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ABSTRACT
Purpose:  Adrenocortical carcinoma (ACC) afflicts both pediatric and adult populations and is 
characterized by dismal prognosis and elevated mortality. Given the inconsistent therapeutic 
benefits and significant side effects associated with the conventional chemotherapy agent, 
mitotane, and the nascent stage of immunotherapy and targeted treatments, there is an urgent 
need to identify novel prognostic biomarkers and therapeutic targets in ACC.
Methods:  Utilizing multi-omic datasets from The Cancer Genome Atlas (TCGA) and the Gene 
Expression Omnibus (GEO), we employed Weighted Gene Co-expression Network Analysis 
(WGCNA), Cox regression, Receiver Operating Characteristic (ROC) curves, and survival analyses to 
sift for potential prognostic biomarkers. We subsequently validated these findings through 
immunohistochemistry and cell assays, and delved into the biological role of KPNA2 in ACC 
through functional enrichment analysis, mutational landscape, and immune cell infiltration.
Results:  A total of 77 progression-associated genes with aberrant chromosomal accessibility were 
discerned within the TCGA-ACC dataset. By integrating ROC and Cox regression from GEO datasets, 
KPNA2 emerged as an independent risk factor portending poor outcomes in ACC. ATAC-seq 
analysis revealed attenuated chromatin accessibility of KPNA2 in cases with unfavorable prognosis. 
Immunohistochemistry corroborated elevated KPNA2 expression, which was linked to enhanced 
proliferation and invasion. Elevated KPNA2 levels were found to activate oncogenic pathways 
while simultaneously suppressing immunological responses. Immune infiltration analysis further 
revealed a decrement in CD8+ T-cell infiltration in KPNA2-high cohorts.
Conclusion:  This study demonstrates the clinical and biological significance of KPNA2 in ACC and 
suggests that KPNA2 could serve as a promising biomarker for predicting prognosis and 
immunotherapeutic responses in pediatric and adult ACC patients.

Introduction

Adrenocortical carcinoma (ACC) is a rare endocrine 
malignancy with an annual incidence rate of 0.5–2 
cases per million adults and 0.2–0.3 cases per million 
children globally [1]. The overall 5-year survival rate for 
ACC is a mere 35%, with stage 4 patients experiencing 
less than a 10% 5-year survival rate [2]. Various 

therapeutic approaches for ACC encompass surgical 
resection, radiation therapy, chemotherapy, and tar-
geted therapies [3,4]. For patients diagnosed at an 
early stage, surgical resection is typically the treatment 
of choice, especially when the tumor has not metasta-
sized to other organs [5]. However, the efficacy of 
treatment may be compromised due to the tumor’s 
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inherent resistance to conventional chemotherapy, 
particularly in advanced stages [6]. Recent years have 
seen intensified efforts in exploring the molecular 
mechanisms and biological characteristics of ACC in 
order to develop more therapy options, such as immu-
notherapy and targeted drugs [4,5]. Despite these 
advancements, the application of immunotherapy in 
ACC is still fraught with challenges due to inconsistent 
therapeutic outcomes, tumor heterogeneity, immune 
escape mechanisms, and adverse side effects [7,8]. 
Therefore, the identification of a novel biomarker for 
ACC could facilitate improved clinical management for 
therapeutic response and prognosis.

The heterogeneity of ACC serves as a pivotal deter-
minant for its unpredictable prognosis and limitations 
in treatment modalities [9]. Multi-omics, an interdisci-
plinary approach amalgamating genomics, transcrip-
tomics, proteomics, and metabolomics, offers an 
intricate exploration of ACC’s tumor heterogeneity at 
various molecular layers [10,11]. This promises to facil-
itate the identification of novel biomarkers. Within the 
multi-omics framework, Assay for Transposase-Accessible 
Chromatin using sequencing (ATAC-seq) stands as a 
crucial methodology. It enables the identification of 
cancer-related genomic regions, including chromatin 
changes induced by mutations, oncogenes, tumor sup-
pressor genes, and transcription factor binding sites 
[12,13]. By leveraging ATAC-seq, we can perform differ-
ential accessibility analysis to explore which 
protein-coding genes in ACC are influenced by the 
accessibility of non-coding regulatory elements. This 
not only aids in identifying potential biomarkers for 
ACC but also unveils prospective targets for immuno-
therapies and pharmacological interventions

In the present study, we identified Karyopherin 
Subunit Alpha 2 (KPNA2) as a potential biomarker for 
ACC. Previous research indicates that KPNA2 functions as 
a nuclear import protein, primarily involved in the regu-
lation of protein transport between the cell nucleus and 
the cytoplasm. It plays a critical role in the processes of 
cancer cell growth and metastasis [14]. Numerous stud-
ies have demonstrated that aberrant overexpression of 
KPNA2 is closely associated with the progression, and 
therapy resistance of various cancers [15–17]. However, 
to date, there has been no reported research specifically 
investigating the role of KPNA2 in ACC.

Materials and methods

Data collection and processing

The baseline characteristics of the datasets employed 
in the present study are in Supplementary Table S1. To 

initiate this study, we downloaded RNA-seq data, cor-
responding mutation data, and clinical information for 
the adrenocortical carcinoma cohort from The Cancer 
Genome Atlas (TCGA-ACC) via the UCSC Xena platform 
[18]. We utilized the R packages clusterProfiler (version 
4.8.1) [19] and org.Hs.eg.db (version 3.17.0) [20] to con-
vert Ensembl IDs to SYMBOL IDs in the RNA-seq data. 
For ATAC-seq data, we employed the raw count matrix, 
normalized count matrix, and bigWig files acquired 
from the TCGA. From TCGA-ACC ATAC-seq, we selected 
14 samples with matching RNA-seq data and clinical 
information for differential accessibility peak (DAP) 
analysis. As validation sets, we harvested four ACC 
sample datasets for both adults and pediatric cases 
from the GEO database [21–23]: Adults (GSE19750, 
GSE10927) and Pediatrics (GSE76019, GSE76021). Batch 
effects were corrected using the ComBat function in 
the sva R package (version 3.48.0) [24].

WGCNA and key module identification

Weighted Gene Co-expression Network Analysis 
(WGCNA) was employed for network-based gene filter-
ing, aimed at detecting markers with specific attri-
butes, such as progression. To delineate potential high 
co-expression gene clusters, we used the WGCNA 
package (version 1.72-1) [25] to construct a gene 
co-expression network for the TCGA-ACC. To obtain a 
more comprehensive analysis, we employed the 
‘one-step’ method in WGCNA analysis, incorporating 
mRNA expression data (n = 19,563) from the TCGA-ACC 
dataset. To meet the conditions of a scale-free net-
work, we determined the optimal soft-thresholding 
power (β = 16) and transformed the adjacency matrix 
into a topological overlap matrix (TOM). Additionally, 
we calculated the corresponding dissimilarity (1-TOM) 
and identified PFI-associated modules using the 
dynamic tree cutting method.

Identification and validation of prognostic genes

To identify key genes closely related to ACC progression, 
we employed the timeROC R package (version 0.4) [26] to 
compute the Area under curve (AUC) for assessing the 
predictive capacity of genes in candidate modules. In the 
TCGA-ACC cohort, genes with AUC > 0.7 were subjected 
to univariate Cox regression analysis to identify prognostic 
genes for overall survival. Subsequently, these results 
were further validated in GEO cohorts. We employed the 
R package survminer (version 0.4.9) (https://CRAN.R-project.
org/package=survminer) and set the minimum group 
sample size to be greater than 30%. The optimal cutoff 
value for KPNA2 was calculated, dividing patients into 
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high and low expression groups. Subsequently, we used 
the R package survival (version 3.5–5) (https://
CRAN.R-project.org/package=survival) to analyze prognos-
tic differences between the two groups. The log-rank test 
was applied to assess the significance of prognostic differ-
ences between samples in different groups [27].

Functional enrichment

Spearman correlation analysis was employed to evaluate 
the association between KPNA2 expression and all other 
genes. The clusterProfiler R package (version 4.8.1) [19] 
was used for functional enrichment analysis to identify 
significantly enriched terms related to Gene Ontology (GO).

Immunohistochemistry (IHC)

According to the protocol outlined in our previous 
studies [28], a brief description is provided below. ACC 
and adrenal adenoma tissue samples used in this study 
were sourced from Huizhou Central Hospital, with ethi-
cal approval granted by its ethics committee (No. 
KYLL2023105). All patients provided informed consent 
prior to the collection of their tissue samples. Samples 
were fixed in 4% paraformaldehyde prior to paraffin 
embedding. Tissue sections of 4 µm thickness were 
treated with 1% H2O2 solution, then blocked with 
non-immune goat serum. Sections were incubated with 
primary antibodies overnight at 4 °C, followed by a 
30-minute incubation with biotinylated secondary anti-
bodies at room temperature. Final scores were calcu-
lated by summing the percentages of positively stained 
cells and their staining intensities. Scoring was as fol-
lows: 0 (0%), 1 (1%–10%), 2 (11%–50%), 3 (>50%) for 
cell percentages; and 0 (negative), 1 (weak), 2 (moder-
ate), 3 (strong) for staining intensity [29]. An anti-KPNA2 
antibody (Immunoway, YT5691) was utilized.

Cell transient transfection

According to the protocol outlined in our previous 
studies [28], a brief description is provided below. The 
present study employed two human ACC cell lines, 
SW13 and NCI-H295R. The cells were cultured in DMEM 
(BC-M-005, Bio-Channel) and DMEM/F12 medium 
(BC-M-002, Bio-Channel), both supplemented with 10% 
fetal bovine serum (BC-SE-FBS07, Bio-Channel), and 
maintained in a humidified incubator at 37 °C with 5% 
CO2. According to the manufacturer’s instructions, neg-
ative control (NC) and KPNA2 siRNA (Genepharma, 
Suzhou, China) were transfected into ACC cells using 
GP-transfect-Mate (Genepharma, Suzhou, China). Plates 
were incubated for 48 h before total protein was 

harvested for Western Blot analysis. The siRNA 
sequences were showed in Table S2.

Western Blot

According to the protocol outlined in our previous 
studies [28], a brief description is provided below. Cells 
were harvested and lysed in RIPA buffer containing 
protease inhibitors. The resulting protein samples were 
separated by SDS-PAGE and transferred to PVDF mem-
branes, which were blocked using 5% non-fat milk. 
Membranes were incubated with a primary anti-KPNA2 
antibody (YT5691, Immunoway) and anti-β-actin 
(20536-1-AP, Proteintech), both at a 1:2000 dilution, 
followed by incubation with a secondary antibody 
(SA00001-2, Proteintech) at a 1:5000 dilution. 
Membranes were then washed thrice with PBST for 
10 min each and exposed. β-actin served as a normal-
ization control, and band intensities were quantified 
using Image J software.

Cell assays

According to the protocol outlined in our previous 
studies [28], a brief description is provided below.

For the CCK8 proliferation assay, approximately 
4 × 103 transiently transfected cells were allocated to 
each well of a 96-well plate containing 100 μL of cul-
ture medium. Optical density at 450 nm was gauged 
2 h post-addition of a 1:9 CCK8 solution at time inter-
vals of 2, 24, 48, and 72 h using a spectrophotometer.

In the clonogenic assay, cells were plated in 6-well 
plates at a density of 1000 cells/well and incubated at 
37 °C in a 5% CO2 atmosphere for a fortnight. 
Subsequent to dual PBS washes, cells were fixated 
with 4% paraformaldehyde for a quarter-hour and 
then stained with 1% crystal violet for 20 min at ambi-
ent temperature. The resulting colonies were enumer-
ated, and the assay was performed in triplicate.

To evaluate invasive potential, a transwell assay was 
utilized. Around 4 × 104 transfected cells were seeded 
into the upper chamber containing serum-free 
medium, while the lower chamber was supplemented 
with complete medium. Following a 48-hour incuba-
tion under standard culture conditions, cells were 
PBS-washed, fixated in paraformaldehyde, and stained 
with 0.1% crystal violet. Subsequently, the stained cells 
were microscopically inspected and quantified.

Landscape of ACC mutations

The ‘maftools’ R package (version 2.16) [30] was used 
to calculate tumor mutational burden (TMB) for each 
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patient. To investigate whether genomic mutations dif-
fered between high and low KPNA2 expression groups, 
a mutation waterfall plot was generated, visualizing 
the top 20 significantly mutated genes (SMGs) in ACC 
using the maftools and ComplexHeatmap R packages 
(version 2.16) [31]. Copy number variation (CNV) water-
fall plots of the top 10 amplified and deleted chromo-
somal segments in ACC were also produced. Chi-square 
tests were employed to examine differences in CNV 
between KPNA2 expression subgroups, and Wilcoxon 
tests were conducted to evaluate differences in KPNA2 
expression levels among mutated subgroups.

Assessment of immune cell infiltration

Immune scores of TCGA-ACC and GSE76019 were evalu-
ated using the ‘IOBR’ R package (version 0.99.9) [32]. 
Scores for 22 types of immune cell infiltration across five 
algorithms were obtained. Spearman correlation analysis 
was employed to assess the relationship between KPNA2 
expression and various immune cell scores.

Prediction of immunotherapy response and 
targeted drug efficacy

We employed the Subclass Mapping (Submap) algo-
rithm [33] to predict responses to immune checkpoint 
blockade (ICB) therapy. We analyzed transcriptomic 
expression patterns between patient groups with dif-
fering KPNA2 expression levels and divergent immuno-
therapy responses. A p-value less than 0.05 was 
considered indicative of significant similarity between 
the subclasses. We then curated a collection of four 
immunotherapy datasets, namely Braun [34], GSE78220 
[35], GSE91061 [36], and PRJNA482620 [37], from the 
Tiger database [38]. Anti-PD-1 immunotherapy samples 
were isolated and categorized based on optimal KPNA2 
expression cut-off values for survival analysis, aiming 
to investigate the prognostic utility of KPNA2 expres-
sion in anti-PD-1 immunotherapy. Additionally, we uti-
lized the Connectivity Map (CMap) [39], a data-driven 
systemic approach for identifying relationships among 
genes, chemical substances, and biological conditions, 
to identify potential compounds targeting 
ACC-associated pathways. Further specificity analyses 
were conducted using the CMap tool to elucidate 
mechanisms of action (MoA) and drug targets.

Statistical analysis

Data were analyzed and visualized using R version 
4.3.1. A subset of the data visualization was performed 

using the Sanger Box bioinformatics analysis online 
tool [40]. Statistical analyses of immunohistochemistry 
and cellular experimental data were carried out using 
GraphPad Prism 8.0 software with a copyright license. 
The Wilcoxon rank-sum test and Kruskal–Wallis test 
were utilized for comparing differences between two 
or more groups. All p-values are two-sided, with statis-
tical significance denoted as *p < 0.05, **p < 0.01, and 
***p < 0.001.

Results

Identification of ACC progression-related gene 
modules through WGCNA

The workflow of the current study is depicted in Figure 1.  
Initially, we clustered the transcriptome sequencing data-
set of 79 samples from TCGA-ACC based on median 
progression-free interval (PFI) times (Figure S1A). 
Subsequently, we performed WGCNA using 0.2 and 16 as 
the module merging threshold and minimum module 
size, respectively (Figure S1B). A heatmap was utilized to 
explore the relationships between the identified gene 
modules and PFI, resulting in six distinct gene modules 
(Figure 2A,B). Notably, the turquoise gene module exhib-
ited a strong correlation with ACC progression (r = 0.63, 
p = 5e-08, Table S3). Additionally, in the Gene Significance 
vs Module Memberships plot, turquoise module genes 
displayed consistent results (r = 0.51, p = 1e-200) (Figure 
2C). Consequently, after eliminating genes lacking statis-
tical significance, we identified the turquoise module 
genes as those most highly correlated with ACC 
progression.

Identification of aberrantly accessible  differential 
peaks associated with ACC progression using 
ATAC-seq

Utilizing ATAC-seq as one of the multi-omics technolo-
gies, we explored the tumor heterogeneity in ACC and 
sought to identify aberrantly accessible differential 
peak genes associated with the progression of ACC. 
We performed a differential peak analysis on the 
ATAC-seq data from the aforementioned TCGA-ACC 
samples, categorized based on their median PFI val-
ues. TCGA-ACC consisted of 4 samples in the Control 
group and 10 in the Progression group, resulting in 
the identification of 3120 DAPs (Figure 2D, adjPval < 
0.05, | log2 FC | > 2). Through peak-to-gene mapping, 
we identified 810 Differential Peak Genes (DPGs). 
Further annotation using the ChIPseeker package 
revealed that the percentage of distal elements, 
defined as non-promoter elements, was higher in DAPs 

https://doi.org/10.1080/07853890.2024.2397092
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compared to ALL peaks. This indicates a stronger spec-
ificity in distal elements’ response to ACC progression 
(Figure 2E). By intersecting genes from the turquoise 
module with DPGs, we identified 170 overlapping 
genes related to ACC disease progression (Figure 2F, 
Table S4) and conducted GO analysis (Figure 2G, Table 
S5). We found that these genes primarily enriched in 
the Wnt signaling pathway.

Identification of predictive biomarkers for ACC 
progression

To identify key biomarkers within the aberrantly acces-
sible gene set associated with ACC progression, we 
performed time-dependent univariate Cox regression 
analysis on all genes in the TCGA-ACC transcriptome 

sequencing dataset. These analyses were stratified by 
both median Overall Survival (OS) time and median 
PFI. We filtered for genes with an AUC greater than 0.7 
and a Hazard Ratio (HR) greater than 1. The intersec-
tion with the ACC-related gene set yielded 77 candi-
date genes (Figure 3A). Subsequently, we leveraged 
the GEO database to obtain adult (GSE19750, GSE10927) 
and pediatric (GSE76019, GSE76021) ACC datasets and 
performed batch correction (Figure S2A–D). The adult 
datasets were prognostically anchored on OS, while 
the pediatric datasets were based on Event-Free 
Survival (EFS). We generated a total of six distinct vali-
dation cohorts. Upon conducting univariate Cox regres-
sion analyses across these cohorts for the previously 
identified set of 77 genes, we discerned that only 
KPNA2 consistently emerged as a significant 

Figure 1.  The flowchart of this study.

https://doi.org/10.1080/07853890.2024.2397092
https://doi.org/10.1080/07853890.2024.2397092
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prognostic risk factor across all cohorts (Figure 3B). Not 
only did KPNA2 display strong predictive power for 
adverse prognosis in ROC analysis (Figure 3C), but it 
also emerged as an independent prognostic factor for 
ACC patients in both univariate and multivariate Cox 
regression models after adjusting for other clinical 
characteristics (Figure 3D,E). Consequently, we postu-
late that KPNA2 could be a promising biomarker 
for ACC.

Furthermore, we performed Kaplan-Meier survival 
analyses within these cohorts. The results indicated 
that patients with ACC who exhibited elevated levels 
of KPNA2 expression manifested a significant trend 
towards poorer outcomes (Figure 4A–H). Additionally, 
we observed that in the TCGA-ACC cohort, KPNA2 
expression levels were markedly higher in the 
Progression group compared to the Control group 
(p = 1.1e-07) (Figure 4I). In the ATAC-seq, the peak 

Figure 2. I dentification of progression-related genes with abnormal chromosomal accessibility in ACC. (A) Heatmap delineating 
gene module correlations with PFI. (B) Hierarchical gene clustering at the optimized soft-threshold. (C) Scatter plot displaying 
correlations within the turquoise module. (D) ATAC-seq volcano plot contrasting differential peaks in control and progression 
groups. (E) ChIPseeker-annotated bar chart of peak percentages. (F) Venn diagram showcasing overlap between WGCNA turquoise 
module genes and differential peaks. (G) GO analysis by progression-related genes with abnormal chromosomal accessibility.
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values corresponding to KPNA2 displayed variations in 
the Progression group. The Integrative Genomics 
Viewer (IGV) indicated a significant reduction in 

chromatin accessibility at the Distal Intergenic region 
corresponding to ACC-75575 (p = 0.002) (Figure 4J,K). 
Collectively, these findings suggest that elevated 

Figure 3. I dentification of KPNA2 as an ACC biomarker. (A) Venn diagram illustrating the overlap among WGCNA-derived genes, 
DPGs, TCGA univariate COX, and genes with AUC > 0.7. (B) Heatmap depicting univariate COX of intersecting genes in GEO data-
sets. (C) AUC metrics for KPNA2 across GEO datasets. (D, E) Univariate and multivariate regression assessing KPNA2 in TCGA and 
GEO cohorts.
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Figure 4.  KPNA2 Exhibits abnormal chromosomal accessibility and serves as a prognostic risk factor in ACC. (A–H) Kaplan–Meier 
survival analyses for KPNA2 across TCGA-ACC and GEO datasets. (I) Violin plot illustrating KPNA2 expression disparities between 
control and progression cohorts in TCGA-ACC. (J) Violin plot depicting ATAC-seq-derived differential peaks associated with KPNA2 
in TCGA-ACC. (K) ATAC-seq gene track plot, with KPNA2-associated differential peaks accentuated in red frames.
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expression of KPNA2 portends adverse prognostic 
implications in multiple adult and pediatric ACC 
cohorts and may be associated with aberrant chroma-
tin accessibility.

Functional enrichment analysis of KPNA2

To explore the biological functions of KPNA2, we 
employed Gene Set Enrichment Analysis (GSEA). As 
depicted in Figure 5, we selected the top 10 terms for 
both activation and inhibition based on the absolute 
values of the Normalized Enrichment Scores (NES). 
Notably, the activation set included terms related to 
cell proliferation such as ‘DNA Replication Initiation,’ 
‘DNA Unwinding Involved in DNA Replication,’ and 
‘DNA Replication Preinitiation Complex’ (Figure 5A,B, 

Table S6). Conversely, the inhibition set comprised 
immune-related terms such as ‘T Cell Receptor 
Complex,’ ‘T Cell Receptor Binding,’ ‘Antigen Binding,’ 
and ‘MHC Protein Complex’ (Figure 5C,D, Table S6). 
Based on these findings, KPNA2 may contribute to the 
malignant progression of ACC by activating pathways 
involved in tumor cell proliferation and growth, while 
suppressing processes related to antigen presentation 
and T cell activation.

Experimental validation of KPNA2’s role in ACC

To further investigate the impact of KPNA2 on the 
phenotypic behavior of ACC cells, we performed a 
series of experimental analyses. To ascertain the 
expression profile of KPNA2 in ACC, clinical samples 

Figure 5. F unctional Enrichment profiling of KPNA2. (A and B) Top 10 gene ontology (GO) terms depicting activation, ranked by 
normalized Enrichment score (NES). (C and D) top 10 GO terms indicating suppression, likewise ranked by NES.

https://doi.org/10.1080/07853890.2024.2397092
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were collected and subjected to immunohistochemis-
try. Representative images of KPNA2 immunohisto-
chemical staining are presented in Figure 6A. KPNA2 
expression was predominantly localized in the cell 
membranes and cytoplasm of adrenal cells. Notably, 

the expression levels of KPNA2 protein were signifi-
cantly higher in the ACC group compared to the 
non-cancerous group (p < 0.05). Moreover, we employed 
loss-of-function assays to validate the role of KPNA2 in 
ACC cells. As demonstrated in Figure 6B, siRNA1 and 

Figure 6. E xperimental validation of KPNA2. (A) Immunohistochemical staining micrographs accompanied by semi-quantitative 
KPNA2 analysis. (B) Western blot assessment of KPNA2 expression in SW13 and H295R. (C) CCK8 assay elucidating the proliferative 
potential of SW13 and H295R. (D) Clonogenic assay demonstrating the colony-forming abilities of SW13 and H295R. (E) Transwell 
migration assay quantifying invasion capabilities of SW13 and H295R. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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siRNA2 effectively knocked down KPNA2 expression in 
both SW13 and NCI-H295R cell lines. CCK-8 growth 
curves indicated that the downregulation of KPNA2 
significantly inhibited the proliferation of SW13 and 
NCI-H295R ACC cells (Figure 6C). Colony formation 
assays further revealed that the downregulated KPNA2 
led to a marked reduction in the number of cellular 
colonies formed by SW13 and NCI-H295R cells (Figure 
6D). Additionally, transwell assays demonstrated that 
knockdown of KPNA2 substantially suppressed the 
invasiveness of ACC cells (Figure 6E). In summary, 
KPNA2 is overexpressed in ACC and promotes prolifer-
ation and invasion of ACC cells.

Mutational landscape in relation to KPNA2 
expression in ACC

To further elucidate the role of KPNA2 in ACC from a 
multi-omics perspective, we examined the top 20 SMGs 
as well as the top 10 gain and loss CNVs at both 
arm-level and gene-level (Figure 7A). We then stratified 
these analyses by KPNA2 expression levels (Figure 7B). 
Firstly, ACC samples with elevated KPNA2 expression 
exhibited a significantly increased TMB (p = 0.0054) 
(Figure S3A). To investigate the impact of KPNA2 expres-
sion on tumor heterogeneity in ACC, we conducted 
inter-subgroup analyses focusing on the aforementioned 
SMGs and CNVs. Our results revealed that the KPNA2-high 
expression subgroup exhibited a higher prevalence of 
mutations in CTNNB1, TP53, and PKHD1 compared to 
the KPNA2-low expression subgroup (p < 0.05).

Interestingly, in CNVs at the arm-level, the 
KPNA2-low expression group exhibited a higher gain 
in 5p13.1, 5q35.3, 5q31.2, and 5p14.1, whereas the 
KPNA2-high expression group showed a higher loss in 
17p13.1, 4q34.3, and 9p21.3 (all p < 0.05). However, no 
discernible differences were observed at the gene-level 
CNVs. Additionally, we explored KPNA2 expression dif-
ferences under varying mutational statuses within 
SMGs and CNVs (Figure S3B–D). Overall, higher KPNA2 
expression was associated with a more pronounced 
mutational landscape.

Correlation analysis of KPNA2 expression and 
immune cell infiltration

Building on our GSEA findings, which indicated a 
strong correlation between KPNA2 expression and 
tumor-immune pathways, we utilized datasets from 
TCGA-ACC and GSE76019 to represent adult and pedi-
atric ACC populations, respectively, for the analysis of 
tumor immune cell infiltration (Figure 8A,B, Tables S7 

and S8). Subsequently, we summarized the Spearman 
correlation analyses between KPNA2 expression and 
immune cell infiltration scores generated from TIMER, 
EPIC, MCPcounter, xCell, and CIBERSORT algorithms in 
both adult and pediatric ACC (Figure 8C,D). Specifically, 
in TIMER (TCGA-ACC: r = −0.24, p = 3.5 × 10−2; GSE76019: 
r = −0.47, p = 5.4 × 10−3), xCell (TCGA-ACC: r = −0.37, 
p = 8.5 × 10−4; GSE76019: r = −0.6, p = 1.8 × 10−4), and 
MCPcounter (TCGA-ACC: r = −0.26, p = 2.3 × 10−2; 
GSE76019: r = −0.34, p = 4.9 × 10−2) algorithms, a nega-
tive correlation was observed between CD8+ T-cell 
infiltration and KPNA2 expression in both adult and 
pediatric ACC (Figure 8E–J). Given that CD8+ T-cells 
generally play a tumor-killing role and their increased 
infiltration is often considered indicative of a favorable 
prognosis [41], we hypothesize that elevated KPNA2 
expression may lead to adverse outcomes by suppress-
ing the infiltration of CD8+ T-cells in the immune 
microenvironment of ACC.

Immunotherapy and potential drug targets of 
KPNA2 in ACC

Following the discovery of the potential association 
between KPNA2 and the immune microenvironment in 
ACC, we investigated its utility as a biomarker for 
immunotherapy. CTLA-4 and PD-1, common targets for 
immunotherapy, inherently suppress autoimmunity, 
thereby preventing the immune system from killing 
cancer cells [42]. To delve deeper into the role of 
KPNA2 in immunotherapy for both adult and pediatric 
ACC, we initially employed SubMap analysis on 
TCGA-ACC and GSE76019 datasets. We found that 
adult and pediatric ACC patients with low KPNA2 
expression demonstrated significant expression similar-
ity to anti-PD-L1 responsive cohorts within SubMap 
(p < 0.05; Figure 9A,B). This suggests that patients with 
lower KPNA2 expression may be more sensitive to 
anti-PD-1 therapies compared to those with higher 
expression, while showing no significant response to 
anti-CTLA-4 therapies. Subsequently, we sourced four 
immunotherapy datasets—Braun, GSE78220, GSE91061, 
PRJNA482620—from the Tiger database, and selected 
anti-PD-1 therapy samples for survival analysis. The 
results indicated that patients in the high KPNA2 
expression group had significantly poorer prognoses 
(Figure 9D–G), suggesting limited benefits from 
anti-PD-1 therapy in these individuals.

Moreover, we employed the CMap database to 
identify compounds that could potentially target 
KPNA2-associated pathways in ACC. According to 
Normalized Connectivity Scores (NCS), we selected the 

https://doi.org/10.1080/07853890.2024.2397092
https://doi.org/10.1080/07853890.2024.2397092
https://doi.org/10.1080/07853890.2024.2397092
https://doi.org/10.1080/07853890.2024.2397092
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Figure 7.  Genomic analysis related to KPNA2. (A) Integrative landscape illustrating the interplay between KPNA2 expression, TMB, 
SMGs, and CNV. (B) Comparative mutational analysis, highlighting variations in SMGs and CNV across distinct KPNA2 expression 
subgroups. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 8. C orrelation between KPNA2 and immune cell infiltration. (A and B) Correlation graphs of KPNA2 with immune (C and 
D) comprehensive summary detailing the statistical significance of the association between KPNA2 and immune cell infiltration 
levels in TCGA-ACC and GSE76019. (E–J) Scatter plots generated through TIMER, xCell, and MCPcounter algorithms to elucidate the 
correlation between KPNA2 expression and CD8+ T-cell infiltration scores in TCGA-ACC and GSE76019.
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top 20 compounds from both TCGA-ACC and GSE76019 
datasets (Figure 9H). Mechanism-of-action (MOA) anal-
ysis (Figure S4A,B) revealed six potential ACC thera-
peutic agents—naproxol, ibrutinib, palbociclib, 

Ro-4987655, buparlisib, and vandetanib—that could 
potentially target KPNA2. Collectively, our findings 
indicate that KPNA2 serves as a potential biomarker 
for immunotherapy and as a drug target in ACC.

Figure 9. E xploration of immunotherapy responses and Identification of potential drug targets associated with KPNA2. (A and B) 
Contingency tables delineating the relationship between immunotherapy responses and KPNA2 expression clusters, as stratified 
by the Submap algorithm in TCGA-ACC and GSE76019 cohorts. (D–G) Kaplan–Meier survival curves evaluating OS across KPNA2 
expression subcategories within multiple anti-PD1 cohorts (Braun, GSE78220, GSE91061, PRJNA482620). (H) Bubble plot represent-
ing the results of cmap analysis. (I) Venn diagram illustrating the intersection of significant findings derived from cmap analysis.

https://doi.org/10.1080/07853890.2024.2397092
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Discussion

ACC is a highly malignant tumor, characterized by its 
propensity for metastasis and resistance to standard 
therapies. Many patients are diagnosed at advanced 
stages, resulting in poor prognosis [2,43]. Mitotane is 
currently the only approved chemotherapeutic agent 
for treating ACC, primarily used in cases where surgical 
resection is not feasible or when recurrence or metas-
tasis occurs post-surgery. However, its therapeutic 
efficacy is generally slow, varies among individuals, 
and is accompanied by significant side effects [4]. 
Immunosuppressive agents and targeted therapies, as 
emerging directions for ACC treatment, are still in clin-
ical trials and face challenges such as inconsistent effi-
cacy, intense side effects, and drug resistance [2,8]. 
Therefore, the identification of a biomarker that can 
predict the prognosis and immunotherapeutic response 
in ACC patients is of paramount importance. In this 
study, using bioinformatics, immunohistochemistry, 
and in vitro experiments, we identified KPNA2 as a 
gene associated with ACC progression and found that 
it has robust predictive power for immunotherapeutic 
responses.

After identifying a gene set associated with ACC 
progression through WGCNA and ATAC-seq, we per-
formed GO analysis and discovered a significant 
enrichment of the Wnt/β-catenin signaling pathway 
within this gene set. Aberrant activation of the 
Wnt/β-catenin pathway can drive tumorigenesis by 
promoting cellular proliferation, survival, and migration 
[44]. Numerous studies have shown that inhibiting the 
Wnt/β-catenin pathway can suppress the proliferation 
and growth of ACC cells, consequently slowing tumor 
development. Research by Morgan K Penny et  al. 
found that targeting the oncogenic Wnt/β-catenin sig-
naling pathway could disrupt ECM expression and 
impact ACC tumor growth [45]. Rottlerin, a natural 
plant polyphenol, has been shown to inhibit cell pro-
liferation and induce apoptosis in ACC cell lines and 
xenograft models [46]. Additionally, Niclosamide can 
downregulate the expression of β-catenin and inhibit 
the levels of epithelial-mesenchymal transition media-
tors [47].

Moreover, we filtered out KPNA2 from this gene set 
as the most predictive biomarker for ACC prognosis 
and as a potential drug target. KPNA2 is a nuclear 
transport protein belonging to the karyopherin protein 
family. It plays a crucial role in the molecular transport 
process between the cell nucleus and the cytoplasm 
[48,49]. Its primary function is to shuttle proteins con-
taining nuclear localization signals from the cytoplasm 
to the nucleus to participate in nuclear biological 

processes such as gene transcription, DNA repair, and 
cell cycle regulation [50] Through GO analysis, we 
found that KPNA2 significantly activates pathways 
related to cell replication and cell cycle progression. In 
subsequent experiments, we also discovered that 
KPNA2 promotes ACC cell proliferation and metastasis. 
Some research indicates that KPNA2 is overexpressed 
in multiple types of cancer and promotes tumor pro-
gression both in vitro and in vivo, correlating with poor 
patient prognosis. For example, studies have shown 
that KPNA2 is associated with shorter overall survival 
in lung adenocarcinoma and that its overexpression 
enhances the migratory ability of lung adenocarci-
noma cells [51,52]. Similarly, Altan et  al. found that 
KPNA2 promotes gastric cancer progression and poor 
patient prognosis through the activation of the 
Wnt/β-catenin signaling pathway [53]. Additionally, in 
ovarian and colorectal cancers, KPNA2 facilitates tumor 
progression by participating in the AKT signaling path-
way [54,55]. Hence, it is evident that the roles and 
mechanisms of KPNA2 vary across different types 
of cancer.

Tumor heterogeneity serves as a critical determi-
nant of both prognosis and therapy response in ACC. 
Variations in mutations across different cells can lead 
to disparities in cell growth, proliferation, and signal-
ing pathways, thereby contributing to heterogeneity. 
Genomic mutational analysis can elucidate the land-
scape of gene mutations within the tumor [56]. In the 
present study, we found significant differences in TP53 
and CTNNB1 mutations among the KPNA2 expression 
subgroups, both of which have been confirmed to be 
associated with the occurrence and progression of 
ACC [57–59]. Our findings indicate that the expression 
levels of KPNA2 in ACC are significantly correlated to 
various degrees with TMB, SMGs, and CNV, suggesting 
that KPNA2 is a predictor of higher TMB, with poten-
tial implications for immunotherapeutic responsive-
ness [60].

The tumor immune microenvironment, comprising 
immune cells, cytokines, chemokines, and immune 
checkpoint molecules, plays a pivotal role in cancer 
onset, progression, metastasis, and therapy response. It 
dictates how the immune system interacts with cancer 
cells, thus affecting their survival, proliferation, and 
migration [61]. In our analysis, we observed that 
KPNA2 significantly inhibits immune response-related 
pathways. Research has demonstrated that increased 
nuclear transporter KPNA2 contributes to tumor 
immune evasion by enhancing PD-L1 expression in 
pancreatic ductal adenocarcinoma (PDAC) [16]. In 
addition, multiple algorithms indicate that KPNA2 
expression negatively correlates with CD8+ T cells in 
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both adult and pediatric datasets. Submap analysis 
revealed that low expression of KPNA2 is significantly 
correlated with a potential PD-L1 immune response, 
while high expression of KPNA2 in the immunotherapy 
cohort suggests a poor prognosis. The results indicate 
that patients with low KPNA2 expression, coupled with 
upregulated immune checkpoints and increased infil-
tration of CD8+ T cells, are most likely to benefit from 
immunotherapy. Consequently, KPNA2 possesses 
potential prognostic value for immunotherapeutic 
interventions.

In addition to existing treatments, exploring the 
combination of Mitotane and KPNA2 inhibitors pres-
ents a promising direction for research. Mitotane, a 
specific anticancer drug used for treating ACC, is an 
isomer of dichlorodiphenyltrichloroethane (DDT) and 
demonstrates direct cytotoxic effects on adrenal tis-
sues, though its exact mechanism of action is not fully 
understood [62]. However, the efficacy of Mitotane as 
a monotherapy in ACC is hampered by its variable out-
comes and significant side effects [63,64]. Combining 
Mitotane with other drugs is a critical avenue for ACC 
treatment, but recent clinical trial results have been 
less than satisfactory [65,66]. KPNA2 inhibitors have 
already shown some pre-clinical promise in breast can-
cer and colorectal cancer [15,17]. In our future research, 
we plan to investigate the combined effect of KPNA2 
inhibitors and Mitotane in ACC.

While the role of KPNA2 has been explored in 
various other cancers, its specific impact on ACC has 
been largely uncharted until now, thereby filling a 
critical knowledge gap in the existing literature. It is 
important, however, to acknowledge certain limita-
tions inherent in our research. Firstly, although we 
have validated our findings through publicly avail-
able databases, the sample size of ACC specimens 
obtained for this study remains limited, necessitat-
ing further validation from a more expansive data-
set. Secondly, while our data analysis has identified 
potential agents for targeting KPNA2, ongoing work 
involves a more exhaustive series of cellular and 
other experimental assays aimed at confirming the 
efficacy and mechanistic pathways of these candi-
date compounds.

Conclusion

In conclusion, our study introduces KPNA2 as a novel 
biomarker for ACC, offering positive implications for 
prognostic risk assessments and shaping future direc-
tions in the development of targeted therapeutics and 
immunomodulatory interventions for ACC patients.
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