
Unsupervised evolution of protein and antibody complexes with 
a structure-informed language model

Varun R. Shanker1,2,3, Theodora U.J. Bruun2,3,4, Brian L. Hie3,4,†,*, Peter S. Kim3,4,5,*

1Stanford Biophysics Program, Stanford University School of Medicine; Stanford, CA 94305, USA

2Stanford Medical Scientist Training Program, Stanford University School of Medicine; Stanford 
CA 94305, USA

3Sarafan ChEM-H, Stanford University; Stanford, CA 94305, USA

4Department of Biochemistry, Stanford University School of Medicine; Stanford, CA 94305, USA

5Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.

Abstract

Large language models trained on sequence information alone can learn high level principles of 

protein design. However, beyond sequence, the three-dimensional structures of proteins determine 

their specific function, activity, and evolvability. Here we show that a general protein language 

model augmented with protein structure backbone coordinates can guide evolution for diverse 

proteins without needing to model individual functional tasks. We also demonstrate that ESM-

IF1, which was only trained on single chain structures, can be extended to engineer protein 

complexes. Using this approach, we screened ~30 variants of two therapeutic clinical antibodies 

used to treat SARS-CoV-2 infection and achieved up to 25-fold improvement in neutralization and 

37-fold improvement in affinity against antibody-escaped viral variants-of-concern BQ.1.1 and 

XBB.1.5, respectively. These findings highlight the advantage of integrating structural information 

to identify efficient protein evolution trajectories without requiring any task-specific training data.

Introduction

Evolution generates diverse proteins at the level of biological sequences by exploring a vast 

search space of potential mutations and acquiring those that improve fitness. However, it 

is the three-dimensional structure encoded by these sequences that ultimately determines 
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the function and activity of a protein. Consequently, as proteins accumulate mutations, they 

undergo corresponding structural changes, which in turn facilitate functional adaptations (1).

In the laboratory, this tendency for greater sequence change to cause structural divergence 

poses a major challenge to engineering better proteins via a stepwise evolutionary process. 

Mutations added in sequential rounds of artificial evolution are increasingly likely to 

destabilize the structure and therefore diminish the protein’s evolvability (2). Identifying 

functionally beneficial mutations is also challenged by the fact that almost all mutations to 

a prototypical protein are deleterious, or at best neutral, and only a rare subset are beneficial 

on its fitness landscape (3–8). In total, these phenomena can often reduce the evolutionarily 

accessible paths and make evolution more susceptible to local fitness optima (9, 10), further 

complicating attempts to increase fitness.

To address both the structural constraints of protein design and the high dimensionality 

of the mutational search space, we utilized a general protein language model augmented 

with structural information and trained across millions of non-redundant single sequence-

structure pairs on the sequence recovery task, ESM-IF1 (11). Most simply, the model 

considers the inverse task of that performed by many of the recent powerful structure-

prediction tools, including AlphaFold and ESMFold (12, 13): prediction of a sequence 

that will adopt the fold of a desired target structure (Figure 1a). This is accomplished by 

predicting the identity of an amino acid given both the preceding amino acid sequence 

(referred to as autoregressive modeling) and the entire structure’s backbone coordinates 

(Methods). Thus, sequences assigned high likelihood scores by the structure-informed 

language model are expected to fold into the backbone of the input structure with high 

confidence (Figure 1b).

The problem of designing a sequence for a desired target structure, such as in inverse 

folding, is considered only in terms of protein folding (14–16), and thus does not guarantee 

a functional protein (17). A key barrier to finding an optimal solution for this sequence 

design problem is that often many sequences can fold into a given backbone conformation 

(18). Our framework for protein design does not model an explicit protein function or 

definition of protein fitness. Rather, using a structure-guided paradigm, we leverage this 

sequence-structure degeneracy to indirectly explore the underlying fitness landscape by 

focusing exploration to regions where the backbone fold of the protein is preserved. We 

hypothesize that constraining evolution to regimes of high sequence likelihood can serve as 

an effective prior for high-fitness variants, and thereby improve the efficiency of evolution 

(Figure 1c).

We reasoned that this approach may be particularly valuable for the evolution of human 

antibodies, which are used clinically to treat a broad range of diseases (19). Antibodies 

offer protection by selectively binding to a target antigen involved in pathogenesis and 

modifying or disrupting its function (20). An important optimization step in the development 

of most therapeutic human antibodies involves an intensive process to identify amino acid 

substitutions that further enhance potency and efficacy. Here, we demonstrate this task can 

be accomplished efficiently with machine learning using an inverse folding model. A central 

concept of this study is to use the complete structure of the antibody-antigen complex 
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to guide evolution. By conditioning the structure-informed language model on the entire 

antibody-antigen complex, we sought to enable the discovery of mutations that preserve or 

enhance the stability of the entire complex, and thus that improve antibody function.

Results

Enriching sequence exploration for high function protein variants across diverse tasks 
with a structure-informed language model

We evaluated whether adding structural information to a language model can be used to 

guide protein evolution by predicting mutations that improve a protein’s activity for a 

specified property without training on or explicitly modeling the task itself. Accordingly, 

for 10 proteins from diverse families among four organisms, and with functions ranging 

from enzyme catalysis (TPMT) to oncogenesis (HRAS) to transcriptional regulation 

(GAL4), we scored variants profiled in large deep mutational scanning experiments (21–

30) against the target backbone of the wild-type protein (31–40) to compute sequence log 

likelihoods (Methods, Table S1). Importantly, these predictions are made in a completely 

unsupervised setting, with the model never having been trained on any experimental data. 

To demonstrate the utility for a practical user who wishes to find the most beneficial 

mutations, we assessed prediction precision by comparing the top scoring variants to their 

experimentally determined functional activity in the relative context of the entire sequence-

fitness landscape.

Within just the set of top ten predictions, we identified numerous high fitness protein 

variants, out of the thousands of tested for each protein, with experimentally determined 

activities ranking in the top percentiles of the entire deep mutational scanning screen (Figure 

1d). Our analysis demonstrates that conditioning on structural information serves to improve 

predictive capabilities of protein language models as we successfully recover mutations 

in the top fifth percentile for 9 out of the 10 proteins compared to just 2 proteins using 

a state-of-the-art general protein language model trained only on sequence information 

and specifically for variant prediction (ESM-1v) (41) (Figure 1d). This improvement in 

prediction also holds with increasingly relaxed thresholds for classification as high-fitness 

variants.

Based on this experiment, we conclude that structure-based sequence design offers a 

promising alternative to brute force experimental searches for functionally beneficial 

mutations. Notably, some of the top mutations predicted are also the same ones discovered 

from exhaustive experimental exploration. For example, for restriction enzyme haeIIIM, 

variant Q18E is recommended as one of the top five single amino acid predictions and 

experimentally ranks as the second-best substitution (and > 5 standard deviations above 

the mean) out of the nearly 2000 substitutions screened across the endonuclease (30). 

Another key advantage of our task-independent framework, in addition to being broadly 

applicable across diverse proteins, is the ability to improve a single protein for multiple 

desired properties without needing to develop specialized high-throughput assays to screen 

each independently. From just the top 10 predictions for MAPK1, we identify substitutions 

Q105M and Y64D, which are experimentally shown to confer resistance to two different 

oncogenic-targeting MAPK1 kinase inhibitors (24).
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Structural information enables state-of-the-art zero-shot antibody mutational effect 
prediction for language models

To analyze the effectiveness of augmenting a general protein language model with structural 

information, specifically for antibody variant prediction, we compared the likelihoods 

of sequences for three antibodies across entire mutational landscapes to corresponding 

experimental fitness values from a total of five existing mutagenesis datasets. The mutational 

landscapes of the first two antibodies were evaluated by measuring the scFv equilibrium 

dissociation constants (KD) of all possible evolutionary intermediates between the inferred 

germline and somatic sequence of naturally affinity-matured influenza broadly neutralizing 

antibodies (bnAbs) CR9114 and CR6261, which bind the conserved stem epitope of 

influenza surface protein hemagglutinin (HA) (42). For both bnAbs, only mutations in 

the heavy chain, which is responsible for antigen binding, were characterized. The profiled 

mutational landscape of CR9114 includes all possible combinations of 16 substitutions, 

whereas that of CR6261 includes all possible combinations of 11 substitutions, totaling 216 

= 65,536 and 211 = 2,048 variant antibody sequences respectively. Each of these libraries 

were screened for binding against two distinct influenza HA subtypes (H1 and H3 for 

CR9114 and H1 and H9 for CR6261). The fifth dataset assesses the effects of all possible 

single amino acid substitutions with a deep mutational scan profiling 4,275 mutations in 

the variable regions for both heavy chain (VH) and light chain (VL) of antibody G6.31 to 

binding with its ligand, vascular endothelial growth factor A (VEGF-A) (43).

For each dataset, we computed the Spearman correlation between the log likelihood 

estimated by the structure-informed language model and the experimentally determined 

binding measure for a given antigen, across all sequences in the mutational library. 

We scored the likelihood of each candidate sequence in the library using the backbone 

coordinates of a structure with the mature antibody bound to its target antigen (44–46).

Across all five experimental binding datasets, we found that the structure-informed 

language model performs better than three other sequence-based methods: i) a general 

protein language model trained across diverse protein sequences, ESM-1v (41), ii) a 

specialized antibody language model trained exclusively on sequences sampled from the 

Observed Antibody Space (OAS) database, AbLang (47), and iii) a site-independent model 

of mutational frequency curated with extensive antibody sequence alignments, abYsis 

(48). In nearly all experimental scenarios, supplementing sequence information with the 

backbone coordinates of the antibody alone, without providing antigen information as 

input, is sufficient to outperform other sequence-only methods. A notable feature of the 

autoregressive architecture is that it computes the joint likelihood over all positions in a 

sequence, making it well-suited to score combinatorial sequence changes. We find that 

this method can capture complex epistatic interactions, or potential interdependence among 

individual amino acids, as it performs well on the CR9114 and CR6261 libraries composed 

of sequences with multiple mutations (Figure 2a,b).

We achieved the greatest improvement in performance on all five experimental screens by 

incorporating the structure of both the antibody and antigen (Figure 2a), indicating that the 

structure-informed model can implicitly learn features of binding (Figure 2c). This result 

is notable given that the model is only trained on single-chain protein structures, whereas 
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the antibody-antigen complexes we use as inputs are composed of either three (G6.31) 

or four (CR9114, CR6261) protein chains. The most substantial contribution of antigen 

information is observed in the case of CR9114-H1, for which the correlation increases from 

0.17 with only antibody information to 0.65 with sequence and backbone coordinates of the 

entire complex. In contrast, this same performance improvement is not observed when the 

sequence-only general protein language model is provided with additional context of the 

paired antibody chain or antigen sequence (Figure S4). We find that extending our model 

beyond the monomeric structures seen during training to protein complexes also performs 

better for antibody prediction than ProteinMPNN (49), an alternate structure-based deep 

learning method, which was trained on a dataset that includes multichain protein structures 

(Figure S5).

Remarkably, these results show that we could even predict the effects of mutations to a 

cross-reactive antibody on binding to a strain of influenza different than the one used as 

input to the model. (Figure 2a,b). Despite using a target antibody structure in complex with 

HA from H5N1 influenza to score CR9114 variants, we obtain correlations of 0.65 and 0.50 

with experimental binding data for H1 and H3, respectively. This is particularly striking 

since the antibody epitope, which spans both HA subunits, only has 67% sequence identity 

between the H5 strain of the structure used to make predictions (A/Vietnam/1203/2004) 

and the H1 strain experimentally tested against (A/New Caledonia/20/99) (Figure S6, Table 

S2). This same cross-reactive predictive capability is observed with CR6261 (Figure 2a), 

for which the experimentally tested H9 (A/Hong Kong/1073/1999) differs at over a third 

of the residues in the epitope from the1918 H1N1 influenza strain used in the structure 

(A/Brevig Mission/1/1918). Although the structure-informed language model cannot learn 

explicit chemical rules of binding (e.g., hydrogen bonding or disulfide bridge formation) 

since it does not have access to amino acid side chain atomic coordinates, these results 

suggest that structural principles like interface packing or potential steric interference are 

not only implicitly accessible from residue identities, but are also informative for binding 

prediction.

Our model’s top recommended mutations are made independent of a specific definition of 

fitness; they simply represent a set of variants with a high likelihood of folding into the 

input backbone structure. Therefore, our model’s recommendations may also help identify 

mutations that improve other useful biochemical properties beyond affinity. Impressively, for 

example, the top recommended mutation to the VL of G6.31 is F83A, which was identified 

in the original screening study to be particularly interesting as it confers a three-fold increase 

in VEGF-A binding affinity and a 5°C improvement in melting temperature, despite being 

25Å from the antigen and in the antibody framework region. It was determined that the VL 

F83A substitution induces more compact packing and the site serves as a conformational 

switch that affects biological activity at the antibody-antigen interface by modulating 

both interdomain and elbow angle dynamics (43). However, while our model successfully 

enriches for high fitness variants across many settings, an associated consequence of this 

structure-based framework is the limited ability to identify mutations that impart beneficial 

effects by modifying the backbone of the mature antibody.
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Engineering therapeutic antibodies for increased potency and resilience

Finally, we aimed to assess if the structure-augmented language model’s predictive 

capabilities could not only resolve trends on large sets of experimental data, but also enable 

efficient and successful directed evolution campaigns while testing only a small number (on 

the order of tens) of variants. To do so, we considered the task of improving the potency 

and resilience (effectiveness against a virus as it mutates over time) of two mature, clinical 

monoclonal antibody therapies.

• LY-CoV1404 (Bebtelovimab) was isolated from a COVID-19 convalescent donor 

and binds to the receptor binding domain (RBD) of the SARS-CoV-2 Spike 

protein (50). It was approved by the U.S. F.D.A. on February 11, 2022 given its 

activity against both the original Wuhan and Omicron SARS-CoV-2 variants and 

was the last remaining approved monoclonal antibody therapy withstanding viral 

evolution (51) until its discontinuation on November 30, 2022 due to antibody 

evasion by VOC BQ.1.1. (52)

• SA58 (BD55–5840) was isolated from a vaccinated individual and is one of two 

RBD-targeting neutralizing antibodies (NAb) in a rationally developed antibody 

cocktail. SA58 alone retained efficacy against all Omicron subvariants, including 

in vivo protection against BA.5 (53, 54) and was shown to be effective as a 

post-exposure prophylaxis in a clinical study (55).

For both antibody engineering campaigns, we used the structure-informed language model 

to compute likelihoods of all ~4,300 possible single-residue substitutions in the VH or 

VL regions of the antibody. In the first round of evolution, we selected only the top ten 

predictions at unique residues in each chain for experimental validation. An important 

practical benefit of our method is the ability to optimize against measures of fitness most 

relevant to the protein’s downstream function, such as viral neutralization or receptor 

agonism, rather than being limited to indirect surrogate measures like affinity that are more 

amenable to high-throughput screening (4, 56). We leverage this advantage to directly evolve 

these antibodies for their ability to more potently neutralize SARS-CoV-2 pseudotyped 

lentivirus.

Variants recommended by the structure-informed language model were assessed by 

comparing the half-maximal inhibitory concentration (IC50) relative to the wild-type 

antibody. Remarkably, although we chose to only test 20 single-site substitutions for each of 

the two clinical monoclonal antibody therapies, approximately one-third of them improved 

neutralizing potency. Notably, several of these antibody variants improve neutralization IC50 

by over 3-fold with just a single amino acid change (Figure 3a, Supplementary Data 1). 

We also observe greater variance in changes to neutralization for SA58 than Ly-1404, 

which may be reflective of intrinsic differences in the number of residues critical for and 

participating in neutralization and binding, even beyond the antigen interface.

Prompted by recent evidence showing that conservation of the overall RBD structure is 

robust to SARS-CoV-2 evolution (57), we next sought to determine whether we could 

also evolve the previously mature antibodies against SARS-CoV-2 BQ.1.1, the variant 

responsible for diminished therapeutic efficacy. Although the antibodies were previously 
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effective, a change in antigen conceptually represents a fundamental shift in the underlying 

fitness landscape (Figure 3b. Accordingly, the baseline neutralization activity against BQ.1.1 

for LY-1404 and SA58 dropped to IC50 values in the nanomolar range. However, from the 

same set of 20 single amino acid substitutions to LY-CoV1404, we found that nearly half 

improve neutralization of variant BQ.1.1. In addition to a high success rate, we also found 

multiple of these mutations provided a large magnitude of improvement. Several single 

amino acid substitutions to LY-CoV1404 individually result in over a 4-fold improvement 

while the most beneficial mutation to SA58 results in a nearly 5-fold improvement (Figure 

3c).

Taken together, approximately two-third and one-half of tested single amino acid 

substitutions to LY-CoV1404 and SA58, respectively, were beneficial for neutralization of 

either the original strain or BQ.1.1. Interestingly, for both antibodies, the most potent single 

amino acid mutations were distinct to the two different strains tested (Figure S7). These 

results reinforce that, despite all being predicted to have the same backbone fold, the top 

set of designed variants feature functional diversity and can be used for distinct notions of 

protein fitness.

A common challenge in directed evolution is contending with the combinatorial explosion 

of possible sequences that emerges from trying to combine a set of individually beneficial 

mutations. In the second round of evolution, we simply use the structure-informed model 

again to acquire up to five top-scoring combinations of mutations to each antibody chain 

(Methods). Notably, across both evolutionary trajectories, all 11 LY-CoV1404 and 5 SA58 

antibody designs with multiple mutations have IC50 values better than wild-type, with many 

designs showing synergistic effects upon combination. For example, just a single amino acid 

mutation in each of the two chains of SA58 leads to over an 14-fold improvement (Figure 

3c,d). Similarly, the most potent evolved design of LY-CoV1404 is a combination of seven 

of the eight beneficial single amino acid substitution to the VH and improves neutralization 

25-fold (Figure 3d). Critically, these improvements to neutralizing potency against BQ.1.1 

do not sacrifice potency against the original strains. We found that the top SA58 design 

against BQ.1.1 after the second round of evolution also improves BA.1 neutralization over 

3-fold (Supplementary Data 1).

To rigorously evaluate the benefit of adding structural information, we also performed 

identical evolutionary campaigns for both LY-CoV1404 and SA58 using an ensemble of 

general sequence-only protein language models to recommend variants (58) (Methods), 
an approach which has previously been experimentally validated in applications for 

antibody engineering and serves as a competitive unsupervised baseline. Consistent with 

the computational results, we found that the structure-informed language model leads to 

final antibody designs with substantially greater overall magnitudes in improvement (25-

fold vs 2-fold for LY-CoV1404, 14-fold vs 4-fold for SA58) (Figure S8). We particularly 

observe that, in comparison to our structurally-informed evolution campaigns, combinations 

of language model-recommended beneficial mutations have limited additive effects. These 

results further underscore the value of selecting mutations from the outset that are known 

to be structurally compatible, and thereby enable a more efficient ascent up the fitness 

landscape.
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Additional characterization of evolved antibodies

To further characterize the basis for enhanced neutralization of SARS-CoV-2 VOC BQ.1.1, 

we tested the binding affinity of all variant antibodies to RBD as bivalent IgG using biolayer 

interferometry (BLI) to obtain the apparent dissociation constant (KD,app). For LY-CoV1404, 

a total of 23 designs across both rounds of evolution exhibited improved viral neutralization, 

and each of these improved antibodies were confirmed to have increased apparent binding 

affinities, up to ~27-fold. Interestingly, however, we found improved apparent affinity 

to not be a sufficient condition for improved neutralization potency as four additional 

model-recommended mutations, which were neutral or deleterious to neutralization, actually 

improved binding. Across all variants there is a Spearman correlation of 0.45 between 

fold-change in IC50 and fold-change in KD,app (Figure 4a,b).

We similarly screened the SA58 variants for binding to the RBD of BQ.1.1. However, 

since the KD,app of the wildtype antibody as IgG was already sub-picomolar, further 

improvements to binding were below the limit of quantitation and indistinguishable using 

this measure. Given this strong binding affinity of wildtype SA58 to BQ.1.1 RBD, we 

also screened this same set of variants against emerging VOC XBB.1.5 and observe 

improvements in KD,app up to 37-fold (Figure 4c,d).

By testing several top affinity-matured designs in a polyspecificity assay, we also confirmed 

that improvements in binding are not mediated by generalized enhancements of non-specific 

interactions (Figure S9a). In this assay, we observed no substantial changes in off-target 

binding of the evolved antibodies to membrane soluble proteins, particularly within a 

therapeutically viable range (as defined by controls of clinically approved antibodies with 

recorded high and low polyspecificity). Furthermore, we found no correlation between 

fold-change in polyspecificity and affinity fold-change (Figure S9b).

Analysis of evolutionary exploration

Confronted by the large number of possible mutations, traditional experiment-based 

methods for antibody affinity maturation often restrict the mutational search space to 

only a few regions of the antibody. Specifically, binding optimization efforts are typically 

focused within the complementarity determining regions (CDR), which are hotspots for 

natural somatic hypermutation. However, using our unbiased approach to consider all 

regions of the variable domain allows for many discoveries that may be less intuitive to 

a rational designer. For example, the most beneficial substitutions to LY-CoV1404, VH 

F24Y and VH V90S, are located within framework regions and positioned distally from 

the binding interface (Figure S10, Table S3). Interestingly, they both improve neutralization 

of BQ.1.1 by over 4-fold and are not deleterious to Wuhan neutralization. In other cases, 

the structure-informed language model also successfully predicts beneficial substitutions 

using residues rarely observed among human antibody sequences. Substitution VL N95V in 

SA58, which improves neutralization approximately 5-fold against BQ.1.1, is mediated by 

the incorporation of a valine observed in only 0.7% of human antibody sequences at that 

position and enhances antibody-antigen contact. While the model is capable of successfully 

making novel predictions, in some instances it also does suggest reverting residues to 

ones frequently selected for in natural somatic hypermutation. Mutation VL F51Y in LY-
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CoV1404 changes a phenylalanine observed in just 5% of sequences to a tyrosine observed 

in 86% of sequences. However, this variant results in no change to Wuhan neutralization. 

Overall, these results highlight the value in augmenting a language model with structural 

information to evolve antibodies and proteins complexes.

Discussion

The discovery of mutations that improve protein function is inherently challenging due to 

the large sequence search space and complex rules that govern the relationship between 

sequence and function, such as stability or environmental selection pressures. We show 

that an inverse folding protein language model informed with the sequence and backbone 

structural coordinates of a protein can considerably improve directed evolution efforts 

by serving as an improved prior compared to sequence-only deep learning methods. 

Importantly, we highlight that a structure-guided approach can interrogate protein fitness 

landscapes indirectly, without needing to explicitly model individual functional tasks 

or properties, making it broadly applicable to proteins across diverse settings ranging 

from enzyme catalysis to antibiotic and chemotherapy resistance (Figure 1d). We also 

demonstrate the structure-informed language model generalizes to multimeric proteins, 

despite being trained only on single-chain proteins, through its ability to implicitly learn 

features of binding. This result is particularly remarkable considering the model has no 

access to amino acid side chain atoms, coordinates, or bond information.

Equipped with these capabilities, we evolve clinical therapeutic antibodies and identify 

several mutations which act synergistically to improve antibody potency and resilience 

against emerging variants of concern. In the context of pandemics and emergency-use 

situations, where monoclonal antibody therapies are limited in supply and vulnerable to 

resistance from viral evolution, the ability to rapidly make improvements in potency with a 

general method could have major clinical and economic implications.

Machine learning has transformed protein engineering across several design objectives. 

Methods that design sequences for de novo proteins with specified folds have enabled 

entirely new capabilities to address previously intractable problems in many settings (49, 

59–62). Here, we consider the directed evolution problem of improving a desired function 

of an existing protein. In comparison to fourteen other promising machine learning-guided 

protein evolution methods used to experimentally guide directed evolution campaigns on 

various proteins (8, 56, 58, 63–73), our success rates of generating designs with functional 

activity better than the wildtype protein compare favorably, while not requiring any assay-

labeled fitness data to use for training or task-specific model supervision (Figure S11, 

Supplementary Data 5). These results support the notion that the protein’s structure, itself, 

may be used in lieu of learned surrogate functions of fitness. By eliminating the reliance on 

any initial data collection or prior knowledge of the protein, our structure-informed method 

has the potential to accelerate entire evolutionary campaigns.

Computational methods like the one we propose have the opportunity to democratize protein 

engineering efforts. Not only is our approach more efficient than conventional resource-

intensive techniques that experimentally test the effects of all single-residue changes on 
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biochemical functions like binding affinity, but consequently it enables directed evolution 

based on properties that are not easily measured at scale or that are incompatible with 

high-throughput screening. Overcoming these limitations, we anticipate our structure-based 

paradigm will be useful for evolving proteins across many domains.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Guiding evolution of diverse proteins with a structure-guided language model
(A) The sequence design problem refers to the prediction of a protein amino acid sequence 

that will adopt the fold of a given three-dimensional backbone structure; this is conceptually 

analogous to the inverse problem solved by structure prediction tools like AlphaFold (12). 

(B) A hybrid autoregressive model (11) integrates amino acid values and backbone structural 

information to evaluate the joint likelihood over all positions in a sequence. Amino acids 

from the protein sequence are tokenized (red), combined with geometric features extracted 

from a structural encoder (green), and modeled with an encoder-decoder transformer 

(purple). (C) Our structure-guided framework for protein design indirectly explores the 

underlying fitness landscape, without modeling a specific definition of fitness or requiring 

any task-specific training data, by constraining the search space to regions where the 

backbone fold preserved. (D) High fitness sensitivity analysis reveals that multimodal input 

improves language model performance compared to sequence-only input across 10 proteins 

from diverse protein families (left). ‘High Fitness Prediction Precision’ is the fraction of 

the top ten single amino acid substitution predictions that are experimentally determined 

to confer high protein fitness, defined as having an activity level above the specified 

percentile threshold among all experimentally screened variants. A representative plot (right) 

demonstrates this metric for assessing enrichment of high-fitness MAPK1 mutations. Given 

the vastness of the search space, finding any function-enhancing variant is valuable for most 

practical settings, and thus only successfully predicted mutations highlighted (blue) on the 

empirical cumulative density function (ECDF) of the experimental data (black). The three 

different thresholds, as defined by percentiles, are also shown as dashed lines. Structure-

informed language model predictions are more enriched, on average, for high fitness variants 

across various tested thresholds for high fitness classification. bla, Beta-lactamase TEM; 

CALM1, Calmodulin-1; haeIIIM, Type II methyltransferase M.HaeIII; HRAS, GTPase 

HRas; MAPK1, Mitogen-activated protein kinase; TMPT, Thiopurine S-methyltransferase; 
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TPK1, Thiamin pyrophosphokinase 1; UBI4, Polyubiquitin; UBE2I, SUMO-conjugating 

enzyme UBC9
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Figure 2: Prediction of antibody-antigen complexes resolves mutational landscapes by implicitly 
learning features of binding and protein epistasis
(A) Spearman correlation using the structure-informed language model as well as sequence-

based modeling approaches ESM-1v (41), AbLang (47), and abYsis (48) reported for three 

antibodies screened with corresponding antigens. Bars are colored by the type of model 

used: SILM, Structure-informed Language Model (green); LM, Language Model (orange); 

and MSA, Multiple Sequence Alignment (purple). The structure-informed language model 

was evaluated in three different settings: i) providing the entire antibody variable region and 

antigen complex (Ab-Ag) ii) providing only the antibody variable region (Ab only), and 

iii) providing only the single antibody variable region of the chain responsible for binding 

or being mutated (Ab VH only or Ab VH/VL only). Antibody sequences scored by the 

structure-informed language model with antigen information were computed using input 

complexes of CR9114 with H5 HA (PDB 4FQI (44)), CR6261 with H1 HA (PDB 3GBN 

(45)), and g6.31 with VEGF-A (PDB 2FJG (46)). B) Scatter plots showing predictions 

against experimentally determined dissociation constants of CR6261 against HA-H1(left) 

and HA-H9 (right). The germline and mature sequences are highlighted on all plots 

as indicated in the legend. For visualization, all scatter plots omit points on the lower 

limit of quantitation. (C) Conceptual illustration of protein language model performance 

with improved priors. Providing sequence and structural information of both the antibody 

and antigen enables the structure-informed language model to most efficiently enrich for 

high fitness antibody variants (top right, blue square) by identifying and guiding focused 

sequence exploration (green square) away from regimes of mutations destabilizing to the 

complex.
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Figure 3. Evolution of antibodies with a structure-informed language model improves 
neutralization potency and resilience
(A) Each point represents the fold-change in IC50 of pseudovirus neutralization for antibody 

variants with single amino acid mutations. Antibodies are tested against the viral strain 

represented in the input structure (Ly1404- Wuhan, SA58-BA.1 Omicron). A dashed line 

is shown at fold-change of 1 corresponding to no change. Improved antibody potency is 

defined as 1.1-fold or higher improvement in IC50 compared to wild-type. (B) Conceptual 

representation of viral evolution. Selection for immune evasion drives antibody escape, 

which fundamentally represents a dynamic change in the underlying fitness landscape for 

the antibody. This antigenic drift displaces a potent antibody from a peak on the previous 

fitness landscape (left) to a new starting point at lower activity (right). (C) Strip plots 

visualizing antibody evolution across two rounds. Each point shows the corresponding fold-

change in IC50 of pseudovirus neutralization for a designed variant and is colored according 

to the number of mutations it has (1–8). Consistent with preserving backbone fold, all 

55 designed variants across both antibody evolutionary campaigns could be expressed. All 

round 1 variants are only composed of only single amino acid changes while beneficial 

mutations are combined in round 2. All round 2 variants have improved neutralization 

activity compared to their respective wild-type antibody (dotted line). (D) Pseudovirus 

neutralization curves are shown for the most potent evolved antibody variant, consisting of 

mutations annotated to the left. The top LY-CoV1404 variant, bearing seven amino acid 

substitutions in VH, achieves a 25-fold improvement in neutralization against BQ.1.1 (top). 
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The top SA58 variant, bearing single amino acid mutations in both VH and VL, achieves 

a 14-fold improvement in neutralization against BQ.1.1 (bottom). (E) Residues at which 

mutations improve neutralization against either the structure-encoded strain, BQ.1.1, or 

both viral strains are highlighted with spheres for antibodies LY-CoV1404 (PDB 7MMO 

(50)) and SA58 (PDB 7Y0W (54)). Notably, beneficial mutations are identified both within 

the binding interface as well distal to the antigen. Neutralization enhancing mutations are 

labeled in Figure S10.
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Figure 4: Antibodies evolved for high potency also exhibit improved affinity
(A) LY-CoV1404 antibody variants show a Spearman correlation of 0.45 between apparent 

affinity fold-change and potency fold-change. Improved affinity is observed to be necessary 

but not sufficient for improved neutralization activity. Four variants exhibit improved affinity 

but do not enhance neutralization. All variants with improved neutralization also display 

improved affinity. The top LY-CoV1404 design with a 25-fold improvement in neutralization 

has a 9.5-fold improvement in affinity to BQ.1.1 RBD, as measured using BLI. (C) SA58 

antibodies evolved for improved potency against BQ.1.1 also exhibit improved affinity 

against VOC XBB.1.5, up to 37-fold. (B, D) Representative traces of BLI binding assays for 

LY-CoV1404 and SA58 variants with improved affinity.
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