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Abstract 

Background  At present, only a few studies have explored electroencephalography (EEG) microstates of patients 
with obsessive–compulsive disorder (OCD) and the results are inconsistent. Additionally, the nonlinear features of EEG 
microstate sequences contain rich information about the brain, yet how the nonlinear features of EEG microstate 
sequences abnormally change in patients with OCD is still unknown.

Methods  Resting-state EEG data were collected from 48 OCD patients and macheted 48 healthy controls (HC). 
Subsequently, EEG microstate analysis was used to extract the microstate temporal parameters (duration, occur-
rence, coverage) and nonlinear features of EEG microstate sequences (sample entropy, Lempel–Ziv complexity, Hurst 
index). Finally, the temporal parameters and nonlinear features of EEG microstate sequences were sent to three kinds 
of machine learning models to classify OCD patients.

Results  Both groups obtained four typical EEG microstate topographies. The duration of microstates A, B, and C 
in OCD patients decreased significantly, while the occurrence of microstate D increased significantly compared 
to HC. Sample entropy and Lempel–Ziv complexity of microstate sequences in OCD patients increased significantly, 
while Hurst index decreased significantly compared to HC. The classification accuracy using the nonlinear features 
of microstate sequences reached up to 85%, significantly higher than that based on microstate temporal parameter 
models.

Conclusion  This study provides supplementary findings on EEG microstates in OCD patients with a larger sample 
size. We found that the nonlinear features of EEG microstate sequences in OCD patients can serve as potential electro-
physiological biomarkers for distinguishing OCD patients.
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Introduction
Obsessive–compulsive disorder (OCD) is a serious 
mental disorder which affects a significant portion of 
the global population, with estimated prevalence rates 
ranging from 1 to 3% in each country [7]. While OCD 
can impact individuals of any age, it typically manifests 
in adolescence or early adulthood, characterized by 
recurrent obsessive thoughts and compulsive behav-
iors. This condition often induces extreme anxiety 
and distress, leading individuals to engage in a series 
of compulsive actions in an attempt to alleviate such 
feelings. These behaviors significantly impair patients’ 
lives, affecting social and occupational functioning, and 
potentially leading to other mental health issues [15]. 
Therefore, research into and discovery of biomark-
ers for OCD have crucial clinical significance in early 
diagnosis.

Currently, non-invasive imaging techniques such as 
electroencephalography (EEG), magnetic resonance 
imaging (MRI) and functional near-infrared spectroscopy 
(fNIRS) have been employed in the auxiliary diagnosis 
and treatment of psychiatric and neurological disorders. 
Among them, EEG is widely used due to its advantages 
of low cost, no radiation, high temporal resolution, and 
suitability for long-term monitoring [31]. Numerous 
algorithms for extracting meaningful information from 
EEG signals have been proposed by scholars. Among the 
various analysis methods of EEG, microstate analysis is a 
relatively novel and popular algorithm. Microstate refers 
to a time window of brain electrical activity, typically last-
ing between 60–120 ms. In microstate analysis, EEG data 
is segmented into multiple microstates, each of which is 
believed to represent a specific functional state or infor-
mation processing process in the brain, potentially serv-
ing as the basis for human cognitive functions [21, 32].

Numerous studies have shown that patients with psy-
chiatric and neurological disorders exhibit abnormal 
changes in EEG microstate, such as schizophrenia [12], 
bipolar disorder [[43]], depression [46], and Parkinson’s 
disease (PD) [10]. However, research of the microstates 
for OCD remains limited. To the best of our knowledge, 
only two studies have explored EEG microstate in OCD. 
Yoshimura et  al.[45] found that, compared to the con-
trol group, OCD patients exhibited significantly higher 
occurrence of microstates A, B, and C during rest. Thiri-
oux et al. [39] investigated the EEG microstates of OCD 
patients using high-density EEG, and found a signifi-
cantly increased coverage of microstate C and shortened 
duration of microstate D in OCD patients. In conclusion, 
the results of the two studies were not consistent. This 
could be due to the small sample size of OCD patients 
included and the different number of microstate clusters, 
which affected the reliability and consistency of the OCD 

microstate results [38]. Therefore, further exploration of 
microstate research is needed in OCD patients.

In addition to microstate temporal parameters, micro-
state sequences also contain rich information about the 
brain. In recent years, some researchers have combined 
the nonlinear indicators with EEG microstate sequences 
to study the abnormal dynamics of brain networks in 
patients with psychiatric and neurological disorders. 
Our team previously investigated the sample entropy 
and Lempel–Ziv complexity (LZC) of EEG micro-
state sequences in first-episode drug-naive adolescents 
with depression and found that the sample entropy and 
LZC of depression patients were significantly higher 
than those of the healthy control group. In addition, 
these nonlinear features were used as features to clas-
sify patients with depression from healthy individuals 
based on machine learning method and achieved a high 
accuracy of 90.9% Zhao et  al. [46, 47]. Murphy et  al., 
[24] studied for the first time the sample entropy of EEG 
microstate sequence of schizophrenic patients, and the 
results showed that the sample entropy of schizophrenic 
patients increased significantly compared with healthy 
control group. Lassi et  al. [20] used the LZC and Hurst 
exponent of EEG microstate sequences to distinguish 
patients with subjective cognitive decline (SCD), patients 
with mild cognitive impairment (MCI) and healthy con-
trols. The results showed that the LZC of SCD patients 
was significantly higher than that of MCI patients, and 
the Hurst value of SCD and MCI patients was signifi-
cantly lower than that of healthy people. It is suggested 
that the nonlinear features of EEG microstate sequence 
may be used as biomarkers to identify the progression 
to Alzheimer’s Disease (AD) from its preclinical state. 
These research findings collectively suggest that the com-
bination of microstate sequence with nonlinear features 
can reveal brain abnormalities in patients from a new 
perspective. However, there is limited research on the 
nonlinear features of OCD microstate sequences, and it 
remains unclear whether they exhibit abnormal changes. 
Therefore, we hypothesize that the nonlinear features 
of the EEG microstate sequence in OCD patients was 
abnormal, significantly increased sample entropy and 
LZC complexity in OCD patients and significantly lower 
Hurst index compared to HC.

In summary, there is limited research on EEG micro-
states in OCD, and the findings are inconsistent. Addi-
tionally, the nonlinear features of EEG microstate 
sequences in OCD have not been explored. Therefore, 
the aims of our research are: 1) to demonstrate the abnor-
mality of nonlinear features of EEG microstate sequence 
in OCD patients and clarify whether they can serve as 
potential biomarkers for distinguishing OCD patients; 
2) Considering the inconsistent findings between 
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Yoshimura et  al. [45] and Thirioux et  al. [39], provide a 
supplemental study about microstates of OCD patients 
with a larger sample size.

Materials and methods
Participants
The participants in this study consist of two parts. For 
the dataset 1, 57 OCD patients and 34 healthy controls 
(HC) were downloaded from a public database [42]. After 
EEG preprocessing, subjects with poor EEG signal qual-
ity were excluded, and 32 patients and 33 healthy sub-
jects were retained. For dataset 2, 19 OCD patients and 
matched 17 healthy controls (HC) were recruited from 
the Second Affiliated Hospital of Xinxiang Medical Uni-
versity. After EEG preprocessing, subjects with poor EEG 
signal quality were excluded, and 16 patients and 15 HC 
were retained. In summary, a total of 48 OCD patients 
and 48 healthy controls were included in this study for 
subsequent EEG microstate analysis, and Table 1 shows 
the demographic information. Independent sample 
T-test showed no significant difference between OCD 
and HC in gender (P = 0.362) and age (P = 0.475).

All OCD patients underwent detailed behavioral and 
neuropsychiatric evaluations, and subjects were excluded 
if they were at significant risk of suicide, had a history 
of neurological disease, seizures, serious somatic illness, 
or had a history of drug or alcohol dependence or per-
sonality disorders. All enrolled patients were obsessive–
compulsive disorder patients with a Yale-Browne score 
(Y-BOCS) of 16 or greater. For dataset 2, the study fol-
lowed the Declaration of Helsinki was and approved by 
the Ethics Committee of the Second Affiliated Hospital of 
Xinxiang Medical University with the written informed 
consent of all participants.

EEG data acquisition
For dataset 1, 26-channel EEG recordings (FP1, FP2, F7, 
F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, 
CPz, CP4, P7/T5, P3, Pz, P4, P8/T6, O1, Oz, O2) based 
on the 10–10 international system using a Compumed-
ics Quickcap were acquired at a sampling rate of 500 Hz. 

EEG data were collected for two minutes of open eye 
(EO) and two minutes of closed eye (EC), and partici-
pants were asked to remain relaxed during the recording. 
But only EEG data from EC was used for subsequent pro-
cessing analysis. The impedance of recording electrodes 
was kept less than 10 KΩ. For dataset 2, 64-channel rest-
ing-state EEG signals based on the 10–20 International 
system (Neuroscan SynAmps2, Australia). EEG data were 
recorded from each subject who was asked to sit com-
fortably in a chair with their eyes closed for about 10 min. 
The EEG sampling frequency was set to 1000 Hz, and the 
electrode impedance was also kept below 10 kΩ.

EEG data preprocessing
Offline EEG data preprocessing was carried out using 
MATLAB 2013b software (The MathWorks Inc. Natick, 
MA, USA) equipped with EEGLAB toolbox [13]. We 
extracted 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, 
C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) from dataset 
1 and dataset 2 at the same locations. The next preproc-
essing operations for dataset 1 and dataset 2 remained 
consistent. Firstly, a zero-phase FIR bandpass filter was 
applied to the EEG data in the 2–20 Hz range. Secondly, 
the EEG data were downsampled to 250 Hz. Thirdly, 
independent component analysis (ICA) was employed to 
identify and remove artifacts such as electrooculography 
(EOG), electromyography (EMG), electrocardiography 
(ECG), and poor channels [22]. Among them, 2.08 ± 1.40 
(mean ± sd) components were deleted from HC and 
2.44 ± 1.61 (mean ± sd) components from OCD. Fourthly, 
the data were segmented into 2-s intervals, with seg-
ments containing significant artifacts removed. The clear 
data segments were then concatenated. Finally, the first 
90 s (epochs) of EEG data from each participant were 
selected for microstate analysis.

Microstates analysis
A microstate analysis toolbox was used to perform 
microstates analysis for resting-state EEG data [27]. As 
shown in Fig.  1, the process of EEG microstate analysis 
was briefly described as follows. Firstly, we calculated the 
global field power (GFP) for each participant at each time 
point

Here, i represents each electrode, u denotes the meas-
ured EEG potential of each channel, and n represents the 
number of electrodes (here is 19). Based on the above 
equation, we could obtain an GFP curve that reflects the 
degree of change in the EEG potential between all elec-
trodes in a given time. Because the local maximum of 

(1)GFP =

n

i=1
u
2
i

n

Table 1  Demographic information

Age(years)
Mean ± std

Sex
Male/Female

Y-BOCS

OCD dataset1 30.74 ± 9.52 19/13 26.44 ± 8.89

dataset2 27.88 ± 10.67 10/6 28.32 ± 6.50

merge 29.78 ± 9.90 29/19 27.46 ± 6.36

HC dataset1 32.17 ± 15.67 10/23 —

dataset2 20.27 ± 1.79 11/4 —

merge 27.47 ± 6.13 21/27 —
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the GFP curve has the strongest signal intensity and the 
highest signal-to-noise ratio, therefore, the topographic 
maps at the GFP local maximum point (called original 
maps) were selected for subsequent clustering analysis.

Firstly, an improved k-means algorithm was employed 
for clustering, with the number of clusters set between 2 
and 8. Secondly, Cross-Validation criterion(CV) was used 
to determine the optimal number of clusters, which was 

found to be 4 for both the OCD and HC groups. Thirdly, 
the program randomly selects four types of brain topo-
graphic maps as the initial clustering centers, compares 
and updates other topographic maps with the initial 
clustering centers based on spatial correlation, and recal-
culates the global interpretation variance GEV until the 
highest and stable GEV appears. At this time, the four 
clustering centers obtained are microstate "template 

Fig. 1  Flow chart of materials and methods. The processes of participants screening, EEG preprocessing, microstate analysis, feature extraction 
and classification are summarized. (HC: healthy controls; OCD: obsessive–compulsive disorder; ICA: independent component analysis; LZC: Lempel–
Ziv complexity)
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maps":A、B、C、D. Finally, spatial correlation was 
used to map the four "template maps" back to EEG data, 
with each time point labeled according to the microstate 
category with the highest correlation. After the above 
microstate analysis, the related EEG microstate temporal 
features for each subject were extracted:

(a)	 Duration: the average length of time for each micro-
state (unit: ms).

(b)	 Occurrence: the average number of occurrences per 
second for each microstate (unit: Hz).

(c)	 Coverage: time coverage percentage of each micro-
state across total analysis time (unit: %).

Entropy calculation
Sample entropy calculates the likelihood of creating a 
new pattern in the signal, which allows it to quantify 
time series and complexity. The sequence complexity 
increases with the likelihood of producing a new pattern 
[23]. In this study, sample entropy was used to character-
ize the complexity of the microstate sequence for each 
individual. The detailed algorithm of sample entropy 
was described in Zhao et  al., [47]. Briefly, computa-
tion of samp entropy depends on two key parameters: 
a template length m and a tolerance r. In this study, we 
labeled the microstates with the numbers 1–4(For exam-
ple, ABCD → 1234), r is set to 0.1 and m ranged from 1 to 
10 [24]. In order to eliminate the influence of the differ-
ent m, the average sample entropy was computed with m 
ranging from 1 to 10.

LZC calculation
LZC is a complexity measurement method which quan-
tifies the randomness and unpredictability of a sequence 
by analyzing the pattern repeatability in the sequence. 
The original Lempel–Ziv complexity algorithm consists 
of transformation of the signal into a binary sequence by 
comparing it with the threshold (e.g., mean or median) 
and calculating the unique subsequence in a sequence 
[4]. The lower the LZC value, the more repeated pat-
terns in the sequence which indicates the lower com-
plexity. On the contrary, the higher the LZC value, the 
higher the randomness and complexity of the sequence. 
In this study, we apply the improved LZC algorithm 
for microstate sequences [37, 47]. The EEG microstate 
sequence consists of a string of A, B, C, and D, which we 
simplify into a transition sequence. For example, if the 
original sequence is AAAABBBCCCDAADD, the tran-
sition sequence would be ABCDAD, containing only the 
state transitions. Given that the lengths of the transition 
sequences vary among participants after conversion, it 
is necessary to choose a sufficiently small number N to 
ensure that all participants’ transition sequences are 

greater than or equal to this value. In this study, we chose 
N = 1200.

Hurst index
Hurst index is an indicator used to quantify the long-
term memory properties of time series, which evaluates 
the long-term dependence of the time series based on 
the asymptotic behavior of the autocorrelation function. 
The Hurst index ranges between 0 and 1, where H = 0.5 
indicates that the sequence is random and has no long-
term memory; H > 0.5 indicates that the sequence has a 
positive long-term dependence, and H < 0.5 indicates 
that the sequence has a negative long-term dependence 
[20]. In this study, we used the DFA (Detrended Fluctua-
tion Analysis) toolbox in MATLAB to compute the Hurst 
exponent. During the calculation, we configured multiple 
time scales ranging from 50 to 500 data points, with a 
step size of 50, to ensure robust and reliable results.

Machine learning classification
To evaluate whether microstate temporal parameters 
(duration, occurrence, coverage) or nonlinear features of 
microstate sequences (entropy, LZC, and Hurst) could 
serve as potential biomarkers for distinguishing OCD 
patients, both feature sets were sent to machine learning 
models for classification. Firstly, we extracted three tem-
poral parameters (duration, occurrence, and coverage) 
for each of the four microstates (A, B, C, D), resulting in 
12 temporal parameters, which formed feature set 1 (Set 
1). Next, we extracted three nonlinear features of the 
microstate sequences—entropy, LZC, and the Hurst—as 
feature set 2 (Set 2). Subsequently, both feature sets were 
sent to three machine learning models (Support Vector 
Machine (SVM) [47], Logistic Regression (LR) [2], and 
Gaussian Naive Bayes (GNB) [28] for classification of 
OCD patients from HC. Finally, multiple metrics based 
on fivefold cross-validation, including accuracy (ACC), 
sensitivity (SEN), specificity (SPE), and area under the 
receiver operating characteristic (ROC) curve (AUC), 
were used to comprehensively evaluate the classifica-
tion performance of the models. All classification steps 
were performed using Python version 2.8.2 with default 
parameters, equipped with scikit-learn library version 
0.24.2.

Statistical analysis
We employed the Ragu toolbox for Topographic Analy-
sis of Variance(TANOVA) to investigate whether there 
are statistical differences in microstate topographies A, 
B, C, and D between OCD and HC. SPSS 19.0 software 
was used for the statistical analysis, and data were rep-
resented as mean ± standard deviation(std). The Shap-
iro–Wilk test was employed to determine whether the 
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distribution was normal. Each microstate measure was 
compared of between OCD patients and healthy sub-
jects using Wilcoxon rank sum test if the data does not 
conform to a normal distribution and false discovery 
rate (FDR) correction was used to control multiple com-
parison problem. We used Cohen’s d as a measure of the 
effect size of the pairwise comparisons. Finally, Pearson 
correlation analysis was used to explore whether there 
was a significant correlation between the time param-
eters of microstate, the nonlinear features of microstate 
sequences and Y-BOCS scores.

Result
EEG microstate temporal parameters
As shown in Fig.  2, four typical EEG microstate topo-
graphic maps were obtained for OCD patients and 
healthy controls which are consistent with the findings of 
most previous studies [17, 18, 48]. In order to assess the 
explanatory power of the microstate topographic maps 
for the EEG data, the global explained variance (GEV) 
between the two groups was compared. The results 
showed that the GEV was 0.7464 ± 0.0423 (mean ± std) 
for the HC group and 0.7264 ± 0.0547 (mean ± std) for 
the OCD group, and Wilcoxon rank sum test indicated 
no statistical difference in GEV between the two groups 
(P = 0.0912, z value = 1.6890). However, the TANOVA 
revealed a significant difference in microstate D topogra-
phy between OCD and HC (P = 0.027).

In order to quantitatively explore the differences 
between the OCD and HC groups, we extracted 
the temporal parameters of each microstate includ-
ing duration, occurrence and coverage. It is found 
that only LZC (P = 0.3595,W = 0.974) and Entropy 
(P = 0.0998,W = 0.9599) conform to normal distribu-
tion in HC. In OCD, only the occurrence of micro-
state D (P = 0.2280,W = 0.970) and Hurst index 

(P = 0.8540,W = 0.9866) conform to normal distribu-
tion. Therefore, we used Wilcoxon rank sum test to 
conduct differential statistics. We found that the aver-
age duration of microstates A, B, and C in the OCD 
group was significantly lower than those of HC group 
(Fig. 3A and Table 2). In terms of occurrence, the aver-
age occurrence frequency of microstate D in the OCD 
group was significantly higher than that in the HC 
group (Fig. 3B and Table 2). However, there was no sig-
nificant difference in the average coverage (Fig. 3C and 
Table 2).

Nonlinear features of EEG microstate sequence
The EEG microstate sequence contains rich information 
of the whole brain. We employed three nonlinear features 
including sample entropy, LZC, and Hurst index to quan-
tify the nonlinear features of EEG microstate sequences 
in the OCD and HC groups. We found that the sample 
entropy of the OCD group was significantly higher than 
that of the HC group (Fig. 4A and Table 2; Pfdr = 0.0069). 
Similarly, the average LZC of the OCD group was also 
significantly higher than that of the HC group (Fig.  4B 
and Table  2; Pfdr = 0.0007), indicating a greater unpre-
dictability and chaos in the brain state of OCD patients. 
However, the Hurst index of the OCD group was signifi-
cantly lower than that of the HC group and its value was 
relatively closer to 0.5 (Fig. 4C and Table 2; Pfdr = 0.0001), 
which may indicate weaker long-term memory and sta-
bility in their brain network activity.

We used Pearson correlation analysis to explore 
whether there was a correlation between the time 
parameters of microstate, the nonlinear features of 
microstate sequences and the severity of obsessive–
compulsive disorder (Y-BOCS scores), and none of 
them showed significant correlations.

Fig. 2  Topographic maps of four types of EEG microstates (microstates A-D) in HC and OCD group. (HC:healthy controls; OCD: obsessive–
compulsive disorder)
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Machine learning classification
The above results indicate that there exist statisti-
cal differences between OCD and HC for microstate 
temporal parameters and nonlinear features of micro-
state sequence. However, it is unclear whether these 
microstate temporal parameters or nonlinear features 
of microstate sequence can serve as potential biomark-
ers for OCD based on machine learning method. Here, 
two types of feature sets were sent to SVM, LR, and 
GNB machine learning models for classification of OCD 
between HC: 1) microstate temporal parameters (Set 1) 
and 2) nonlinear features of microstate sequence (Set 2). 
As shown in Table 3 and Fig. 5, as for feature set 1, the 
classification accuracies of SVM, LR, and GNB models 
are 75.86%, 72.41%, and 75.86%, respectively. For feature 
set 2, the classification accuracies of the three machine 
learning models are 80%, 85%, and 80%, respectively, sig-
nificantly higher than those based on feature set 1. The 
results indicate that the nonlinear features of EEG micro-
state sequences can effectively and stably enhance the 
classification performance, demonstrating that the non-
linear features of EEG microstate sequences can serve as 
potential biomarkers for distinguishing OCD.

Discussion
In this study, we combined EEG microstate tempo-
ral parameters and nonlinear features of microstate 
sequence to reveal the abnormal brain network dynam-
ics of OCD patients. We found that both OCD and HC 
obtained four typical EEG microstate topographies. For 
the microstate temporal parameters, the average dura-
tion of microstates A, B, and C in OCD was significantly 
lower than that in HC, while the average occurrence of 
microstate D in OCD was significantly higher than that 
in HC. As for microstate sequence nonlinear features, the 
average Entropy and LZC values in OCD were signifi-
cantly higher than those in HC, while the average Hurst 
value was significantly lower in OCD than in HC. Finally, 
using microstate temporal parameters and microstate 
sequence nonlinear features as feature sets for classify-
ing OCD and HC, we found that the classification accu-
racy based on the latter was significantly higher than that 
based on the former.

The abnormal microstate temporal parameters in OCD
Previous studies have indicated that microstate A 
reflects the auditory network (AN), primarily associ-
ated with the bilateral temporal cortex [6]. Cottraux 
et  al. [11] found that compared to healthy controls, 
adult OCD patients exhibited higher cerebral blood 
flow trends in the temporal region, suggesting abnor-
mal auditory information processing in the temporal 

Fig. 3  Comparison of the EEG microstate temporal parameters 
between OCD and HC groups: A Duration, B Occurrence, 
and C Coverage. ‘**’ indicates Pfdr < 0.01. (HC:healthy controls; 
OCD:obsessive–compulsive disorder)
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lobe of OCD patients. Korostenskaja et  al. [19] found 
similar auditory information processing abnormalities 
in adolescent OCD patients. Microstate B reflects the 
visual network (VN), primarily involving the bilateral 
occipital cortex [1]. Pujol et  al. [29] found that corti-
cal intralayer functional connectivity in the visual 
cortex was weaker in OCD patients than in healthy 
individuals. Chapman et al. [8] found abnormalities in 
early visual processing in OCD patients. Other stud-
ies also have found changes in the brain structure of 
OCD patients in the occipital and parietal lobes [35, 
36, 40, 41]. Microstate C reflects the default mode 
network (DMN), associated with the bilateral insula, 
bilateral inferior frontal cortex, and anterior cingulate 
cortex, while microstate D reflects the dorsal attention 
network (DAN) and executive control network (ECN), 
involving the medial prefrontal cortex, cingulate gyrus, 
and posterior parietal cortex [5, 25]. Studies based on 
functional magnetic resonance imaging (fMRI) tech-
nology ave shown abnormalities in the DMN, ECN, 
and their associated brain regions in OCD patients. 
Fan et  al., [14] found significant abnormal interac-
tions between the salience network (SN), DMN, and 
ECN in OCD patients. Similarly, Sha et  al. [33] used 
resting-state fMRI technology to discover abnormally 
increased functional connectivity between the left 

caudate nucleus and dorsolateral prefrontal cortex in 
OCD patients. The aforementioned studies indirectly 
support our findings that the duration of microstates 
A, B, and C in OCD was significantly lower than that 
in HC, while the average occurrence of microstate D 
in OCD was significantly higher than that in HC. Our 
findings are supported by the study of Cheng et al. [9], 
who found a significantly shorter duration of micro-
state A and significantly increased occurrence of 
microstate D in OCD compared to HC. However, our 
findings are inconsistent with the results of the two 
previous studies on EEG microstates in OCD patients. 
In the study by Yoshimura et  al. [45], OCD patients 
showed significantly higher occurrence rates of micro-
states A, B, and C during rest compared to the healthy 
controls. In the study by Thirioux et  al. [39], OCD 
patients showed a significant increase in the coverage 
of microstate C compared to healthy individuals, while 
the duration of microstate D was significantly reduced. 
This discrepancy may be attributed to the limited sam-
ple size of OCD patients included or inconsistencies 
in the number of EEG microstate obtained in the pre-
vious studies. In addition, the heterogeneity of OCD 
patients and the impact of therapeutic drugs may also 
lead to these inconsistent results. In conclusion, this 
study provides a supplemental result about the micro-
states of OCD patients with a larger sample size.

Table 2  Comparison of EEG microstate temporal parameters and nonlinear features of microstate sequence between OCD and HC 
group

HC healthy controls, OCD obsessive–compulsive disorder, std standard deviation

HC OCD

Mean std Mean std P Z value Cohen’s d Pfdr

Duration
Class A 91.0865 16.2325 82.9108 11.6718 0.0028 -2.9860 -0.5783 0.0048
Class B 92.2596 17.6140 82.1848 12.1643 0.0015 -3.1839 -0.6656 0.0048
Class C 104.9997 22.1774 94.3411 20.4936 0.0036 -2.9127 -0.4992 0.0048
Class D 95.6367 19.8856 95.2714 25.8056 0.3243 -0.9856 - 0.3243

Occurrence
Class A 2.4287 0.5342 2.5968 0.5488 0.1311 1.5096 - 0.1311

Class B 2.3572 0.5860 2.5722 0.5919 0.1007 1.6415 - 0.1311

Class C 2.8516 0.5095 3.0509 0.4988 0.1151 1.5756 - 0.1311

Class D 2.6178 0.4012 2.9002 0.5142 0.0017 3.1401 0.6122 0.0068
Coverage
Class A 22.47 7.54 21.73 6.03 0.8633 -0.1722 - 0.8633

Class B 22.05 7.75 21.30 6.30 0.6628 -0.4360 - 0.8633

Class C 30.21 9.09 29.02 8.72 0.3694 -0.8976 - 0.7388

Class D 25.27 7.19 27.95 9.85 0.2576 1.1321 - 0.7388

Entropy 0.0891 0.0153 0.0986 0.0195 0.0069 -2.7002 -0.5424 0.0069
LZC 470.2083 45.1027 502.521 48.9233 0.0005 -3.4736 -0.6867 0.0008
Hurst 0.6914 0.0551 0.6436 0.0490  < 0.0001 4.1071 0.9178 0.0001
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The nonlinear features of EEG microstate sequence used 
as potential neurophysiological biomarkers of OCD
Sample entropy is a metric quantifying the complexity 
of time series, capable of measuring irregularity and pre-
dictive uncertainty within data [23]. LZC is a complexity 

measure grounded in information theory, utilized to 
assess the quantity of new and repeated patterns within 
time series data [4]. Thus, the increase in values of sam-
ple entropy and LZC can indicate the randomness and 
complexity of data. Sample entropy and LZC are increas-
ingly widely applied in psychiatric and neurological 
disorders to assess the complexity of EEG microstate 
sequences such as Alzheimer’s disease [20], depres-
sion [47], and psychosis [24]. Currently, there exists no 
research applying sample entropy and LZC to study the 
EEG microstate sequences of OCD. In this study, we 
utilized sample entropy and LZC to assess the irregu-
larity and complexity of EEG microstate sequences in 
OCD patients. Our findings revealed that OCD patients 
exhibit higher levels of sample entropy and LZC com-
pared to healthy controls. Jiang et al. [16] computed brain 
entropy for OCD and HC groups based on resting-state 
fMRI, and found that OCD patients showed significantly 
increased approximate entropy and fuzzy entropy across 
nearly the entire brain compared to the control group. 
Blair et  al. [3] projected dynamic functional connectiv-
ity of resting-state fMRI into a low-dimensional space 

Fig. 4  Nonlinear features of EEG microstate sequence in OCD and HC groups: A Entropy, B LZC and C Hurst. ‘**’ and ‘***’ indicate Pfdr < 0.01 
and Pfdr < 0.001, respectively. (HC: healthy controls; OCD: obsessive–compulsive disorder)

Table 3  Classification performance based on feature Set 1 and 
Set 2 for three kinds of machine learning models

SVM support vector machine, LR logistic regression, GNB gaussian naive bayes, 
ACC​ accuracy, SEN sensitivity, SPE specificity, AUC​ area under the receiver 
operating characteristic curve

Methods ACC​ SEN SPE AUC​

Set 1
SVM 75.86% 76.47% 75.0% 77.0%

LR 72.41% 70.59% 75.0% 71.0%

GNB 75.86% 82.35% 66.67% 77.0%

Set 2
SVM 80.0% 83.0% 68.0% 90.0%

LR 85.0% 93.0% 84.0% 94.0%

GNB 80.0% 90.0% 73.0% 92.0%
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and dimension-specific entropy was estimated within 
this space, similarly finding higher entropy values in 
OCD patients compared to healthy controls. These find-
ings are consistent with our results, indicating that OCD 
patients exhibit higher randomness, unpredictability and 
complexity in their brain network. The increased random 
complexity in OCD patients may be related to cognitive 
control and executive function deficits in individuals with 
OCD. During task execution, individuals with OCD may 
need to mobilize more cognitive resources to process 
information due to cognitive deficits, which may lead to 
increased complexity in brain activity [34]. Moreover, the 

typical symptoms of OCD, such as the cyclical nature of 
obsessive thoughts and the repetitiveness of behaviors 
[15], may also be reflected as increased complexity in 
brain activity.

The Hurst index is a metric used to measure the long-
term memory of time series data. In healthy individuals, 
higher Hurst values are typically associated with bet-
ter cognitive function and stronger neural stability [49]. 
Observed Hurst values in OCD patients significantly 
decrease and approach 0.5, indicating weaker long-term 
memory and stability in their brain network activity. This 
finding may be related to the reduced cognitive flexibility 

Fig. 5  ROC curve of (A) three machine learning classification using microstate temporal parameters (duration, occurrence and coverage) and (B) 
three machine learning classification based on nonlinear features of microstate sequence (entropy, LZC and Hurst). (SVM: support vector machine; 
LR: logistic regression; GNB: gaussian naive bayes; ROC: receiver operating characteristic)
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observed in OCD patients [30]. This aligns with the path-
ological features of OCD patients struggling to break free 
from obsessive thoughts and behaviors [15]. In summary, 
changes in sample entropy, LZC, and Hurst values in 
OCD patients may reveal the neural basis of their cogni-
tive control and executive function impairments.

The above results showed that there exist significantly 
statistical differences in EEG microstate temporal param-
eters and nonlinear measures of microstate sequence 
between healthy controls and OCD patients, in this 
study, we further combined machine learning method 
and microstate features to classify OCD patients at indi-
vidual level for the first time. Our results showed that a 
good classification performance (accuracy = 85.0%) was 
obtained when nonlinear measures of EEG microstate 
sequence was sent to LR machine learning model. Our 
classification performance was apparently better than 
those of some previous literature based on machine 
learning classification of OCD patients. For example, 
Yang et  al. [44] extracted fractional amplitude low-fre-
quency fluctuation (fALFF) of resting-state fMRI, and 
applied support vector machine (SVM) to distinguish 
between OCD patients and healthy controls, achieving 
an accuracy of 72%. Park et  al. [26] extracted gamma-
band functional connectivity from EEG signals, and used 
elastic net machine classification method to classify OCD 
patients, achieving an accuracy of 74.52%. In conclusion, 
our results demonstrate that these nonlinear measures of 
EEG microstate sequence can be used as a potential bio-
marker for the auxiliary classification of OCD patients.

Limitations and future directions
However, this study still has some limitations that need to 
be considered. Firstly, since the subjects included in the 
study originated from two different datasets, differences 
in data acquisition equipment may have some impact on 
the results. Secondly, although the sample size of OCD 
patients in this study is larger than previous studies, more 
studies are needed to confirm our findings in the future. 
Thirdly, OCD patients in dataset 2 are using drugs at the 
time when they received the experiment, while detailed 
information on the medication status of OCD patients 
is not provided in dataset 1, so more detailed recording 
and control of participants are needed in future studies. 
Finally, although we found that nonlinear features of EEG 
microstate sequence can serve as potential biomarkers of 
OCD patients, a follow-up study may be needed to track 
longitudinal changes in nonlinear features at different 
stages of OCD patients.
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