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Abstract 

Rare diseases, though individually uncommon, collectively affect millions worldwide. Genomic technologies and big 
data analytics have revolutionized diagnosing and understanding these conditions. This review explores the role 
of genomics in rare disease research, the impact of large consortium initiatives, advancements in extensive data 
analysis, the integration of artificial intelligence (AI) and machine learning (ML), and the therapeutic implications 
in precision medicine. We also discuss the challenges of data sharing and privacy concerns, emphasizing the need 
for collaborative efforts and secure data practices to advance rare disease research.
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1 Introduction
Rare diseases pose significant challenges in diagnosis 
and treatment due to their low prevalence and diverse 
presentations. In the USA, a disease is considered rare if 
it affects fewer than 200,000 people, while in Europe, it 
is classified as rare if it affects fewer than 1 in 2000 indi-
viduals [1]. Despite their rarity, over 10,000 distinct types 
of rare and genetic diseases collectively affect around 400 
million people globally [1]. Approximately, 80% of rare 
diseases are attributed to genetic causes, highlighting 
the importance of genetic testing for accurate diagnosis 
[1]. Understanding their genetic interplay has driven the 
development of targeted treatments such as gene therapy, 
gene editing, and personalized medicine.

Although big data has been integrated in rare disease 
genomics, major barriers still need to be addressed, 

including difficulties in identifying causal variants and 
translating findings into clinical practice. Various large 
consortia have increasingly emerged in response to these 
challenges, such as the National Biobank of Korea [2, 3], 
which contains the latest established large Korean rare 
disease cohort. The integration of AI and ML in rare dis-
ease research has improved the identification of disease-
causing variants and enhanced diagnostic accuracy [4]. 
These technologies are driving advancements in preci-
sion medicine, enabling more personalized and effective 
treatments through gene-targeted therapies [5]. Data 
privacy concerns are inevitable in handling genomics 
data, and several efforts have been made to prevent the 
exposure of patient information, which will be explored 
further in this review. Hence, this paper aims to compre-
hensively review genomics techniques and tools used in 
rare disease research alongside therapeutic applications. 
Unlike previous review articles that have dealt with cer-
tain topics (e.g., deep learning or public health) [6, 7], this 
review will offer insights into the broader landscape of 
rare disease genomics and therapeutic medicine.

1.1  Advancements in genomic technologies for rare 
disease diagnosis

Diagnosing rare diseases has been historically challeng-
ing. In the late twentieth century, Sanger sequencing was 
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the most commonly used technique for about 25  years 
[8]. However, it could only analyze one gene at a time, 
making it time-consuming and costly, especially in cases 
involving genetic heterogeneity or unclear clinical mani-
festations [9–12].

The advent of next-generation sequencing (NGS) 
about a decade ago revolutionized the diagnostic work-
flow. Short-read sequencing (SRS) technologies, such as 
exome and genome sequencing, became incorporated 
into routine diagnostic procedures for rare diseases [13–
16]. Whole exome sequencing (WES) has been applied to 
patients suspected of rare diseases with unusual pheno-
typic characteristics (e.g., cerebellar hypoplasia, epilepsy, 
or global developmental delay), leading to a definitive 
diagnosis for 28.3% of the patients [17]. However, due to 
the complicated genetic underpinnings of rare diseases, 
NGS-based methods had a detection rate of only 25–50% 
in undiagnosed patients [15].

To mitigate these limitations, long-read sequencing 
(LRS) has emerged as a promising tool, allowing for more 
accurate detection of complex genetic variants such as 
short tandem repeats (STRs), copy number variations 
(CNVs), and structural variants (SVs). Two primary LRS 
technologies have gained prominence: Oxford Nanop-
ore Technologies’ nanopore sequencing and Pacific Bio-
sciences’ (PacBio) single-molecule, real-time (SMRT) 
sequencing [18]. Both technologies offer advantages in 
detecting complex genetic variants but differ in approach 
and output characteristics.

Specifically, LRS has proven successful in diagnos-
ing previously undiagnosed rare disease patients. For 
instance, nanopore LRS facilitated the detection of deep 
intronic variants in the TSC1 and TSC2 genes, leading to 
the identification of aberrant splicing events and a con-
firmed diagnosis of tuberous sclerosis [19]. Similarly, LRS 
enabled the diagnosis of patients with Cornelia de Lange 
syndrome (CDLS) by identifying a complex chromothrip-
sis event affecting the NIPBL gene, which had been unde-
tectable by SRS [20]. Furthermore, PacBio HiFi reads 
revealed a repeat expansion in the DAB1 gene, associated 
with spinocerebellar ataxia 37 (SCA37), in a family exhib-
iting autosomal dominant ataxia [21].

These cases demonstrate the utility of LRS in resolving 
diagnostically challenging genetic variants, particularly 
complex structural variants and intronic mutations, con-
tributing significantly to the diagnosis of rare diseases.

1.2  Collaborative efforts through large consortia
The establishment of large consortia for rare diseases 
addresses the need for coordinated research efforts [22]. 
Despite initiatives like the Rare Disease Clinical Research 
Network (RDCRN), rare disease research often remains 

siloed, focusing on single conditions [23]. In response, 
diverse collaborations have been launched to unite 
researchers and foster collaborative efforts across multi-
ple rare diseases (Table 1).

For example, task forces (TFs) [33], adopted by the 
International Rare Diseases Research Consortium 
(IRDiRC), have addressed actionable subjects such as 
reducing the duration of the diagnostic process [34]. The 
Matchmaker Exchange (MME) TF devised a federated 
platform to expedite gene discovery for rare diseases by 
matchmaking patients with similar phenotypes. Six novel 
candidate genes associated with rare diseases, including 
armfield X-linked intellectual disability (XLID) syndrome 
[35], neurodevelopmental disorder [36], polyneuropathy 
[37], and ZNFX1 deficiency [38], were identified from 
undiagnosed patients enrolled in Care4Rare Canada [39] 
through the application of MME. These consortia func-
tion as hubs for data exchange among researchers study-
ing rare diseases.

1.3  Big data analytics in rare disease genomics
Due to the implementation of large consortia, a lot of 
data, so-called big data, is accumulated, emphasizing the 
necessity of implementing a big data-based analysis pipe-
line. Processing big data presents impediments, including 
storage limitations, computational power requirements, 
and data security concerns [40]. Cloud platforms offer a 
scalable solution, enabling researchers to store and ana-
lyze large datasets efficiently [41]. Cloud platforms facili-
tate data sharing and collaboration without geographic 
constraints.

Researchers have increasingly utilized cloud plat-
forms to analyze big data in rare diseases. For example, 
the All of Us Research Program utilizes a cloud-based 
Researcher Workbench built on Google Cloud through 
Terra, which provides secure computational power for 
analysis [42]. The Genome Analysis Toolkit (GATK) team 
recommended running GATK across various cloud plat-
forms, particularly Terra, for its user-friendly graphical 
interface [43]. Amazon Web Services (AWS) hosts large 
public datasets, such as Genome Aggregation Data-
base (gnomAD) [44], UK Biobank [45–47], and 100,000 
Genomes Project (100KGP) [48] allowing users to ana-
lyze data and build services using a broad range of data 
analytics products.

DRAGEN is now widely available on platforms like 
Illumina Connected Analytics (ICA) and AWS Mar-
ketplace. It offers faster analysis times, requires fewer 
computational resources, and accurately detects vari-
ous variants [49, 50]. For instance, while using BWA and 
HaplotypeCaller for variant calling requires 32  h, lever-
aging DRAGEN can significantly reduce this time to just 
37  min [51]. Both methods show comparable accuracy 
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https://www.rarediseasesnetwork.org/research/data-sharing-and-standards/data-sharing-resources
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in variant calling, with DRAGEN achieving 99.07% for 
single-nucleotide polymorphisms (SNPs) and 88.39% for 
insertions and deletions (indels), while Burrows-Wheeler 
Aligner (BWA) combined with HaplotypeCaller reaches 
98.68% for SNPs and 89.45% for indels [51]. When ana-
lyzing large-scale data, cloud platforms and pipelines 
should be tailored to fit the user’s specific data and cost 
requirements [52].

1.4  Artificial intelligence (AI) and machine learning (ML) 
in rare disease analysis

Patients with rare diseases often face challenges such as 
diagnostic delay and misdiagnosis, and more than 90% 
of rare diseases lack effective treatments [53–55]. AI and 
ML technologies contribute to rare disease research by 
assisting the analysis of vast amounts of genomic and 
clinical data to identify disease patterns, predict treat-
ment outcomes, and develop personalized therapies, 
ultimately improving diagnostic accuracy and advancing 
drug development [56].

In the variant calling stage, deep learning models such 
as DeepVariant [57] and Clairvoyante [58] transform 
sequencing data into an image-like format and use con-
volutional neural networks (CNNs) to interpret DNA 
alignments as visual patterns for detecting genetic vari-
ants. Tools like NeoMutate [59], which utilize Bayesian 
classifiers and supervised learning algorithms, further 
integrate multiple methods to improve variant detec-
tion. These tools allow researchers to identify genetic 
variations with increased accuracy. DeepSVFilter [60], 
a CNN-based tool, filters SVs from genome sequencing 
data in the variant filtering stage. Tools like Intelli-NGS 
[61] use deep neural networks (DNNs) to minimize false-
positive and false-negative rates, significantly improving 
the filtering process.

Once variants are identified, AI-driven tools aid in its 
annotation and prioritization. MetaSVM [62] and Met-
aLR [62] provide ensemble predictions for deleterious 
effects, while combined annotation-dependent deple-
tion (CADD) [63] combines functional annotations and 
evolutionary conservation. Sorting Intolerant From Tol-
erant (SIFT) [64] and Polymorphism Phenotyping v2 
(PolyPhen-2) [65] assess sequence homology and struc-
tural features, respectively. Variant Effect Scoring Tool 
(VEST3) [66] and Protein Variation Effect Analyzer 
(PROVEAN) [67] score the functional impact of missense 
mutations, and MutationTaster2 [68] incorporates evolu-
tionary conservation and disease associations. Mende-
lian Clinically Applicable Pathogenicity (M-CAP) [69] 
classifies rare variants; Missense badness, PolyPhen-2, 
and Constraint (MPC) [70, 71] enhance predictions 
using constraint metrics, Functional Analysis through 
Hidden Markov Models with an eXtended Feature set 

(FATHMM-XF) [72], and Missense Variant Pathogenicity 
prediction (MVP) [73] focuses on potentially pathogenic 
variants. Additional tools include Skyhawk [74], DANN 
[75], DeepSEA [76], exome Disease Variant Analysis 
(eDiva) [77], and RENOVO [78], utilizing neural net-
works and random forest to prioritize clinically relevant 
variants and assess noncoding or germline variants.

AI has significantly advanced the field of phenotype-
genotype association, particularly in diagnosing rare 
diseases. DeepGestalt [79], which employs a deep CNN, 
analyzes facial images to distinguish between genetic 
subtypes, offering powerful diagnostic support. Deep 
PhenomeNET Variant Predictor (DeepPVP) [80], mod-
eled by adopting DNN, prioritizes variants by integrating 
patient phenotype information, enhancing the identifica-
tion of disease-causing variants. Xrare [81] focuses on 
prioritizing causative gene variants in rare diseases by 
utilizing phenotype-genotype association methods, pro-
viding clinicians with a streamlined approach to diag-
nosis. Additionally, Super-quick Information content 
Random Forest Learning of Splice Variants (SQUIRLS) 
[82], which uses a random forest algorithm, classifies 
splice variants, further improving the genotype–pheno-
type correlation by assessing the impact of genetic vari-
ants on splicing mechanisms. These tools collectively 
enhance the accuracy and efficiency of rare disease 
diagnosis by linking phenotypic features with underly-
ing genetic data. The integration of AI technologies with 
biomarker discovery from genomics data and advanced 
imaging diagnostics offers a promising approach to accel-
erating the diagnosis and treatment of rare diseases and 
reducing patients’ diagnostic odyssey. Additionally, the 
widespread implementation of AI-driven tools increases 
accessibility. It provides more comprehensive, data-
driven insights, empowering clinicians and nonspecial-
ists to make more informed decisions in managing rare 
genetic diseases.

1.5  Expanding genomic research: perspectives 
from Korean Bio‑Big Data

Despite representing about 22% of the global population, 
East Asians are under-represented in genetic research 
and are often missing from control databases. To address 
this imbalance, initiatives have been promoted to create 
a comprehensive Korean control database and to analyze 
the Korean Reference Genome.

Existing Korean databases include the Korean National 
Standard Reference Variome (KoVariome) [83], the 
Korean Reference Genome Database (KRGDB) [84], 
KOVA 2 [85, 86], the Korean Reference Genome (KRG), 
the Korean Genetic Diagnosis Program for Rare Dis-
eases (KGDP), Korea4K [87], and National Biobank of 
Korea (Table 2) [2, 3]. KoVariome offers a comprehensive 
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catalogue of genetic variations, including novel variants, 
enhancing the accuracy of identifying pathogenic genetic 
variants specific to the Korean population [83]. KRGDB 
contains genomic variant data, including frequency 
information, functional annotations, and genome-wide 
association studies (GWAS) results for common diseases 
[84]. The KOVA 2, built on the earlier KOVA dataset [85], 
offers critical insights into population-specific genetic 
variants and loci under selection [85, 86].

KRG project aims to identify the genome architecture 
of the Korean population and develop Korean-specific 
genomic resources, intending to include 20,000 partici-
pants [88]. KGDP Phase II enhances diagnostic capabili-
ties through collaboration with the Korean Undiagnosed 
Diseases Program (KUDP) [89, 90]. In 2024, Jeon et  al. 
presented the second phase of the Korean Genome Pro-
ject (KGP), known as Korea4K, to build a comprehensive 

reference dataset [87]. Korea4K provides a valuable large-
scale genome-phenome variome database for the Korean 
population and detailed information on various clini-
cal traits, representing the most extensive genomic and 
phenomic data resources [87]. Beyond control databases, 
the rare disease cohort in the National Biobank of Korea 
Project includes whole genome sequencing (WGS) data 
from 14,905 patients in a pilot study, aiming to expand 
to a cohort of 400,000 by 2028. A pilot study on this rare 
disease cohort enables estimation of neuronal intranu-
clear inclusion disease (NIID) prevalence in the Korean 
population [91].

1.6  Strategies for identifying and characterizing 
pathogenic variants

The process of data acquisition, identifying and charac-
terizing genetic variants, followed by clinical application, 

Table 2 Major databases of Korean Bio Big Data

As of September 2024

Database No. of 
individuals

Technology Sample type Published 
year

Data availability URL Accession number Reference

KoVariome 50 WGS Healthy 
individuals

2018 Data available 
within the article 
or its supplemen‑
tary materials

https:// korea 
ngeno me. 
org/ The_ 
Korean_ Refer 
ence_ Vario 
me:_ KoVar 
iome

None (uses FTP 
server)

Kim et al. [83]

KRGDB 1722 WGS Integrated 2020 Data avail‑
able on request 
from the authors

None None Jung et al. [84]

KOVA 2 1896 WGS Healthy 
individuals

2022 Data available 
within the article 
or its supplemen‑
tary materials

https:// www. 
kobic. re. kr/ 
kova/ downl 
oads

None (uses FTP 
server)

Lee et al. [86]

3409 WES

KRG (pilot 
phase)

1490 WGS Healthy 
individuals

2022 Data avail‑
able on request 
from the authors

None None Hwang et al. 
[88]

KGDP (Phase 
II)

1890 Multi‑omics Rare disease 
patients

2023 Data avail‑
able on request 
from the authors

None None Kim et al. [89]

Korea4K 4157 WGS Integrated 2024 Data avail‑
able on request 
from the authors

https:// 
ega‑ archi ve. 
org/ studi es/ 
EGAS0 00010 
07580

EGAD00001015348 Jeon et al. [87]

National 
Biobank 
of Korea (pilot 
phase)

772,319 Multi‑omics Integrated 2024 Data generated 
at a National 
Biobank of Korea, 
available 
upon request

https:// bioba 
nk. nih. go. 
kr/ cadav er/ 
EgovP ageLi 
nk. do? men‑
uNo= 34& 
link= eng% 
2Fmain% 
2Fcon tent% 
2FBio banki 
ngAct ives% 
2FCon trolP 
age

None [2, 3]

14,905 WGS Rare diseases 
patients 
and their rela‑
tives

https://koreangenome.org/The_Korean_Reference_Variome:_KoVariome
https://koreangenome.org/The_Korean_Reference_Variome:_KoVariome
https://koreangenome.org/The_Korean_Reference_Variome:_KoVariome
https://koreangenome.org/The_Korean_Reference_Variome:_KoVariome
https://koreangenome.org/The_Korean_Reference_Variome:_KoVariome
https://koreangenome.org/The_Korean_Reference_Variome:_KoVariome
https://koreangenome.org/The_Korean_Reference_Variome:_KoVariome
https://www.kobic.re.kr/kova/downloads
https://www.kobic.re.kr/kova/downloads
https://www.kobic.re.kr/kova/downloads
https://www.kobic.re.kr/kova/downloads
https://ega-archive.org/studies/EGAS00001007580
https://ega-archive.org/studies/EGAS00001007580
https://ega-archive.org/studies/EGAS00001007580
https://ega-archive.org/studies/EGAS00001007580
https://ega-archive.org/studies/EGAS00001007580
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
https://biobank.nih.go.kr/cadaver/EgovPageLink.do?menuNo=34&link=eng%2Fmain%2Fcontent%2FBiobankingActives%2FControlPage
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involves multiple steps (Fig.  1). While single-nucleotide 
variant and small insertion and deletion variant calling 
has been robust along with the development of variant 
calling tools like GATK, DRAGEN, and DeepVariant, 
interpreting variants’ pathogenicity and their relevance 
to specific phenotypes remains challenging [57]. Anno-
tation databases such as ANNOVAR, Variant Effect Pre-
dictor (VEP), and SnpEff [92] are publicly available for 
research. Still, the sheer volume of data and variability in 
clinical significance complicate the interpretation process 
[93, 94].

At the variant level, despite the availability of numer-
ous tools for predicting the pathogenicity of missense 
variants [95], accurately determining the clinical signifi-
cance of these variants remains a significant challenge in 
genomic interpretation [72, 96–98]. Deep learning mod-
els like AlphaMissense and PrimateAI-3D have recently 
been developed to predict variants’ pathogenicity [99, 

100]. AlphaMissense utilizes AlphaFold’s structural pre-
dictions and evolutionary conservation to achieve 90% 
precision on the ClinVar dataset [101], excelling in iden-
tifying deleterious variants in conserved regions and 
correlating well with multiplexed assays of variant effect 
(MAVEs) data [99, 102]. PrimateAI-3D outperforms 
AlphaMissense in real-world cohorts, including rare 
disease patients with clinical characteristics, including 
developmental disorders (DDD), autism spectrum dis-
orders (ASD), and congenital heart disorders (CHD). It 
shows superior predictive power in biobank phenotypes 
and proteomics [103].

Another essential aspect of variant characterization 
and interpretation is the frequency of variants. Large 
population databases such as the gnomAD and NHLBI’s 
Trans-Omics for Precision Medicine (TOPMed)-BRAVO 
help researchers determine how rare a variant is [70, 
104]. Rare variants are frequently linked to rare diseases 

Fig. 1 Integrated workflow for rare disease diagnosis and research
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due to their potential to disrupt critical biological func-
tions or pathways essential for health. Their low fre-
quency in the general population often reflects negative 
selection effects, as highly pathogenic variants tend to be 
eliminated from the gene pool over time due to their det-
rimental impact on reproductive fitness.

For instance, the identification of a novel variant in 
the NSD1 gene, which has been reported to occur at a 
low allele frequency (MAF = 0.006%, 7/114,570) in gno-
mAD3.1.1, has provided valuable insights into its poten-
tial pathogenic role in patients with Sotos syndrome 
[105]. However, common variants also play a role in rare 
disease etiology as genetic modifiers influencing disease 
onset, progression, or severity [106]. In this context, 
polygenic risk scores (PRS), which aggregate the effects of 
many common variants, are increasingly being explored 
in rare disease genetics to help explain variable expressiv-
ity and incomplete penetrance and to potentially improve 
diagnostic and prognostic accuracy in conjunction 
with rare variant analysis [107]. For instance, the study 
examined 2759 cases with developmental and epileptic 
encephalopathies (DEEs) or epilepsy with intellectual dis-
ability (ID) and 447,760 population-matched controls to 
explore the relevance of PRS [108]. It found that even in 
cases with a known deleterious variant, common genetic 
variation contributes significantly to the risk, explaining 
between 0.08 and 3.3% of the phenotypic variance across 
epilepsy subtypes [108].

The landscape of rare disease genetics has evolved 
significantly with the advent of WGS. While histori-
cally focused on exonic mutations, research now recog-
nizes the importance of noncoding regions in harboring 
disease-causing variants [109, 110]. However, accurately 
classifying these noncoding variants remains challeng-
ing. Current guidelines, such as those from American 
College of Medical Genetics and Genomics (ACMG) and 
the Association for Molecular Pathology (AMP), primar-
ily address coding variants [111], leaving a gap in inter-
preting noncoding variants [112]. To address this, new 
recommendations have emerged, focusing on defining 
regulatory regions, filtering clinically relevant variants, 
incorporating functional evidence (e.g., RNA sequenc-
ing, chromatin interaction assays), and applying bioinfor-
matics tools like SpliceAI [113], MotifbreakR [114], and 
UTRannotator [115] to assess their pathogenicity [112]. 
These approaches aim to provide a more comprehen-
sive framework for evaluating variants across the entire 
genome, potentially enhancing rare disease diagnosis and 
understanding.

Finding the causal variant of rare diseases necessitates 
precise evaluation and prioritization of genetic variants. 
Previous prioritization methods have primarily focused 
on in silico assessments of variant pathogenicity, resulting 

in decreased sensitivity and difficulties in understanding 
the results. While valuable, manual curation of genetic 
variants is limited by human error, subjectivity, and the 
overwhelming volume of data produced by NGS tech-
nologies. These biases can lead to missed or incorrectly 
prioritized variants, particularly in noncoding regions 
or when dealing with novel variants lacking extensive 
annotation. Automated gene/variant prioritization tools 
such as Exomiser [116], MAVERICK [117], LIkelihood 
Ratio Interpretation of Clinical AbnormaLities (LIRI-
CAL) [118], Automatic Mendelian Literature Evalua-
tion (AMELIE) [119], and Genomiser [120] significantly 
reduce manual curation efforts and minimize human bias 
in rare disease diagnosis. These tools integrate diverse 
information sources to generate a ranked list of candi-
date causal genes or variants, including phenotypic data 
encoded as Human Phenotype Ontology (HPO) terms, 
known disease associations, and functional predictions 
[118, 119]. By systematically and exhaustively analyzing 
vast amounts of data, these resources provide a compre-
hensive and unbiased approach to variant interpretation, 
surpassing the limitations of manual literature searches. 
This automation improves diagnostic precision and effi-
ciency and enables more consistent and reproducible 
results across different clinical settings. Consequently, 
these tools enhance treatment strategies and patient out-
comes in precision medicine, offering a scalable solution 
to the growing complexity of genomic interpretation in 
rare disease diagnostics.

1.7  Therapeutic innovations and precision medicine 
approaches

Therapeutic implications and precision medicine for 
rare diseases increasingly rely on advanced genomic 
technologies like WES and WGS. These tools enable 
the identification of pathogenic variants, allowing for 
tailored treatment strategies. Gene therapies, such 
as clustered regularly interspaced short palindromic 
repeats (CRISPR)-Cas9 and antisense oligonucleotides 
(ASOs), are at the forefront of this approach. For exam-
ple, onasemnogene abeparvovec (Zolgensma) treats spi-
nal muscular atrophy (SMA) by delivering a functional 
SMN1 gene [121], while nusinersen (Spinraza) modifies 
SMN2 splicing to enhance functional protein levels [122].

Protein-targeted therapies, like CFTR modulators 
for cystic fibrosis, improve defective protein function 
directly [123]. Recent advancements in regenerative 
medicine, including stem cell therapy and induced pluri-
potent stem cells (iPSCs), also offer promising avenues 
for repairing damaged tissues [124]. Together, these 
innovative strategies enhance patient outcomes and dem-
onstrate the potential of precision medicine in rare dis-
ease treatment.
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1.8  Challenges in data sharing and privacy concerns
Data sharing between researchers is essential in advanc-
ing rare disease research, as it increases diagnostic 
yield and unravels the underlying disease mechanisms. 
For instance, the German TRANSLATE-NAMSE pro-
ject found that interdisciplinary case conferences led to 
definitive diagnoses for 32% of pediatric and 26% of adult 
patients previously undiagnosed [6, 125]. The Global 
Alliance for Genomics and Health (GA4GH), an inter-
national coalition with members from over 90 countries, 
was established to facilitate sharing of genomic and clini-
cal data and promote interoperability among institutions.

The European Joint Programme on Rare Diseases 
(EJP RD), one of 24 ‘Driver Projects’ of GA4GH, main-
tains  repositories containing  more than 130,000 WES 
and WGS datasets across multiple resources including 
the European Genome-Phenome Archive (EGA), DECI-
PHER, and the RD-Connect Genome-Phenome Analy-
sis Platform (GPAP) [126]. In 2023, EJP RD launched a 
Virtual Platform, a public portal that provides access to 
Findable, Accessible, Interoperable, and Reusable (FAIR)-
compliant resources, streamlining data searching while 
safeguarding patient confidentiality [127]. International 
data exchange brings significant benefits.

However, data privacy remains a critical challenge, 
particularly for genomic and clinical data. Data misuse 
can violate the privacy of individuals and their biological 
relatives. Individual patients can be uniquely identified 
through distinctive genetic markers, such as rare single-
nucleotide variants (SNVs) specific to their genome [128, 
129].

To tackle this privacy concern, frameworks such as 
the Genetic Information Nondiscrimination Act of 2008 
(GINA) and the General Data Protection Regulation 
(GDPR) [130, 131] have introduced frameworks ensur-
ing data security. Despite these efforts, legal protections 
remain inconsistent, especially in the USA, where federal 
laws like HIPAA provide limited protection, particularly 
once data has been anonymized, as this anonymized data 
can be reidentified using several techniques, such as sur-
name inference [132]. Some participants in the 100KGP 
were reidentified as their surnames could be inferred by 
analyzing Y-chromosome STRs and cross-referencing 
with genealogy databases [133].

There is an unavoidable trade-off between data privacy 
concerns and the societal benefits of data sharing. An 
approach to mitigate the risk of reidentification includes 
employing cryptographic methods, such as secure multi-
party computation (SMC), to secure genomic data shar-
ing and allow computations without exposing raw data. 
SMC enables multiple parties to jointly compute GWAS 
statistics, such as minor allele frequency, without shar-
ing their raw data [134]. Ultimately, privacy-preserving 

strategies should be prioritized to ensure the benefits of 
data sharing in rare disease research do not come at the 
cost of individual privacy.

2  Conclusion
The field of rare disease research has undergone signifi-
cant advancements, driven by technological innovations 
in genomic sequencing, big data analytics, and AI. LRS 
technologies, cloud computing platforms, and AI/ML-
driven tools have greatly enhanced our ability to detect 
complex genetic variants and interpret their clinical 
significance. Large-scale collaborative efforts and the 
establishment of comprehensive genomic databases have 
expanded our knowledge of rare diseases.

Although significant progress has been made, chal-
lenges continue to arise. The complexity of variant 
interpretation calls for advanced prediction tools and 
automated systems for prioritization. Additionally, while 
sharing data is crucial for further research, it introduces 
privacy concerns that must be addressed through robust 
legal frameworks and advanced privacy-preserving 
technologies.

The integration of multi-omics data, the refinement 
of AI models, and the expansion of diverse population 
databases will be vital in advancing the diagnosis and 
treatment of rare diseases. The emergence of precision 
medicine, mainly through gene and protein-targeted 
therapies, highlights its potential in rare disease manage-
ment. As the field continues to balance collaborative data 
sharing with stringent privacy protections, significant 
progress is expected in understanding, diagnosing, and 
treating rare diseases, ultimately enhancing the lives of 
millions of affected individuals worldwide.
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