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Abstract 

Gene e xpression le v els serv e as v aluable mark ers f or assessing prognosis in cancer patients. To understand the mechanisms underlying prog- 
nosis and explore potential therapeutics across diverse cancers, we developed CancerPro (https: / medcode.link / cancerpro). This knowledge 
netw ork platf orm integrates comprehensiv e biomedical data on genes, drugs, diseases and pathw a y s, along with their interactions. By inte- 
grating ontology and knowledge graph technologies, CancerPro offers a user-friendly interface for analyzing pan-cancer prognostic markers and 
exploring genes or drugs of interest. CancerPro implements three core functions: gene set enrichment analysis based on multiple annotations; 
in-depth drug analysis; and in-depth gene list analysis. Using CancerPro, we categorized genes and cancers into distinct groups and utilized 
netw ork analy sis to identify k e y biological pathw a y s associated with unf a v orable prognostic genes. T he platf orm further pinpoints potential drug 
targets and explores potential links between prognostic markers and patient characteristics such as glutathione le v els and obesity. For renal 
and prostate cancer, CancerPro identified risk genes linked to immune deficiency pathways and alternative splicing abnormalities. This research 
highlights CancerPro’s potential as a valuable tool for researchers to explore pan-cancer prognostic markers and uncover novel therapeutic 
a v enues. Its flexible tools support a wide range of biological investigations, making it a versatile asset in cancer research and beyond. 
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ene expression is a promising marker for cancer progno-
is. Many studies have investigated the relationship between
ene expression levels and patient survival, and these results
rovide guidance for personalized treatment ( 1 ). Gene ex-
ression patterns allow researchers to classify tumor sam-
les into various molecular subtypes. These subtypes may
xhibit different responses to identical treatments ( 2 ). Fur-
hermore, alterations in gene expression can directly im-
act patient responses to specific treatment regimens. There-
ore, researchers can analyze expression patterns to de-
elop personalized treatment plans for individual patients. A
tudy combined gene expression levels to predict endocrine
herapy efficacy in breast cancer, identifying patients with
oor treatment responses ( 3 ). Gene expression levels can
e used to infer the infiltration status of immune cells in
umor microenvironments ( 4 ). The infiltration of immune
ells also impacts patient prognosis. Therefore, consider-
ng the above comprehensive information, gene expression
merges as a promising marker for cancer prognosis, facilitat-
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ing the study of genetic-level mechanisms influencing patient
outcomes. 

In cancer research, variations across different types of tu-
mors introduce complexities and challenges to the study. A
single gene can be mutated in different types of cancer, but its
functions and mechanisms can differ significantly. Addition-
ally, certain genes play dual roles, promoting some cancers
while suppressing others ( 5 ). For instance, MYC, a transcrip-
tion factor and an oncogene, serves as a potent driver in many
human cancers, regulating multiple biological activities that
promote tumorigenesis. Studies have shown that higher MYC
expression is associated with metastasis and poor disease-free
survival ( 6 ). Nevertheless, some studies indicate that MYC
may also exert tumor-suppressive functions, and low MYC
protein expression may predict poor outcomes after surgery
for hepatocellular carcinoma ( 7 ). This feature of dual roles
introduces additional complexity to cancer research and ther-
apy, and it needs deeper investigation and understanding. 

Therefore, conducting pan-cancer analysis to identify com-
monalities and unique characteristics among various tumors is
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essential. Pan-cancer research enables the discovery of genes
shared by multiple tumors as well as those specific to indi-
vidual tumors through the classification of human cancer-
associated genes. This approach provides valuable insights
into tumor occurrence mechanisms and guides the develop-
ment of effective treatment strategies. 

Due to the vast number of genes associated with cancer, dif-
ferent researchers may focus on different genes and drugs de-
pending on their research goals. Therefore, developing a flex-
ible knowledge discovery platform is essential. The results of
a ‘census’ of cancer genes by Futreal et al . indicate that mu-
tations in > 1% of genes contribute to cancer in humans ( 8 ).
Moreover, the molecular mechanisms and potential effects of
most drugs may not be fully understood, and researchers may
uncover clues indicating the therapeutic potential of certain
drugs. For any given study, researchers may identify a set of
genes associated with tumorigenesis or prognosis. Research on
these genes or drugs can provide clues to tumor mechanisms,
prognosis and potential drug discovery. Only an online knowl-
edge insight platform can meet the research requirements for
such constantly evolving conditions. 

In the development process of a knowledge insight plat-
form, both ontologies and knowledge graphs are essential.
An ontology can standardize the hierarchical relationship be-
tween concepts and it serves as a formalized knowledge rep-
resentation system describing relationships between concepts
and their attributes. For instance, in gene function research,
Gene Ontology (GO) is used to establish a standardized se-
mantic model for genes and their functions ( 9 ). An ontology
can help integrate data from multiple sources and form a com-
prehensive knowledge platform. Knowledge graphs are graph-
ical representations of relationships between entities. For ex-
ample, WikiPathways is a knowledge graph containing path-
way information that integrates relationships among genes,
proteins and metabolites in biological pathways ( 10 ). Using
ontologies in knowledge graphs allows us to extract entity in-
teraction information at different levels, and then to mine that
knowledge flexibly. Researchers can utilize this flexibility to
discover new associations, predict gene functions and under-
stand biological interactions. 

By combining ontologies with knowledge graphs, their re-
spective strengths are leveraged: ontologies provide rigorous
concept definitions and hierarchical structures, while knowl-
edge graphs provide flexible representations of relationships
between entities, providing a more specific understanding of
biological systems. 

In our study, we constructed a knowledge network database
using ontologies, which we then used to develop the Can-
cerPro Knowledge Network Insight Platform. This platform
provides a comprehensive and user-friendly interface for re-
searchers for in-depth exploration and analysis of pan-cancer
prognosis genes. Our analysis grouped prognosis marker
genes for 17 types of tumors. We examined gene characteris-
tics, the involved pathways, gene expression-regulating drugs
and other shared or unique information across all cancers.
Through grouping tumors according to marker genes, we in-
vestigated disease characteristics and tumor-specific associ-
ated genes, and analyzed their potential mechanisms. 

Materials and methods 

We aimed to determine the differences and shared features
of prognostic genes in multiple cancers, as well as their un-
derlying biological mechanisms, and classify tumors based on 

their prognostic features to identify tumor-specific features.
Therefore, data about the relationship between gene expres- 
sion and prognosis were collected, and a clustering algorithm 

was employed to group tumors based on the expression of 
prognostic genes. Prognostic genes were compared with onco- 
genes and tumor suppressor genes to identify their differences 
and overlaps, and to explore their different roles in cancer de- 
velopment. In order to facilitate pan-cancer research, we con- 
structed a knowledge graph by collecting a lot of information 

on genes, proteins, drugs, phenotypes and diseases. We devel- 
oped a user-friendly interface to implement three key func- 
tions: enrichment analysis of gene sets based on multiple an- 
notation information; in-depth analysis of drugs; and analysis 
of gene lists. Through these three functions, we will be able 
to gain a comprehensive understanding of the landscape of 
prognostic genes at the pan-cancer level, as well as establish 

a basis for future research, such as the development of new 

drugs. A diagram of the overall process of this study can be 
seen in Figure 1 . 

The pan-cancer gene expression and prognosis association 

data were obtained from The Human Protein Atlas (HP A, ver - 
sion 23.0) project ( 11 ). The HPA investigated mRNA expres- 
sion levels of protein-coding genes across 17 major cancer 
types. Log-rank P -values were computed for Kaplan–Meier 
analysis to correlate mRNA expression levels with patient sur- 
vival. Genes were divided into prognostic favorable, unprog- 
nostic favorable, unprognostic unfavorable and unprognos- 
tic unfavorable categories. A correlation was found between 

shorter patient survival and up-regulation of genes associated 

with cell proliferation and down-regulation of genes associ- 
ated with cell differentiation. 

Our primary focus was on the prognostic unfavorable and 

prognostic favorable gene categories. A pan-cancer prognosis 
gene expression matrix was constructed by assigning a value 
of 1 to genes classified as prognostic favorable, –1 for genes 
classified as prognostic unfavorable and 0 for genes without 
corresponding values. We selected favorable and unfavorable 
genes associated with at least three tumors as potential pan- 
cancer prognostic markers. These gene subsets were used for 
subsequent clustering analysis. Hierarchical clustering anal- 
ysis was performed on the matrix using Euclidean distance 
and complete linkage. The resulting hierarchical clustering 
tree was grouped into a specific number of categories using 
the cutree function from the R language stats package. In 

our study, samples and genes were both classified into five 
groups, and a heatmap was generated utilizing the Complex- 
Heatmap package. Oncogenes and tumor suppressor genes 
(TSGs) were obtained from https:// www.oncokb.org/ cancer- 
genes . Venn diagrams were used to compare the overlap re- 
lationships between oncogenes, TSGs, pan-cancer prognosti- 
cally favorable genes and prognostically unfavorable genes. 

The rich annotation information from public databases 
was used to construct the knowledge network and enable 
a comprehensive and in-depth study of genes or drugs. The 
gene annotation data included GO ( 9 ), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway ( 12 ), Reactome path- 
way ( 13 ), PathBank ( 14 ), chemical and genetic perturbations 
from MsigDB ( 15 ), drug perturbations from GEO ( 16 ), Dis- 
ease Alliance ( 17 ), Clinvar disease ( 18 ), Human Phenotype 
Ontology (HPO) ( 19 ), Mondo Disease Ontology (MONDO) 
( 20 ) and Library of Integrated Network-Based Cellular Sig- 
natures (LINCS) ( 21 ). Furthermore, drug targeting data were 

https://www.oncokb.org/cancer-genes
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Figure 1. Overall process of this pan-cancer study. 
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btained from DrugBank, and data on the effects of drugs
n gene expression were obtained from CTD ( 22 ). Synthetic
ethality gene pairs were obtained from SynLethDB ( 23 ), a
omprehensive database that aggregates data from publica-
ions and four other related databases (Syn-lethality, Decipher,
enomeRNAi and BioGRID). 
The GO was downloaded from http://geneontology.org/

ocs/ download-ontology/ . We extracted relationships such
s ‘is_a’, ‘part_of’ and ‘regulates’ to construct relationships
ithin the GO. GO terms were annotated to host proteins us-

ng the goa_human.gaf.gz file at http://current.geneontology.
rg/ products/ pages/ downloads.html . The HPO was essential
or understanding the relationship between phenotypes and
enotypes. Ontology OBO and annotation HPOA files were
btained from https:// hpo.jax.org/ app/ data/ and https://hpo.
ax.org/ app/ data/ annotations . 

Data for drug–gene expression perturbation were down-
oaded from https:// maayanlab.cloud/ enrichr-kg/ downloads
 24 ). To ensure consistency, we map gene identifiers from dif-
erent sources to Uniprot IDs. A total of 199 675 protein–
rotein interactions were extracted from the HINT ( 25 )
ataset (download from http:// hint.yulab.org/ download/ ), in-
luding direct and complex interactions. For the STRING
atabase ( 26 ), we kept 839 224 high-confidence interactions
ith a score > 700. KEGG pathway information was con-

erted into protein regulation network data by parsing the
ownloaded XML files. 
By integrating the aforementioned data, we stored gene

nnotation information, protein–protein interactions, drug–
ene interactions and phenotype–gene interactions in the
eo4j graph database, which enabled the visualization of in-

ricate biomolecule interactions and flexible graph retrieval.
he structure of this knowledge repository is depicted in
igure 2 . 
In our methodology, we utilize the R programming lan-
guage to execute SQL statements and the Cypher query lan-
guage for retrieving data stored within SQLite and Neo4J
databases. To visualize biomolecular interaction networks, we
use the vis.js library, enabling interactive network diagrams.
This interactive visualization allows effective representation
of nodes and edges, considering their attributes and relation-
ships. Additionally, we use the plotly R package to generate
interactive charts, improving the clarity and comprehensibil-
ity of our analysis results. 

Given the intricate nature of the network, we employ cen-
trality calculation methods to pinpoint pivotal nodes. Our
platform incorporates four centrality measurements: degree,
betweenness, closeness and eigenvector centrality. These mea-
surements quantify the importance of nodes within the net-
work, facilitating focused examinations of key biomolecules,
drug targets or disease associations. The platform is accessi-
ble at https:// medcode.link/ cancerpro , and Figure 1 provides
an overview of the system design. 

We specifically designed three functional modules to an-
alyze pan-cancer prognosis genes comprehensively to meet
our research objectives. The first module, named X-enrich,
focuses on functional enrichment analysis. We use the Over-
Representation Analysis method to test whether known bio-
logical functions or processes are over-represented in a given
gene list. Input genes are first mapped to the selected anno-
tation sets. Subsequently, a hypergeometric test is conducted
to identify over-represented terms within these sets, using all
genes associated with the selected annotations as a reference.
Since the annotation information not only encompasses func-
tional annotations such as GO and pathways but also includes
regulations of drugs, diseases, phenotypes, etc., we can analyze
whether a gene list is enriched in these diverse entities. Based
on the X-enrich module, we performed enrichment analysis of

http://geneontology.org/docs/download-ontology/
http://current.geneontology.org/products/pages/downloads.html
https://hpo.jax.org/app/data/
https://hpo.jax.org/app/data/annotations
https://maayanlab.cloud/enrichr-kg/downloads
http://hint.yulab.org/download/
https://medcode.link/cancerpro
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Figure 2. The organizational str uct ure of the back-end knowledge repository. Asterisks on the continuous edges indicate the data sources corresponding 
to the respective relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pan-cancer prognostically unfavorable genes based on KEGG
pathway annotations. Additionally, utilizing LINCS annota-
tion data, we employed enrichment analysis to identify drugs
that significantly down-regulate these genes. 

The second module focuses on a novel perspective on drugs
called Drug Clue. By considering drug target proteins, genes
affected by drugs and genes up-regulated or down-regulated
by drugs, Drug Clue can identify the biological pathways, dis-
eases and phenotypes associated with a particular drug. It can
also identify drugs that may have similar effects. This infor-
mation can be used to better understand how drugs work and
to identify potential side effects. Using this Drug Clue mod-
ule, we gain insight into drugs that significantly down-regulate
pan-cancer prognostic unfavorable genes. 

The third section introduces a new method for examin-
ing gene lists known as Gene List (GL) Insight. Through
this module, genes are interconnected using highly reliable
protein–protein interaction information or protein regulation
information. Subsequently, we extracted drugs associated with
two or more genes, either targeting these genes directly or
affecting / regulating their expression. Additionally, the mod-
ule can retrieve biological pathways from KEGG or Reactome,
GO annotations and disease / phenotype information linked to
multiple genes. Furthermore, the module offers support for
selecting critical nodes based on the four centrality measure-
ments mentioned above. We conducted a detailed analysis of
prognostically unfavorable genes specific to prostate cancer
in this module. Using HINT, we connected them and retrieved
Reactome pathway information. In our study, we identified
43 genes that are prognostically unfavorable in at least five
different types of cancer. Using the GL Insight module, we
connected them with high-confidence protein–protein inter-
actions from HINT and obtained GO biological process an-
notations associated with at least two genes. 
Results 

Knowledge network insight platform construction 

We have constructed a knowledge network that encompasses 
a broad range of biomedical information. Gene annotations 
include details from pathways, GO and drug perturbations.
Interaction information encompasses protein–protein interac- 
tion, gene–phenotype relationships, disease–phenotype rela- 
tionships, disease–disease relationships, drug–gene regulation 

data, drug–target interaction and gene–disease association in- 
formation. Unlike typical gene annotations, ours extend be- 
yond functional annotations to include disease phenotypes,
drug interference and targeted drug information. This allows 
us to classify genes based on multiple features and conduct 
enrichment analyses. 

The CancerPro knowledge insight platform was developed 

to provide three key functions: X-enrich enrichment analy- 
sis based on various types of annotation information, Drug 
Clue and GL Insight. These functions are illustrated in Figure 
3 . Figure 3 A depicts the X-enrich enrichment analysis mod- 
ule. Hypergeometric testing is employed to assess the signif- 
icant associations between input gene lists and annotations 
such as GO, KEGG, Reactome, drug perturbation, phenotype 
and disease. Figure 3 B illustrates the Drug Clue function, en- 
abling the retrieval of genes targeted by a drug. Furthermore,
it can identify genes influenced by a drug derived from the 
LINCS dataset. By analyzing associations of genes, we can 

find similar drugs that target these genes, and we can also 

examine the related diseases and phenotypes associated with 

them. The module also offers visualizations of the biological 
pathways associated with these genes, allowing for a multi- 
dimensional study of drug characteristics. Through the Drug 
Clue user interface, users can obtain specific clue informa- 
tion on 7437 different drugs based on their selected criteria.
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Figur e 3. P an-cancer insight platf orm functional module user interf ace. ( A ) T he X-enric h enric hment analy sis module. ( B ) T he Drug Clue function. ( C ) T he 
Gene List Insight module. ( D ) The gene annotation sources list. 
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igure 3 C presents the GL Insight module, which connects in-
ut gene lists through HINT protein–protein interactions or
rotein regulation information. It analyzes the inherent inter-
ctions within the gene list, providing information on drugs
ssociated with the at least two input genes. These associa-
ions can be either targeted relationships or relationships in-
olving gene regulation or interference. This module also ex-
racts biological functional annotations, such as GO, KEGG,
eactome, diseases and phenotypes, that are related to two or
ore genes. This offers a novel perspective on observing gene

ists. 
CancerPro incorporates additional features to enhance its

unctionality. Users can filter cancer-specific marker genes, en-
bling a more focused perspective. Interactive visualization
ools, such as heatmaps, facilitate effortless exploration and
omparison of pan-cancer prognostic gene expression pat-
erns. Moreover, CancerPro enables interactive analysis of
ynthetic lethal gene pairs, empowering researchers to ex-
lore potential therapeutic strategies by identifying gene com-
inations where inhibiting one gene can be lethal to cancer
ells carrying a mutation in another. In summary, CancerPro
ffers a comprehensive suite of tools for thorough analysis
nd exploration of drugs, genes and gene lists from various
erspectives. 

ierarchical clustering analysis of prognostic 

arker genes in diverse cancer types 

ierarchical clustering was performed on both samples and
enes using prognostic favorable / unfavorable gene labels. The
esult is depicted in Figure 4 A, with detailed gene infor-
ation shown in Supplementary Figure S1 and accessible
through the CancerPro web server. The number of marker
genes for each tumor is listed in Supplementary Table S1 ,
sheet marker_gene_number. Using cluster analysis, tumors
were classified into five prognostic groups, denoted as P1–
P5. P1 is dominated by endometrial cancer, while P2 is the
most diverse group, encompassing various cancers such as cer-
vical, head and neck, urothelial, breast, melanoma, stomach,
colorectal, ovarian, thyroid, glioma, prostate and testis can-
cers. Interestingly, prostate and testis cancers share similari-
ties, as do cervical and head and neck cancers. Notably, P2
is enriched with digestive system cancers. The prostate and
testis cancers are characterized by fewer prognostic markers,
and are called ‘pure cancers’. Glioma and thyroid tumors also
have relatively few marker genes. P3 comprises renal cancer,
exhibiting a prognostic gene profile distinct from the others.
As shown in Figure 4 A, genes at the top are associated with
poor prognosis in renal cancer but good prognosis in other
diseases. The P4 group is characterized by liver cancer, while
the P5 group encompasses lung and pancreatic cancer. 

Gene clustering analysis resulted in five gene groups, labeled
G1–G5. G1 appears to be a renal cancer risk gene group. Most
genes in this group are associated with unfavorable prognosis
in renal cancer and favorable prognosis in other tumors. G2
represents the pan-cancer prognostic favorable genes group,
while G3 comprises genes associated with good outcomes in
renal cancer but indicates poor prognosis in other tumors. G4
is a group of pan-cancer prognostic unfavorable genes, exclud-
ing cervical cancer. Finally, G5 forms the pan-cancer prognos-
tic unfavorable gene group. 

This clustering and classification analysis provide valuable
insights into the diverse prognostic marker landscapes across
different cancer types. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
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Figur e 4. P an-cancer clustering based on mark er gene status. ( A ) Tumors w ere classified into fiv e prognostic groups, denoted as P1–P5. Gene clustering 
analysis resulted in five gene groups, labeled G1–G5. The interactive full-size figure is accessible through the online CancerPro server. ( B ) Venn diagram 

of oncogenes, tumor suppressor genes, pan-cancer prognostic f a v orable genes and pan-cancer prognostic unf a v orable genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Limited overlap between pan-cancer prognostic 

genes and oncogenes / TSGs 

In Figure 4 B, the Venn diagram shows the number of onco-
genes (283), TSGs (173) and both pan-cancer prognostic genes
(G2) and unfavorable genes (G5). The figure shows that nearly
all cancer prognostic genes do not overlap with TSGs or onco-
genes. Only three pan-cancer prognostic unfavorable genes
(FSTL3, RAC1 and HMGA1) are also oncogenes. Only one
gene, PATZ1, is both a tumor suppressor gene and a pan-
cancer prognostic favorable gene. 

Analysis of pan-cancer prognostic unfavorable 

genes 

Supplementary Table S1 , sheet ‘Top_unfavorable_gene,’
presents a list of 43 prognostic unfavorable genes, associ-
ated with at least five different cancer types. We utilized the
GL Insight functional module, using high-confidence protein–
protein interactions to connect these genes. As illustrated in
Figure 5 A, this formed a local cluster with high connectivity. 

Further examination of the network revealed the involve-
ment of these genes in crucial biological processes such as an-
giogenesis, cell adhesion and hypoxia response (Figure 5 B, C).
Details of all interactions between these entities can be found
in Supplementary Table S2 , sheet ‘Top_gene_relations’. 

Using X-enrich and the hypergeometric test algorithm, we
conducted a KEGG functional enrichment analysis of gene
cluster G5, which contains pan-cancer prognostic unfavorable
genes, as shown in Figure 5 D. The analysis revealed that these
genes are involved in diverse cancer pathways, including pan- 
creatic cancer , colorectal cancer , small cell lung cancer and 

breast cancer. Additionally, they are implicated in biological 
pathways such as DNA replication, viral carcinogenesis, hu- 
man papillomavirus infection and potentially others. 

There are seven genes involved in progesterone-mediated 

oocyte maturation and oocyte meiosis pathways, namely 
CDK1, CCNB2, CCNA2, BUB1, AURKA, PLK1 and YW- 
HAZ. Of these, CCNA2, BUB1, AURKA and YWHAZ are 
specific high-expression marker genes for endometrial cancer.

A GL Insight analysis of gene cluster G5 identified drugs 
that target at least two or more proteins. Using a degree-based 

algorithm, one of the important drugs was found to be cop- 
per, which targets LDHA and PGK1, both of which are lig- 
ands of Artenimol. The growth and spread of cancer cells in 

the human body depend on proteins that bind to copper ions.
Research on how cancer-related proteins interact with met- 
als and with other proteins provides clues for potential new 

cancer drug targets ( 27 ). 
Phenethyl isothiocyanate (PEITC) targets TPM3, S100A10 

and YWHAZ. Epidemiological evidence suggests that there 
is a strong inverse relationship between cruciferous vegetable 
intake and cancer incidence. PEITC is naturally found in cru- 
ciferous vegetables such as mustard, cabbage and broccoli.
It is well known that PEITC targets multiple proteins to in- 
hibit a variety of cancer-promoting mechanisms, such as cell 
proliferation, progression and metastasis. Additionally, pre- 
clinical evidence suggests that it is very effective when com- 
bined with conventional anti-cancer drugs to improve overall 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
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Figure 5. Analysis of pan-cancer prognostic unfavorable genes. ( A ) These genes form a cluster with high connectivity. ( B ) Biological processes involved 
with these genes. ( C ) The downloadable network result from ( B ). ( D ) Functional enrichment analysis uses X-enrich module for these genes. 
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fficacy. PEITC appears to be a promising cancer treatment
rug and has already been in clinical trials for leukemia and
ung cancer ( 28 ). 

Using the X-enrich function, we selected the ‘LINCS
hem perturbation down’ annotation to analyze which
rugs significantly down-regulate pan-cancer prognostic
nfavorable genes. The analysis results are shown in
upplementary Table S2 , sheet Chem_perturbation_down. We
ound that Raltitrexed, panobinostat, 9,10-deepithio-9,10-
ehydrocanthifolicin, genistein and hycanthone significantly
own-regulated poor prognosis genes in the G5 group. 

n-depth in vestig ation into the drug R altitrexed by 

rug Clue module 

e configured the parameters with ‘Gene source’ set to Target
enes (DrugBank), selected Reactome as the pathway, ‘Show
diseases’ as Yes and excluded the extension of related drugs.
The analysis revealed that Raltitrexed targets TYMS, and the
drug acts as an inhibitor of TYMS. Figure 6 illustrates the
Reactome pathways associated with this protein and provides
information on related diseases. 

As shown in Figure 6 , the target protein TYMS is implicated
in acute lymphoblastic leukemia, hepatocellular carcinoma,
acute myeloid leukemia, rheumatoid arthritis and plasma cell
myeloma. TYMS is a marker for colorectal adenocarcinoma
via orthology data, and is involved in Reactome pathways in-
cluding interconversion of nucleotide di- and triphosphates,
and G 1 / S-specific transcription. 

Pan-cancer prognostic favorable genes G2 

Upon utilizing the GL Insight for this gene set and employing
protein connectivity through the HINT database, along with

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
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Figure 6. In v estigation of the drug Raltitre x ed b y the Drug Clue module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

KEGG pathway annotation, we discovered that the associ-
ated KEGG pathways, including metabolic pathways, carbon
metabolism, fatty acid metabolism / degradation and valine–
leucine–isoleucine degradation, may play pivotal roles. 

Using drug–target information to connect these genes, we
identified glutathione (GSH) targeting GPX4 and HAGH,
and flavin adenine dinucleotide (FAD) targeting ACAD8 and
ACADS. Recent studies have emphasized the significance of
GSH in key signal transduction reactions, acting as a con-
troller of cell differentiation, proliferation, apoptosis, ferrop-
tosis and immune function. Molecular alterations in the GSH
antioxidant system and disturbances in GSH homeostasis
have been implicated in tumor initiation, progression and
treatment response. FAD acts as a biosensor of metabolic
states, indicating a potential connection between epigenetics
and metabolism, particularly in cancer cells. A study has ob-
served that up-regulating S -adenosyl- l -methionine (SAM) and
FAD production, while down-regulating acetyl-CoA, NAD
and tetrahydrofolate (THF), could be reasonable targets for
inhibiting tumor cells ( 29 ). 

Connecting these genes through diseases, we discovered
that obesity is linked to the GNG7 and PLIN5 genes. While
overweight and obesity are generally considered to increase
the risk of diseases and mortality, there is a phenomenon
known as the ‘obesity paradox’, where overweight and obesity
may show an association with lower mortality risk for spe-
cific diseases. Large-scale studies across various cancer types
examining the relationship between body weight and survival
suggest that a higher body mass index (BMI) during the di-
agnostic period, especially in cases of overweight or mild 

obesity, is associated with improved cancer patient survival 
rates ( 30 ). 

Analysis of renal and prostate cancer risk genes 

We investigated the G1 group of genes associated with renal 
cancer risk. Most of these genes are poor prognostic markers 
in renal cancer and prognostically favorable genes in other 
cancers. First, we used X-enrich enrichment analysis to study 
diseases associated with mutations in these genes. We se- 
lected the annotations from the ClinVar disease database, and 

the results are shown in Supplementary Table S2 , sheet Re- 
nal_risk_enrichment. 

The results showed that most of these genes are related to 

immunodeficiency, including TYK2, CD27, TRAC, CD3E and 

CD3D. In renal cancer, high expression of these genes is an un- 
favorable factor, but in other cancers they are protective fac- 
tors. The possible reason is that immunodeficiency impacts 
cancer prognosis depending on the type of cancer. Some can- 
cers may be more susceptible to immune system control, while 
others may be less influenced by immune function. 

We extracted 51 poor prognostic genes that are specifically 
present in prostate cancer but not in other cancers, as shown 

in Supplementary Table S1 , sheet ‘Prostate_specific_markers’.
We used the GL Insight module to analyze this gene list, uti- 
lizing HINT to connect proteins and Reactome annotations 
to annotate more than two genes. The results are shown in 

Supplementary Figure S2 . We found that abnormal alternative 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae157#supplementary-data
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plicing significantly impacts the characteristics of prostate
ancer cells. 

iscussion 

e provide an innovative perspective on the study of pan-
ancer prognostic genes, forming a complete landscape of the
elationship between gene markers and tumor prognosis. Our
evelopment, CancerPro, is a versatile knowledge network
latform that is not only limited to pan-cancer prognostic
ene analysis. By integrating extensive data on genes, drugs,
iseases and their interactions, the platform provides flexible
ools for investigating a wide range of biological questions.
esearchers can explore other interesting findings, such as
enes, gene lists and drugs, through our CancerPro platform,
xpanding research possibilities. 

Through clustering analysis, we found that prostate and
estis cancers have very few prognostic marker genes. Other
umors with relatively few marker genes include glioma and
hyroid, which we refer to as ‘pure tumors’. These tumors
ay be associated with specific carcinogenic mechanisms sig-
ificantly different from other tumors. Prostate cancer has
ewer prognostic marker genes than other cancers. It also ex-
ibits a fairly low mutation burden, meaning that the prostate
ancer genome is quite stable. The prostate is part of the
ale reproductive system, and may have a relatively high
NA repair capacity. The low prostate cell proliferation rate
ay reduce mutation opportunities. Prostate cancer incidence
ay be associated with relatively little environmental expo-

ure, and thus the opportunity for exposure to DNA damage
ay be lower. Mutation burden is an independent prognos-

ic factor for pan-cancer survival, but the relationship is non-
inear ( 31 ). For prostate cancer, studies have shown that pa-
ients in the high-TMB group had lower overall survival than
hose in the low-TMB group ( 32 ). These findings demonstrate
rostate cancer’s uniqueness. Our research found that alterna-
ive splicing plays a significant role in prostate cancer develop-
ent. Using pathway-guided analysis, Phillips et al . identified
yc-dependent alternative pre-mRNA splicing in aggressive

rostate cancers ( 33 ). In order to identify genes that regulate
lternative splicing in cancer, the researchers mined a large
mount of prostate cancer. 

Our study found that there is very limited overlap between
rognosis marker genes and oncogenes and TSGs. This sug-
ests that they play different roles in tumor development.
ncogenes and TSGs may play a more critical role in the

arly stages of tumor development. Mutations or abnormal
xpression of oncogenes may be a key factor driving tumor
evelopment. The enhanced activity of these genes may pro-
ote excessive cell proliferation and escape normal growth

egulatory mechanisms. Mutations or inactivations of TSGs
ay cause cells to lose their normal inhibitory effect on cancer,
romoting abnormal cell proliferation. In the middle and late
tages of the disease, oncogenes and TSGs may only maintain
roliferation and survival of tumor cells, but some targeted
herapy strategies can inhibit these genes. Prognostic marker
enes may play a more significant role in the middle and late
tages of tumor development. They are closely related to dis-
ase progression and patient survival. They may be used to
etermine the tumor grade and stage, providing detailed infor-
ation about the tumor, including its biological characteris-

ics and prognosis. These markers can predict patient survival.
This information could be utilized to develop new targeted
therapies for cancer. 

Renal cancer is clearly distinguished from other tumors in
the clustering analysis, indicating that its driving factors may
be different from those of other tumors. For example, renal
cancer may be significantly associated with genetic factors
( 34 ). Our study found that the renal cancer-specific genome is
associated with immunodeficiency. These genes include TYK2,
CD27, TRAC, CD3E and CD3D. It is not favorable if these
genes are highly expressed in renal cancer . However , they may
be protective factors for other cancers, such as endometrial
cancer , cervical cancer , head and neck cancer, urothelial cancer,
breast cancer and melanoma. This suggests that the immune
system may respond differently to different cancer types. In
renal cancer, it suppresses the immune system, but in other
cancers, it activates immune cells. These genes are probably
key potential targets for renal cancer treatment. 

In the KEGG enrichment analysis of pan-cancer prognosti-
cally unfavorable genes G5, seven genes involved in the two bi-
ological pathways progesterone-mediated oocyte maturation
and oocyte meiosis, namely CDK1, CCNB2, CCNA2, BUB1,
AURKA, PLK1 and YWHAZ, of which CCNA2, BUB1, AU-
RKA and YWHAZ, are endometrial cancer-specific high-
expression markers. CCNA2 encodes a protein that belongs
to the highly conserved family of cyclins, which regulate the
cell cycle by promoting transitions from G 1 / S. The BUB1 gene
encodes a serine / threonine protein kinase that plays a central
role in mitosis. BUB1 β-binding kinase showed a consistent as-
sociation with improved overall survival ( 35 ). The AURKA
protein plays a crucial role in forming and stabilizing micro-
tubules, which are structures essential for separating chromo-
somes during cell division. A study has shown that increased
levels of AURKA can promote the uncontrolled growth of
cells (proliferation) and are associated with a poorer progno-
sis in bladder cancer patients ( 36 ). YWHAZ is involved in the
pathway of activation of BAD (BCL2-associated agonist of
cell death) and translocation to mitochondria. Prostate cancer
patients with high levels of YWHAZ expression were found
to have an increased risk of developing castration-resistant
prostate cancer and a shorter overall survival time ( 37 ). 

Enrichment analysis of pan-cancer prognostically un-
favorable genes G5 using the X-enrich function revealed
that Raltitrexed, Panobinostat, 9,10-deepithio-9,10-
dehydrocanthifolicin, Genistein and Hycanthone significantly
down-regulated these genes. Raltitrexed is an anti-neoplastic
agent and folic acid antagonist. Raltitrexed inhibits thymidy-
late synthase, leading to DNA fragmentation and cell death.
Panobinostat is a histone deacetylase inhibitor ( 38 ). It acts
through multiple pathways, including regulating the cell cycle,
inducing apoptosis and suppressing angiogenesis, by affecting
chromatin structure and gene expression. The drug 9,10-
deepithio-9,10-dehydrocanthifolicin, also known as okadaic
acid, inhibits phosphoserine / threonine protein phosphatases
1 and 2a. It is also a potent tumor promoter. Genistein is a
plant-derived compound belonging to the isoflavone family.
It is mainly found in soybeans and other legumes. It has a
variety of biological activities, including antioxidant, anti-
inflammatory, anti-cancer and hormone-regulating effects
( 39 ). Our analysis showed its potential inhibitory effects on
various tumors. Hycanthone’s metabolites generate oxygen
radicals, which are highly reactive molecules that can harm
cell structure and function ( 40 ). This may be one mechanism
by which hycanthone causes cell damage and death. The
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above analysis suggests that these drugs may have broad
anti-tumor effects. 

A novel analysis of Raltitrexed using the Drug Clue mod-
ule revealed that its target protein is TYMS. TYMS is im-
plicated in acute lymphoblastic leukemia, hepatocellular car-
cinoma, acute myeloid leukemia, rheumatoid arthritis and
plasma cell myeloma. It is a marker for colorectal ade-
nocarcinoma. It is involved in Reactome pathways includ-
ing interconversion of nucleotide di- and triphosphates, and
G 1 / S-specific transcription. The interconversion of nucleotide
di- and triphosphates plays a crucial role in various cel-
lular processes, including DNA replication, RNA synthesis
and energy metabolism. These processes are essential for cell
growth and proliferation and can be linked to cancer in
several ways. Cell cycle regulation and cancer development
are closely linked to G 1 / S-specific transcription. DNA dam-
age must be repaired at the G 1 / S transition in order for the
cell to progress to DNA synthesis in the S phase. Uncon-
trolled cell proliferation can be caused by dysregulation of
G 1 / S-specific transcription. We would like to point out that
this demonstrates the powerful capabilities of the Drug Clue
module in terms of knowledge presentation and knowledge
discovery. 

Our research is a significant contribution to the study of
pan-cancer prognostic marker genes, providing a comprehen-
sive and novel perspective on this field of research. Further-
more, we provide a flexible fresh CancerPro Knowledge Net-
work Insight platform that can be used to study other biomed-
ical problems. The current study is limited by its focus on
gene expression-based prognostic markers. To address this,
future research could incorporate multi-omics datasets and
develop specialized analytical tools. Shared cancer genes may
act differently due to tissue and molecular differences, high-
lighting the need to focus on tumor heterogeneity and preci-
sion medicine. The platform’s unique feature lies in its ability
to present knowledge to researchers in a novel and power-
ful manner, enabling them to uncover previously overlooked
connections and spark new research ideas. Knowledge graphs
are often dynamic and incomplete, making link prediction a
valuable method for filling in missing information. By doing
so, we can uncover potential associations for research, such as
predicting novel (potentially prognostic) genes by examining
the properties of known prognostic markers. However, this
process is resource intensive, which may make it unsuitable
for integration into CancerPro, or may require optimization
such as pre-computing and storing results in the backend to
improve usability. 

Data availability 

The code for processing raw HPA data and clustering analy-
sis can be freely obtained from https:// github.com/ Cetomato/
CancerPro (DOI: https:// doi.org/ 10.5281/ zenodo.14010461 ).
The Drug Clue, X-enrich (enrichment analysis) and Gene List
(GL) Insight functional modules are accessible from the https:
// medcode.link/ cancerpro main menu. All analysis results can
be downloaded from the dedicated analysis results download
panel. 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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