice-form usage revealed 
that some DCIS exhibit an unusually low level of splic-
ing complexity and these tumors are associated with 
increased expression of selected cell-cycle and splice-reg-
ulating pathways. Although individual gene level mark-
ers demonstrate limited ability to distinguish progressing 
from non-progressing DCIS, distinct differences at the 
pathway level offer insight into the development of breast 
disease.

Methods
Sample collection
This study was designed as a multicenter, nested case-
control study. Using patient registries at Johns Hopkins 
Hospital, Baltimore, and University of Alabama at Bir-
mingham in addition to three Surveillance, Epidemiol-
ogy, and End Results (SEER) Residual Tissue Repository 
(RTR) centers [21] (University of Southern California, 

specific gene sets with IBC progression revealed by our Gene Set Enrichment Analysis may lend themselves to the 
development of a prognostic molecular score, to be validated on independent DCIS cohorts.
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Alternative splicing, Gene set enrichment analysis



Page 3 of 15Debeljak et al. Breast Cancer Research          (2024) 26:178 

University of Iowa, and University of Hawaii), cases (pro-
gressors) and controls (non-progressors) were selected 
based on initial presentation and required to have a 
10-year follow-up. We identified a total of 93 patients 
with DCIS and no history of prior or synchronous IBC 
that subsequently progressed to IBC. At the same time, 
we selected a control group of 93 patients, matched based 
on race, histological grade, margin status, adjuvant treat-
ments, age (± 5 years) and year of diagnosis (± 5 years), 
and institution, but who remained recurrence or progres-
sion-free for at least 10 years (Supplemental Figure S1, 
Supplemental Table ST1). In addition, we obtained a total 
of 11 normal breast tissue samples (7 DCIS-adjacent nor-
mal breast, 4 normal breast). All tissues were obtained 
with each institution’s Institutional Review Board 
approval. We obtained 20 unstained slides with matching 
H&E-stained slides from archival formalin-fixed paraffin-
embedded (FFPE) tissue blocks. The H&E-stained slides 
were reviewed and annotated by four study pathologists 
(Drs. Edward Gabrielson and Ashley Cimino-Mathews, 
Johns Hopkins; Dr. Paul van Diest, University Medi-
cal Center Utrecht; and Dr. Debra Hawes, University of 
Southern California).

DNA and RNA isolation
Pathologist-annotated H&E slides were used to guide 
macrodissection of unstained slides to enrich for > 70% 
DCIS epithelial cells. Nucleic acids were extracted using 
AllPrep DNA/RNA FFPE kit (Qiagen, Valencia, CA, 
USA). Extracted DNA and RNA were quantified by Qubit 
2.0 fluorometer (Life Technologies, Carlsbad, CA, USA) 
and stored at -80 °C.

Expression analysis
50ng of total RNA were used for library construction 
using TruSeq RNA Exome kits (Illumina, San Diego, 
CA, USA; catalog number: RS-301-2001). Libraries were 
sequenced on an Illumina NextSeq500 for paired-end 
75  bp reads. Fastq files were generated using bcl2fastq 
v2.20.0.422. Reads were aligned to the human genome 
GRCh38 using the splice-aware STAR aligner v.2.4.2a 
[22]. Gene-level quantification of expression was per-
formed with the package DESeq2 [23], using GENCODE 
v.27 as reference annotations.

Unsupervised cluster analysis was performed using 
consensus clustering with non-negative matrix factoriza-
tion (NMF), after filtering the expression data to include 
only the most variable genes. We considered clustering 
with as few as 2 and as many as 9 groups, selecting the 
3-cluster solution as offering the best balance between 
stability and sparseness.

Gene set enrichment analysis (GSEA) was performed 
on the Hallmark, Curated (C2) and Oncogenic gene set 
collections from MSigDB [24], using the Wilcoxon-based 

gene set test implemented in the limma package from 
Bioconductor [25–27]. We performed PAM50 subtyping 
with ER-status-balancing, as previously published [28].

We used the xCell webtool  (   h t  t p s  : / / c  o m  p h e a l t h . u c s f . e 
d u / a p p / x c e l l     ) to deconvolve our expression profiles and 
estimate the relative abundances of 64 cell types in each 
of our DCIS samples [29].

Methylation analysis
DNA samples were bisulfite-treated using the EZ DNA 
Methylation kit (Zymo Research, Irvine, CA, USA). 
Bisulfite-treated genomic DNA was restored and arrayed 
using the Illumina Infinium HumanMethylation450K 
BeadChip Kit (WG-314-1003) in the SKCCC Microarray 
Core (Johns Hopkins Oncology Center, Baltimore, MD, 
USA).

GenomeStudio software (Illumina Inc., San Diego, CA, 
USA) was used to estimate quality control metrics. Qual-
ity control metrics were validated through control probe 
signal intensities extracted using minfi software in R [30]. 
GenomeStudio-derived detection p-values (threshold of 
p < 0.01) were used to calculate sample-wise call rates. 
Samples with call rates of < 80% were removed from the 
analysis. Raw beta values were plotted and samples with 
atypical beta value plots were removed from the analysis. 
Probe-wise detection p-values were estimated and probes 
with > 95% coverage across remaining samples were 
retained for analysis. Probes with interrogated CpGs 2 bp 
from a known single nucleotide polymorphism (SNP) 
with a minor allele frequency (MAF) > 5% were removed.

Data were normalized using the minfi package from 
Bioconductor (www.bioconductor.org), using the func-
tional normalization algorithm to correct differences 
between samples [30, 31]. Unsupervised clustering analy-
sis was performed using the ConsensusClusterPlus pack-
age [32] from Bioconductor, together with Prediction 
analysis for microarrays algorithm [33] as implemented 
in the R package pamr  (   h t  t p s  : / / c  r a  n . r - p r o j e c t . o r g / w e b / p 
a c k a g e s / p a m r / i n d e x . h t m l     ) , after filtering the methylation 
data to include only the most variable probes comparing 
progressors and non-progressors. We considered clusters 
with as few as 2 and as many as 9 groups, selecting the 
6-cluster solution as offering the best balance between 
stability and sparseness. Because two of the groups, 
Methylation Cluster 5 and 6, were very sparse, we com-
bined them for display (Methylation Cluster 5/6). Heat-
maps were generated by the R function heatmap and R 
package (RColorBrewer).

We used MethylResolver to deconvolve our DNA 
methylation profiles and estimate the relative abundances 
of 12 cell types in each of our DCIS samples [34].

https://comphealth.ucsf.edu/app/xcell
https://comphealth.ucsf.edu/app/xcell
http://www.bioconductor.org
https://cran.r-project.org/web/packages/pamr/index.html
https://cran.r-project.org/web/packages/pamr/index.html
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DNA Copy Number Analysis
DNA Copy number was estimated from Illumina Infin-
ium HumanMethylation450K data using the Conumee 
package, R package version 1.9.0 from Bioconductor  (   h t  
t p s  : / / b  i o  c o n  d u c  t o r .  o r  g / p a c k a g e s / r e l e a s e / b i o c / h t m l / c o n u 
m e e . h t m l     ) , using our 11 morphologically normal breast 
tissue samples as reference [26, 35]. Copy number based 
subclassification was performed using NMF, calculated 
with the R package NMF, using the top 10% of genes with 
the most variable copy number. The R package (Cancer-
Subtypes) was used to facilitate classification [25, 36].

RNA splicing analysis
We used the MntJULiP program [37] to determine dif-
ferential splicing events at the intron level and to esti-
mate the splicing ratios of individual introns. Herein an 
“intron” refers to a segment of the genome between two 
exons that is excluded from mRNA, as identified from 
the RNA-seq spliced read alignments. MntJULiP groups 
all introns corresponding to different and mutually exclu-
sive splice forms that share either their 5’ or the 3’ end-
point. The splicing ratio of each intron in the group, or 
Percent Splice In (PSI), is defined as the relative contribu-
tion of the reads spanning the ith intron to the group’s 
abundance, expressed as a fraction in the [0,1] interval: 
PSI (yi) = yi / (y1 + y2 + y3), where yi is the number of reads 
supporting intron i (Supplemental Figure S2). MntJULiP 
calculates each intron’s abundance yi in each sample from 
spliced read alignments. It then uses a Dirichlet multi-
nomial distribution coupled with a log likelihood ratio 
test to identify differences in the group’s splicing ratios 
between conditions and reports the relative abundance 
of each variant as the proportion of the variant within 
the group [37]. Starting from the relative abundance of 
variants in each splice form group, we further calculated 
a composite measure of splicing complexity (s) for each 
group in each sample, based on the difference between 
the relative abundance of the highest abundance (‘pri-
mary’) splice form and the group average, s = 1- (PSImax- 
PSIavg). A larger s value indicates a smaller contribution 
of the primary isoform to the group, and therefore higher 
splice form complexity (s).

Data availability
The DNA methylation and mRNA expression datas-
ets (read counts) generated in this study were deposited 
in the NCBI Gene Expression Omnibus (GEO) under 
the GEO accession ID: GSE281303 [transcriptome] and 
GSE281307 [methylome].

Results
Patient characteristics
As seen in Supplemental Table ST1, the 93 progressors 
and 93 non-progressors were well-balanced with respect 

to age, year of diagnosis, and race. We obtained complete 
data sets (i.e., all modalities passed all Q/C) for mRNA 
expression, DNA methylation, DNA copy number varia-
tion, and alternative splicing in 122 of the 186 DCIS 
samples (see Study Design, Supplemental Figure S1). The 
median age of non-progressor (control) and progres-
sor (cases) cohorts was 63 and 60 years old, respectively 
(Supplemental Table ST1). The predominant race in both 
cohorts was White, while Asian and Hispanic races were 
rare in both cohorts. Non-progressors, chosen to have 
at least 10 years of disease-free follow-up, had a median 
follow-up of 163 months. Progressors advanced to IBC 
on average 63.6 months (median 59 months) after DCIS 
diagnosis and progression occurred both ipsilaterally 
and contralaterally (n = 56 and 36, respectively). Nuclear 
grade was not significantly different between progressors 
and non-progressors. Progressors and non-progressors 
had similar rates of RT (48% and 39%, respectively), and 
ET (16%, in both groups). We were unable to assess dif-
ferences in lesion size because this information was not 
available for our cohort.

Gene expression
General characteristics
Patterns of expression of PAM50 genes in our DCIS sam-
ples broadly match those seen in the TCGA IBC sam-
ples (Fig.  1A) [19]. The distribution of subtypes in this 
cohort of DCIS samples differs from what is usually seen 
in IBC, with human epidermal growth factor receptor 2 
(HER2) tumors relatively over-represented and Luminal 
A tumors markedly underrepresented in DCIS (Fig.  1A 
and B).

Expression of estrogen receptor (ER), progesterone 
receptor (PR), HER2, and Ki67 varies by PAM50 sub-
type, as expected, with luminal tumors showing high lev-
els of ER and PR expression (Supplemental Figure S3A 
and S3B), and low levels of HER2 expression compared 
to HER2-enriched tumors which have the opposite pat-
tern (Supplemental Figure S3C). Furthermore, Basal, 
HER2, and Luminal B tumors show higher levels of the 
proliferation marker Ki67 (Supplemental Figure S3D). 
Likewise, nuclear grade was significantly associated 
with PAM50 intrinsic subtype, with grade 3 tumors sig-
nificantly less common in Luminal A DCIS samples than 
in Basal, HER2, or Luminal B DCIS samples (Fig.  1C). 
A chi-square test of association between grade and 
PAM50 was statistically significant (X2 = 32.573, df = 8, 
p-value = 7.351e-05.

Next, we used xCell to deconvolve cellular expression 
profiles to estimate relative levels of 64 immune and 
stromal cell types (Fig.  1D), correlating the results with 
intrinsic subtype [29]. Although we did not observe sta-
tistically significant associations, a composite Immu-
neScore, summarizing abundance of immune cells, is 

https://bioconductor.org/packages/release/bioc/html/conumee.html
https://bioconductor.org/packages/release/bioc/html/conumee.html
https://bioconductor.org/packages/release/bioc/html/conumee.html
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overall slightly lower in progressors and strongly associ-
ates with ER− status. Luminal A progressors had slightly 
higher levels of immune cells than non-progressors, 
although the difference was not statistically significant 
(p = 0.135). Luminal B and Basal DCIS had a higher 
ImmuneScore in non-progressors compared to progres-
sors. HER2-enriched progressors and non-progressors 
had similar ImmuneScore values. Several immune cell 
types, including CD4+ and CD8+ T-cells and memory B 
cells, were found in greater abundance in ER− DCIS sam-
ples. Common lymphoid progenitors (CLP) stood out as 
a rare cell type with higher levels in ER+ tumors (Fig. 1D).

We then performed unsupervised expression clus-
ter analysis on the DCIS samples, which resulted in 
groups that were enriched in specific PAM50 subtypes 
(Supplemental Figures S4A, S5A), with Expression Clus-
ter 1 highly enriched for HER2 and Basal tumors, while 
Expression Cluster 2 consisted mostly of luminal tumors. 
Expression Cluster 3 consisted of a mixture of all five 
PAM50 subtypes. Furthermore, unsupervised cluster-
ing of the most variable genes in DCIS (Supplemental 

Figure S4B) also shows resulting clusters to correlate 
with PAM50 subtypes, a pattern that is even more pro-
nounced when applying the DCIS-derived gene set to an 
unsupervised clustering of IBC (TCGA) expression data 
(Supplemental Figure S4C).

Progressors vs. non-progressors
The HER2 DCIS subtype was more frequent in progres-
sors than in non-progressors (29% vs. 17%, respectively), 
while Luminal A DCIS were less common in progressors 
(25% vs. 37%, respectively) (Supplemental Figure S5B), 
although differences did not reach statistical significance. 
Gene-level differential expression analysis comparing 
progressors to non-progressors did not yield statistically 
significant results (false discovery rate, FDR > 0.10) and 
a heatmap of the top 100 most differentially expressed 
genes does not clearly delineate samples by outcome 
(Supplemental Figure S6). We also explored the differen-
tial expression of the 5 proliferation genes included in the 
ODX-DCIS panel and did not find significant differences 

Fig. 1 DCIS Gene Expression data results. A. Heatmaps showing PAM50 genes and their expression in DCIS samples (left panel) and TCGA-Breast IBC 
samples (right panel), organized by PAM50 intrinsic subtype (top bar, left-to-right: Basal [purple], HER2 [pink], Luminal A [light green], Luminal B [green], 
Normal-like [dark green]). The same PAM50 subtype color scheme is used in panels 1A through 1D. The green to red gradient indicates increasing expres-
sion levels. The lower bar in the left panel shows the DCIS progression status: progressors (red), non-progressors (green). B. Pie charts of PAM50 distribu-
tion among DCIS samples: Non-progressing DCIS (left pie chart), Progressing DCIS (right pie chart). Sample sizes are shown in each wedge. C. Association 
of DCIS PAM50 intrinsic subtypes with nuclear grade of DCIS. D. xCell deconvolution of the DCIS expression data organized by increasing composite 
ImmuneScore (bottom row). Rows are Z-transformed. Top bar (PAM50) shows intrinsic subtype (shown in the column annotation). Right side lists the 
identified immune cell types: CLP: common lymphoid progenitor; Megakaryocytes; cDC: conventional dendritic cells; CD4 + Tcm; Class-switched memory 
B-cells; aDC: plasmacytoid dendritic cells; Memory B-cells; CD8 + T-cells; B-cells; CD4 + naïve T-cells; composite ImmuneScore. Blue gradient indicates rela-
tive abundance of each cell type, where higher intensity (darker blue) denotes higher abundance of a particular cell type.
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between the outcome groups (Supplemental Figure S7) in 
our RNA-Sequencing-based assessment.

GSEA did highlight several significant differences 
between DCIS progressors and non-progressors at the 
pathway level. Several of the Hallmark and Curated 
(C2) gene sets from the MsigDB collection show differ-
ential expression between DCIS progressors and non-
progressors in immune pathways as well as in pathways 
associated with cell cycle and proliferation. Notably, the 
Hallmark Epithelial-Mesenchymal Transition (EMT) 
pathway (FDR 0.013) was among the most up-regulated 
pathways in DCIS progressors (Table 1, see Supplemen-
tal Table ST2 for a comprehensive list of differentially 
expressed genes and pathways). Several IBC-associated 
gene sets also showed significant differential expression, 
including the POOLA_INVASIVE_BREAST_CAN-
CER_UP gene set (FDR < 0.00001), and the SCHUETZ_
BREAST_CANCER_ DUCTAL_INVASIVE_UP gene set 
(FDR = 0.005), which are significantly up-regulated in our 
progressing DCIS samples compared to non-progressing 
DCIS samples. Pathways down-regulated in DCIS pro-
gressors compared to DCIS non-progressors include the 
TURASHVILI_BREAST_DUCTAL_CARCINOMA_ 
VS_DUCTAL_NORMAL_DN (FDR < 0.00001) and the 
CHEN_HOXA5_TARGETS_ 9HR_UP (FDR < 0.00001).

DNA methylation analysis
Unsupervised cluster analysis was performed using con-
sensus clustering together with the partitioning around 
medoids algorithm (rPAM), after filtering the meth-
ylation data to include only the most variable genes 
in progressors and non-progressors, resulting in 5 
sample groups. Progressors and non-progressors were 

represented almost equally in all 5 methylation clusters 
(Fig.  2A). Most of the morphologically normal samples 
fell into Methylation Cluster 2. The relationships between 
methylation clusters and expression clusters were 
explored in Fig. 2B and Supplemental Figure S5D. Expres-
sion Cluster 1 dominates Methylation Cluster 1 (Fig. 2B), 
while Expression Cluster 2 samples represent the pre-
dominant fraction in Methylation Clusters 2,3 and 4. The 
proportions of DCIS methylation clusters in the PAM50 
subtypes were shown in Fig. 3. Methylation Cluster 1 was 
predominant in the Basal and HER2+ PAM50 subtypes, 
while the luminal subtypes were distributed across Meth-
ylation Clusters 1 through 4 (Fig.  3A and Supplemental 
Figure S5C). In Fig. 3B, a hierarchical cluster analysis of 
the top 0.5% (n = 2370) most variable CpG sites did not 
show DNA methylation in progressors to be consis-
tently different from non-progressors. The methylation 
clusters did show correlation with infiltration by several 
immune cell subtypes (Fig. 4A). Samples in Methylation 
Cluster 1, which was enriched for usually hormone nega-
tive cancers (HER2 and Basal PAM50 subtypes), showed 
high levels of macrophages, T-regulatory cells, dendritic 
cells, T-memory cell, and B-cells. Methylation Cluster 2, 
which includes most of the PAM50 normal-like samples 
as well as true normal (Supplemental Figure S5C, S5E), 
had high levels of macrophages. We further assessed the 
total immune cell fraction (proportion of immune cells 
present in the sample) by outcome, PAM50, and Meth-
ylation Cluster (Fig.  4B). The immune cell fraction was 
similar in progressing DCIS and non-progressing DCIS, 
but higher in Basal and HER2 DCIS subtypes, which was 
also reflected in Methylation Cluster 1, which predomi-
nated the hormone negative DCIS samples.

Table 1 Selected Up- and down-regulated pathways in progressing vs. non-progressing DCIS
Path-ways Gene sets FDR Expression Genes
Mobility / 
Development

CHEN_HOXA5_TARGETS_
9HR_UP

< 0.00001 Down AKIRIN1, ALG13, CCNL1, CDKN2AIP, CENPC, CHD9, CLK1, CLK4, 
CNOT4, FAM13B, FBXO38, JMJD1C, LIG4, LINS1, MAFF, NEMF, 
NRBF2, PPWD1, PRPF38B, RABGGTB, RBBP6, RBM5, RCHY1, RLF, 
RSRC2, SFPQ, SLTM, SMCHD1, SNX16, SREK1, SRSF10, STRN3, 
SUPT20H, TAF1D, THUMPD2, TNFRSF10B, UIMC1, VCPKMT, VEGFA, 
ZNF280D, ZNF451, ZSCAN16, ZZZ3

POOLA_INVASIVE_BREAST_
CANCER_UP

< 0.00001 Up AIM2, ARHGAP25, CD19, CD1E, CD2, CD79A, CEP55, COL11A1, 
COL5A1, CXCR4, FCMR, HLA-DQA1, HLA-DRB6, IGHG1, IGHV1-69, 
IGHV3-20, IGHV3-21, IGHV3-23, IGKV1D-13, IGKV1OR2-108, IGLV3-
10, IGLV3-19, IGLV4-60, LCK, LGALS9, LOXL1, PLAC8, PRMT2, 
RHOF, RSAD2, S100P, SLC16A3, SP140, TCL1A, TOP2A, TPX2

SCHUETZ_BREAST_CANCER_
DUCTAL_INVASIVE_UP

0.00496 Up BGN, COL11A1, COL1A1, COL1A2, SERPINH1, SPARC

HALLMARK_EPITHELIAL_
MESENCHYMAL_TRANSITION

0.0137 Up BGN, COL11A1, COL1A1, COL1A2, COL3A1, COLGALT1, LRP1, 
MMP14, PCOLCE, PLOD1, PLOD3, SDC4, SERPINH1, SPARC

Signaling TURASHVILI_BREAST_DUCTAL_ 
CARCINOMA_VS_DUCTAL_
NORMAL_DN

< 0.00001 Down BHLHE41, CFAP70, DST, ENOSF1, FAM95C, GPM6B, ITGB8, MAFF, 
MYBPC1, PLEKHS1, SPIN3, SPRED1, TNFRSF10B, ZNF204P

Gene set expression analysis (GSEA) of differentially expressed genes between DCIS progressors and non-progressors at the pathway level of the Hallmark, Curated 
(C2), and Oncogenic gene set collections from the Molecular Signatures Database (MSigDB). FDR: false discovery rate. See supplemental table ST2 for complete 
listing.
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Bergholtz and colleagues recently reported in a cross-
sectional study of DCIS progression that some molecu-
lar hallmarks of Basal subtype IBC are not seen in Basal 
DCIS [20], raising questions about the natural progres-
sion of Basal DCIS. The authors highlight two features of 
Basal IBC that are absent in Basal DCIS: deletion of the 
entire q-arm of chromosome 5 and hypermethylation of 
Procadherin genes on chromosome 5. Our results sup-
port both findings (Fig. 5A-C). Specifically, we observed 
a low rate of deletion in Basal DCIS at chromosome 
5q31(~ 2–5%) while this same region had a high rate of 
deletion among TCGA Basal IBC. We further assessed 
CNV across all chromosomes for subtype-specific signa-
tures (Supplemental Figure S8). We found another Basal 
IBC-specific pattern, but of amplification, on Chromo-
some 2p.

Overall, CNV patterns between DCIS progressors, 
DCIS non-progressors, and TCGA IBC were often simi-
lar, although they tended to be more prominent in IBC 

than DCIS, e.g., see Chromosome 1 (Supplemental Fig-
ure S8). In some cases, e.g., Chromosomes 11 and 13, 
similar CNV patterns and frequencies were seen in pro-
gressors, non-progressors, and IBC across intrinsic sub-
types. We were also able to partially confirm the report 
that Chromosome 3p losses were more frequent in DCIS 
than in IBC [38], although that appeared to be primar-
ily driven by the more common Luminal A tumors, while 
in our cohort, Basal and HER2 DCIS showed lower 3p 
losses than the corresponding TCGA IBC.

Furthermore, for the subset of cases for which we have 
the necessary information, we calculated concordance 
and discordance between ER expression in DCIS and in 
the subsequent IBC. We observed that only 22% of ER− 
DCIS cases progress to ER− IBC, while 94% of ER+ DCIS 
cases progress to ER+ IBC (Fig. 5D).

Fig. 2 Pie charts showing proportions of DCIS methylation clusters by sample outcome and gene expression clusters. A. Methylation cluster proportions 
of progressors, non-progressors, and normal or DCIS-adjacent normal breast tissue. B. Expression cluster proportions of methylation clusters. Sample 
numbers are shown in each wedge
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Alternative splicing in DCIS
While our data reveal substantial variation in splicing 
complexity (s) across our DCIS cohort, the variation 
was not significantly associated with risk of progression, 
PAM50 intrinsic subtypes, or other clinical or pathologic 
variables (Supplemental Figure S9A-E). The expression 
cluster result, on the other hand, was highly statisti-
cally significant (p < 0.00001, Supplemental Figure S9C). 
Expression Clusters 1 and 2, associated with ER− and 
ER+ disease, respectively, exhibit low complexity, while 
Expression Cluster 3, which includes a mix of PAM50 
subtypes, contained most of the high-complexity tumors. 
Although s-scores show some variation across PAM50 
intrinsic subtypes, with Basal tumors exhibiting the high-
est median complexity, and Luminal A the lowest, the dif-
ferences did not reach statistical significance by ANOVA 
(Supplemental Figure S9B). Moreover, some variation 
was evident across methylation clusters, but it did not 
reach statistical significance (Supplemental Figure S9D). 

Furthermore, splice complexity did not significantly vary 
with patient age (Supplemental Figure S9E).

Detection of rare splice forms depends on adequate 
sequencing depth, so we considered the possibility that 
samples exhibiting low levels of splice complexity across 
the genome are simply those with the lowest read counts. 
While it is true that samples with low read counts are 
more likely to have low s-scores (Supplemental Figure 
S10A), we also observed that some low complexity sam-
ples showed high read counts and some high complexity 
samples showed low read counts, suggesting that some 
of the variation we observed in complexity may instead 
be due to differences in DCIS splice regulation. To iden-
tify genes with roles in splice regulation, we considered 
two sources: (1) the Gene Ontology Database [39], which 
includes a variety of spliceosome annotations, and (2) 
the HUGO gene nomenclature group, which maintains a 
database of genes in the major spliceosome groups, along 
with mappings onto individual spliceosomal complexes  (   

Fig. 3 Proportions of DCIS DNA Methylation clusters in PAM50 subtypes. A. Pie charts showing methylation cluster proportions of PAM50 intrinsic sub-
types: Basal; HER2; LumA: Luminal A; LumB: Luminal B; Nl-like: normal-like. Number of samples is shown in each wedge. B. Heatmap showing a hierarchical 
cluster analysis of the top 0.5% (2370) most variable CpG sites. Top bar shows methylation cluster number, and bottom bar shows progression status. Blue 
gradient represents proportion of methylated CpG (beta value) where higher intensity (darker blue) denotes higher methylation

 

https://www.genenames.org/data/genegroup/#!/group/1518
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We sought to identify genes that modify splicing in 
these samples, expecting that splicing complexity will 
vary with expression of those genes. Accordingly, aggre-
gate s-scores for each sample were correlated, across 
samples, with levels of gene expression for each gene. 
Most genes show a positive Spearman correlation 
between expression and complexity, explained in part by 
variation in read depth, as low counts limit our ability to 
see both rare splice variants and low expressing genes. 
Genes showing a negative correlation coefficient, how-
ever, are noteworthy, as they are not readily explained 
by variation in coverage. A heatmap of s-scores for the 
intron groups demonstrating the most splice variation 
across samples illustrates that some samples show con-
sistently lower or higher complexity than others (Supple-
mental Figure S10C), while the overall expression levels 
of the same genes show little difference between samples 
and therefore do not explain why some samples have 

consistently anti-correlated s-scores (Supplemental Fig-
ure S10D).

A GSEA analysis of anti-correlated gene ontology 
classes showed that while the most anti-correlated gene 
ontology classes were associated with cell cycle and 
cell-replication (Supplemental Table ST3), complexity 
was also significantly anti-correlated with the expres-
sion of genes in several splicing-related ontology classes 
(Table  2). In most cases, the expression of HUGO spli-
ceosome complex genes was positively correlated with 
splicing complexity, but the Spliceosomal A complex 
stood out as it showed an opposite relationship (Fig. 6A). 
To assess how the expression patterns of spliceosome 
genes in our DCIS samples compare to normal breast tis-
sue and IBC, we used TCGA IBC-adjacent normal breast 
samples as well as TCGA IBC data. Specifically, looking 
at the adjacent normal samples from TCGA, the genes in 
the Spliceosome A complex were expressed in two clear 
clusters of genes (Fig.  6B). In both TCGA IBC and our 
DCIS samples, we observed less organization and the 

Fig. 4 Analysis of immune cell infiltration by methylation cluster, PAM50, and progression status. A. Heatmap of immune cell infiltration organized by 
methylation cluster (top bar). PAM50 (middle bar, samples missing PAM50 data are indicated in white), and progression status (bottom bar) are shown 
as annotations. Immune cell infiltration is shown as proportion of cells present (blue gradient), where darker blue denotes greater proportion of cells. 
Identified immune cell types: Macro: Macrophages; Treg: Regulatory T cells; Dendritic: Dendritic cells; Mon: Monocytes; NK: Natural killer cells; Neu: Neu-
trophils; Tnaive: Naïve T cells; Eos: Eosinophils; CD8; Tmem: Memory T cells; B-cells. B. Sample immune cell fraction (ICF) and progression status, PAM50 
intrinsic subtype, and DNA methylation clusters. ICF is a total/aggregate of all immune cells shown in the panel A heatmap. Boxplots illustrate the median 
and the first and third quartiles (box); the whiskers denote range of values. ANOVA: ICF by Progression (F-statistic = 0.33, df = 2, p = 0.72); ICF by PAM50 
(F-statistic = 15.62, df = 4, p = 2.879e-10); ICF by Methylation Cluster (F-statistic = 58.81, df = 4, p < 2.2e-16)

 

https://www.genenames.org/data/genegroup/#!/group/1518
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co-expression patterns in the genes are less well defined 
(Fig. 6C-D).

Discussion
DCIS remains a clinical challenge because we still can-
not reliably distinguish indolent cases from those likely 
to progress to IBC. Current methodologies for predicting 
DCIS recurrence, such as the Oncotype DX® DCIS Score 
and the DCISionRT® assay, have been derived from low-
risk cohorts eligible for surgical treatment only, limiting 
the discovery of high-risk molecular signatures, since 
withholding adjuvant treatment in high-risk cases can-
not be justified. In this study, our choice to include such 
cases came with the limitation that outcomes were very 
likely influenced by individual treatment choices, includ-
ing adjuvant RT and ET, which decreased the likelihood 
of discovering outcome-predictive molecular signatures. 
Therefore, our focus was to begin the process of mapping 
out the molecular and genetic landscapes of DCIS, with 

Table 2 Gene ontology RNA splicing-related pathways 
significantly anti-correlated with complexity (s)
Pathway FDR N
GOBP_RNA_SPLICING < 0.00001 470
GOBP_RNA_SPLICING_VIA_TRANSESTERIFICATION_RE-
ACTIONS

< 0.00001 377

GOBP_REGULATION_OF_RNA_SPLICING 0.00003 144
GOBP_REGULATION_OF_MRNA_SPLICING_VIA_SPLI-
CEOSOME

0.00014 100

GOBP_ALTERNATIVE_MRNA_SPLICING_VIA_SPLICEO-
SOME

0.0004 73

GOBP_SPLICEOSOMAL_COMPLEX_ASSEMBLY 0.0024 74
GOCC_SPLICEOSOMAL_COMPLEX 0.00318 187
GOBP_REGULATION_OF_ALTERNATIVE_MRNA_SPLIC-
ING_VIA_ SPLICEOSOME

0.00411 57

GOBP_MRNA_SPLICE_SITE_SELECTION 0.02011 46
N: number of genes in each pathway; FDR: false discovery rate. See supplemental 
table ST3 for complete listing of correlations and anti-correlations between 
pathways and splice complexity.

Fig. 5 Basal DCIS compared to basal IBC. A-C. Frequency-plots of copy number variation (CNV) data at chromosome 5. The PAM50 subtype and number 
of samples (n) is indicated above each plot. Genomic position is indicated on the x-axis, with p-arm on the left, q-arm on the right. The y-axis shows 
the frequency of deletions (below baseline) or amplifications (above baseline) in DCIS samples (A. Non-progressors; B. Progressors; C. TCGA-IBC). Note 
different frequency scales, adapted to the largest %. of deletions or amplifications for each plot. D. Methylation of Procadherin genes in DCIS (left) and 
IBC (right, TCGA), compared to normal tissue (first column), by PAM50 subtype. Boxplots illustrate the median and the first and third quartiles (box); the 
whiskers denote range of values. E. Concordance and discordance ER status of hormone positive or negative DCIS progressing to hormone positive or 
negative IBC in the same patient. A Fisher’s exact test comparing ER status in DCIS and subsequent cancer was statistically significant (Odds Ratio = 45.41 
95%, CI = 5.04-753.63, p-value = 3.636e-05.
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the purpose of identifying molecular subtypes and their 
key drivers in this disease.

The landmark TCGA breast study [40] documented 
that breast cancer is extremely heterogenous. The two 
dominant mutations (PIK3CA and TP53) only account 
for ~ 40% of cases. This is in contrast to cancers such as 
colon cancer whose dominant mutations can account for 
60 − 80% of cases [41]. The overarching goal of our large-
scale DCIS survey was to utilize genome wide analyses to 
help categorize the heterogenous biology of DCIS.

Comparing our DCIS cohort to TCGA IBC at the gene 
expression level, we broadly observed similar patterns 
(Fig. 1A, Supplemental Figures S4B, S4C). Our DCIS out-
come analyses comparing gene expression (Fig. 1A, Sup-
plemental Figure S6) and DNA methylation (Fig. 3B) did 
not show significant differences between DCIS progres-
sors and non-progressors, nor did molecular subclasses 
based on PAM50 subtype (Fig.  1A and B, Supplemen-
tal Figure S5B), gene expression clusters (Supplemen-
tal Figure S5F) or methylation clusters (Supplemental 
Figure S5E). While we did observe subtle differences in 

Fig. 6 Associations between splice complexity and spliceosomal gene expression. A. Spearman correlation between gene expression levels and s-scores 
(complexity) of HUGO-defined spliceosome complexes in DCIS. Boxplots illustrate the median and the first and third quartiles (box); the whiskers denote 
range of values. Horizontal line at 0 denotes baseline. ANOVA comparing aggregate sample complexity by spliceosome complex was statistically signifi-
cant (F-statistic = 32.19, df = 1, p- = 9.73e-08. B. Heatmap showing Spliceosome Complex A gene expressions in TCGA normal breast tissue (adjacent to 
breast cancers). Rows represent genes in Spliceosome Complex A, the green to red gradient indicates increasing expression levels. C. Heatmap show-
ing Spliceosome Complex A gene expression in TCGA invasive breast cancer. Rows represent genes in Spliceosome Complex A, in the same order as in 
heatmap B. D. Heatmap showing Spliceosome Complex A gene expression in DCIS. Rows represent genes in Spliceosome Complex A, in the same order 
as in heatmaps B and C.
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molecular subsets, such as that hormone negative DCIS 
(Basal and most HER2 subtypes) are more likely to be 
progressors compared to hormone positive DCIS (Sup-
plemental Figures S5B, S5E, S5F), these results would be 
insufficient to predict progression to IBC, although this 
may be due in part to the increasingly small sample num-
bers in the molecular subclasses.

Interestingly, we did observe significant differences 
between DCIS progressors and DCIS non-progressors 
in our GSEA, showing differential expression patterns 
in pathways that have been associated with disease pro-
gression. Notably, the Epithelial-to-Mesenchymal Tran-
sition (EMT) pathway (FDR 0.013) was among the most 
upregulated pathways in DCIS progressors (Table  1, 
Supplemental Table ST2). This pathway is implicated in 
cancer progression and metastasis when epithelial cells 
lose cell polarity and cell-cell adhesion [42]. Further-
more, several IBC-associated gene sets were among the 
most significantly upregulated in progressors compared 
to non-progressors. Among these, the POOLA_INVA-
SIVE_BREAST_CANCER_UP and the SCHUETZ_
BREAST_CANCER_DUCTAL_INVASIVE_UP gene 
sets were significantly upregulated in our progressing 
DCIS compared to non-progressing DCIS. Poola et al. 
derived these genes by comparing atypical ductal hyper-
plasia, considered a precursor to DCIS, with and without 
accompanying invasive disease [43], and Schuetz per-
formed a study that compared DCIS and their matched 
IDC [44].

Furthermore, several pathways are significantly down-
regulated in DCIS progressors compared to DCIS 
non-progressors, including the TURASHVILI_BREAST_
DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_
DN gene set (FDR < 0.00001). This gene set was derived in 
a study that compared gene expression profiles of ductal 
carcinoma cells and normal ductal cells, which showed 
this gene set to be downregulated in cancer cells [45]. 
Another gene set, CHEN_HOXA5_TARGETS_9HR_
UP, is also significantly downregulated in our DCIS 
progressor (FDR < 0.00001). This gene set was derived 
from a study utilizing microarray analysis of an induc-
ible HOXA5 breast cancer cell line (HS578T) to iden-
tify genes whose expressions are modified after HOXA5 
induction [46]. HOXA5 is a homeotic gene and tumor 
suppressor known to play a role in tumorigenesis [47]. 
GSEA further highlighted differences in immune path-
ways and pathways associated with cell cycle and prolif-
eration (Supplemental Table ST2).

Bergholtz and colleagues recently reported that sev-
eral characteristics of Basal invasive ductal breast 
tumors are not seen in Basal DCIS, questioning Basal 
DCIS as precursor lesions to Basal invasive breast car-
cinoma [20]. We observed similar findings in our DCIS 
cohort and provide additional support to this view. Our 

CNV analysis confirms a lack of widespread deletion 
of Chromosome 5q in Basal DCIS, while this pattern 
is commonly observed in Basal TCGA breast cancers 
(Fig. 5A-B). It is possible that this deletion is a necessary 
event for DCIS to progress to Basal IBC. Our data also 
demonstrated lack of hypermethylation of Procadherin 
genes in Basal DCIS, a pattern that is seen in the Basal 
IBC samples from TCGA (Fig. 5C).

In addition, an analysis of ER concordance in our pro-
gressor cohort showed that hormone positive DCIS most 
often progressed to hormone positive IBC (94%), whereas 
hormone negative DCIS usually progressed to hormone 
positive IBC (78%, Fig. 5D).

Our comprehensive analysis of copy number varia-
tion (CNV) patterns in DCIS non-progressors, progres-
sors, and IBC across each PAM50 subtype (Supplemental 
Figure S8) revealed several patterns of interest, although 
these must be interpreted with caution considering the 
small sample numbers available for some subsets (see 
Fig.  5A). Overall, CNV patterns in DCIS and IBC were 
often similar, in many instances even PAM50 subtype-
specific, including a trend that the frequency of a given 
CNV increased from non-progressing DCIS to progress-
ing DCIS to IBC, e.g., the amplification on Chr. 1q. Other 
patterns are more difficult to reconcile with progression, 
e.g., deletions in Chr. 21p seen in 20% of our Luminal A 
and HER2 DCIS progressors, but largely absent in the 
respective IBC.

Finally, we characterized differences in alternate gene 
splicing because disruption of normal regulatory pro-
cesses during tumor development and progression is well 
documented to drive widespread changes in splice form 
usage [48–50], and may result in a genome-wide increase 
or decrease in splicing complexity in individual tumors. 
Although our data revealed substantial variation in splice 
complexity across DCIS samples, that variation was not 
significantly associated with the clinicopathologic vari-
ables studied.

One limitation to this study is the lack of immunohisto-
chemically determined hormone status on many samples, 
which would have provided a more definitive answer 
whether hormone negative DCIS are precursors to hor-
mone negative IBC. DCIS patient-matched IBC were not 
available in this study; we did, however, have the clinical 
reports and long-term follow-up for all study samples.

Conclusions
In summary, while our study has demonstrated numer-
ous molecular differences between DCIS progressors and 
DCIS non-progressors, their interpretation and potential 
usefulness as predictive outcome tools are complicated 
by the heterogeneity of the disease, and its balkanization 
into multiple subtypes, each with their own molecular 
alterations, immunological profiles, and susceptibility 
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to treatment options. While the resulting low sample 
numbers in individual subsets currently prevents robust 
conclusions, several findings and associations suggest 
promising avenues for further studies. Of particular 
interest are the highly significant associations with IBC 
progression of several gene sets revealed by our GSEA. 
Some of these may lend themselves to the development 
of a prognostic molecular score, to be validated on inde-
pendent DCIS cohorts.
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