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Abstract

It is commonly reported that rare variants may be more functionally related to complex dis-

eases than common variants. However, individual rare variant association tests remain

challenging due to low minor allele frequency in the available samples. This paper pro-

poses an expectation maximization variable selection (EMVS) method to simultaneously

detect common and rare variants at the individual variant level using family trio data.

TRIO_RVEMVS was assessed in both large (1500 families) and small (350 families) data-

sets based on simulation. The performance of TRIO_RVEMVS was compared with gene-

level kernel and burden association tests that use pedigree data (PedGene) and rare-vari-

ant extensions of the transmission disequilibrium test (RV-TDT). At the region level,

TRIO_RVEMVS outperformed PedGene and RV-TDT when common variants were

included. TRIO_RVEMVS performed competitively with PedGene and outperformed RV-

TDT when the analysis was only restricted to rare variants. At the individual variants level,

with 1,500 trios, the average true positive rate of individual rare variants that were polymor-

phic across 500 datasets was 12.20%, and the average false positive rate was 0.74%. In

the datasets with 350 trios, the average true and false positive rates of individual rare vari-

ants were 13.10% and 1.30%, respectively. When applying TRIO_RVEMVS to real data

from the Gabriella Miller Kids First Pediatric Research Program, it identified 3 rare variants

in q24.21 and q24.22 associated with the risk of orofacial clefts in the Kids First European

population.
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Introduction

Birth defects are prevalent, occurring in 1 out of every 33 babies born annually in the United

States, and are the primary cause of infant mortality, responsible for 20% of all infant deaths

[1]. The impact of birth defects may be underestimated in mortality statistics [2], thus under-

standing the etiology of these major birth defects remains a research priority in birth defects

epidemiology. Family data supports the hypothesis that a significant component of the risk for

various birth defects stems from genetic variation [3–6]. Recent genome-wide association

studies have identified common SNPs associated with varying birth defects, including obstruc-

tive heart defects (OHDs) [7], multiple congenital heart defect (CHD) phenotypes [8], cono-

truncal heart defects (CTD) [9], left-sided lesions (LSL) [10], and tetralogy of Fallot [11].

However, the identified variants only account for a small portion of the heritability. Part of the

missing genetic heritability is thought to reside in rare variants, which are largely undetectable

through genome-wide association platforms [12–17].

Although next-generation sequencing allows researchers to sequence each variant along the

genome, there are statistical challenges inherent in identifying which rare variants are associ-

ated with disease. The power of traditional association methods for SNPs depends on allele

frequency; the low frequency of minor alleles may reduce the power to analyze rare variants

[18–22]. Previous methods are based on global tests that pool rare variants in a region to test

the association with diseases. These global tests can be classified into burden tests (such as

Cohort Allelic Sums Test (CAST) [23], the Collapsed Multivariate Collapsing Method (CMC)

[24], and the Variable Threshold (VT) method [25, 26])), or quadratic tests (like C-alpha test

[27] and the Sequence Kernel Association Test (SKAT) [28]).

Some methods have been developed that can identify specific rare variants that drive associ-

ation within a given region of interest, as well as include common variants [24, 29–31]. How-

ever, these methods are based on a case-control design and are therefore subject to bias from

population stratification [31–34]. Diseases that affect young children, like birth defects, are

good candidates for family-based study designs, such as parent-child trios, which allow for

more robust methods to analyze genetic data, including both common and rare variants, in

the presence of population substructure [32, 35, 36]. Methods that take advantage of pedigree

data for the genetic variant association, such as PedGene [37], and RV-TDT [38] have been

developed. PedGene extends kernel and burden statistics for unrelated case-control data to

include known pedigree relationships, which can account for the population-structured data

[37]. Similarly, to avoid the spurious associations derived from the population-based method

when the population substructure and admixture exist, RV-TDT extends commonly used pop-

ulation-based methods to analyze the association of rare variants in population-structured

data, including aforementioned CMC [24] and VT [25]. However, none of these methods can

detect individual rare variants within the region of interest. In this study, we proposed

TRIO_RVEMVS, a Bayesian framework for individual rare variant association analysis with

expectation-maximization variable selection using family trio data, which can simultaneously

detect common and rare variants at the individual variant level.

The paper is organized as follows: We begin by constructing the likelihood of common

and rare variants using case-parent trios. Next, we detail the Bayesian framework of

TRIO_RVEMVS, which includes specifying priors for common and rare variants’ coeffi-

cients, conducting posterior inference using the EM algorithm, and tuning selection parame-

ters. To assess TRIO_RVEMVS, we perform simulations on both large (1500 case-trios) and

small (350 case-trios) datasets and compare the results with those obtained using PedGene

and RV-TDT. We then apply TRIO_RVEMVS to a real-world trio dataset from the Gabriella

Miller Kids First Pediatric Research Program consisting of trios with a child suffering from
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cleft lip with or without cleft palate (CL+P). The paper concludes with a discussion of our

findings.

Constructing the likelihood of common and rare variants using

case-parents trios

In the case-parent trio design, small nuclear families are collected, where the child is affected

by the disease or phenotype of interest. Then, the affected child and both parents are geno-

typed. Assuming each family can be phased, we denote the haplotype pair of the child [39]

g ¼ ðgm; gf Þ

where gm and gf denote the haplotypes inherited from the mother and father, respectively. Let

D+ represent the child is diseased, Θ denote the transmission parameters, and denote the

parental haplotype pairs from mother and father as Gm and Gf, respectively. To model the sam-

pling distribution of the case-trio family data, we propose to use the conditional logistic regres-

sion likelihood to model the probability of haplotype transmission from parents to the

diseased child, which is motivated by the literature [39–41]. In more detail, the sampling distri-

bution for observing a case trio can first be expressed as

Pðg;Gm;Gf jY;D
þÞ ¼ PðgjGm;Gf ;Y;D

þÞPðGm;Gf jY;D
þÞ;

Due to Mendelian laws of inheritance, we can assume the transmission parameters con-

tained in Θ are conditionally independent of the parents’ genotypes Gm and Gf, given that the

child is diseased. Since the trios are sampled through the diseased child, there is no informa-

tion regarding Θ in the sampling distribution of the parent’s haplotypes, which implies

PðGm;Gf jY;D
þÞ ¼ PðGm;Gf jD

þÞ;

and

Pðg;Gm;Gf jY;DþÞ / PðgjGm;Gf ;Y;DþÞ: ð1Þ

Eq (1) implies the sampling distribution will based on P(g|Gm, Gf, Θ, D+), which can be gen-

erally modeled by a conditional logistic regression according to previous studies [39–41].

The conditional probability of disease given the haplotypes of parents can be derived simi-

larly as in [40],

PðgjGm;Gf ;Y;DþÞ ¼
PðDþjg;YÞ

P4

j¼1
PðDþjgj;YÞ

; ð2Þ

where gj denotes one of the four different haplotype pairs inheritable from parents, j = 1, 2, 3,

4. We use a logistic regression modeling framework to include both common and rare variants

in the sampling distribution as

logf
PðDþjg;YÞ

1 � PðDþjg;YÞ
g ¼ gcbþ gra; ð3Þ

where gc is a 1 × S vector which denotes the common SNPs, β is a S × 1 coefficient vector, gr

is a 1 × L vector representing the rare SNPs, and α represents the effect of the selected rare

variants on risk. For rare diseases, we can assume 1 − P(D+|g, Θ)’ 1. Therefore, Eq (3)
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simplifies to

log PðDþjg;YÞ ¼ gcbþ gra; ð4Þ

Similarly,

log PðDþjgj;YÞ ¼ gcjbþ grja; ð5Þ

where gcj and grj are the common and rare variants of gj. With Eqs (4) and (5), finally, Eq (2)

can be expressed as

PðgjGm;Gf ;Y;DþÞ ¼
expðgcbþ graÞ

P4

j¼1
expðgcjbþ grjaÞ

: ð6Þ

Eq (6) can be understood as the likelihood for a 1:3 matched case-control design, where the

affected child plays the role as the case and is matched with the 3 other possible genetic config-

urations of children that could have been offspring from the same parents. These other config-

urations are commonly called pseudo-siblings. Therefore, the conditional likelihood function

for trios is given by

LðgjGm;Gf ;Y;DþÞ ¼
YN

n¼1

PðgnjGnm;Gnf ;D
þ;YÞ; ð7Þ

where g denotes the collection of haplotype pairs of children from the case-trio data, Gm and

Gf are the collections of haplotype pairs of parents in the case-trio data, n = 1, 2, � � �, N are the

indexes of families, and P(gn|Gnm, Gnf, D+, Θ) can be calculated through Eq (6).

Trio rare variants EMVS (TRIO_RVEMVS)

The sampling distribution and likelihood for trio data using common variants have been pre-

viously discussed [35, 39–42], modeling the probability of transmitting genes to the affected

child. In the previous section, we show the probability of transmission can be extended to

incorporate rare variants and be written as Eq (6). In summary, trio data are modeled using

conditional logistic regression, similar to the model for 1:3 matched case-control data. Here,

the affected child is matched with the 3 “pseudo-siblings” who could potentially be offspring of

the parents. Using this sampling distribution as our likelihood, we proceed to outline the

remaining mathematical details to develop a Bayesian framework for the variable selection for

both common and rare variants associated with disease and implement the EM algorithm to

compute the posterior quantities of interest [43].

Hierarchical priors

In this section, we construct the prior distributions to model inclusion in the risk model for

each common and rare variant. For common variant selection, we used a single binary indica-

tor, γs, to denote whether a common variant is included in the model. For rare variant selec-

tion, we implemented a dual selection indicator structure, which was first used in genetics for

common variants with multiple alleles [42] and later modified for use in a Bayesian sparse

group selection framework [44]. Specifically, we used a binary indicator, ηr, to indicate a group

of related rare variants (typically those within the same gene) and a second indicator, λrj, to

indicate individual variants within group r. Each selection indicator follows a Bernoulli
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distribution, with a prior inclusion probability parameter πi (i = 1, 2, 3):

gsjp1 � Berðp1Þ; s ¼ 1; 2; � � � ; S;

Zrjp2 � Berðp2Þ; r ¼ 1; 2; � � � ;R;

pðlrjjZr; p3Þ ¼ Zrp
lrj
3 ð1 � p3Þ

1� lrj þ ð1 � ZrÞd0; j ¼ 1; 2; � � � ; Jr;

ð8Þ

where δ0 is point mass at zero, S denotes the total number of common variants, R denote the

total number of regions, and Jr denotes the total number of rare variants in region r. If γs = 1, it

indicates that a common variant is included in the model; if γs = 0, it indicates otherwise. Simi-

larly, ηr = 1 indicates that a group of rare variants in a defined region (typically a gene) is

included in the model; ηr = 0 indicates otherwise. λrj = 1 indicates an individual rare variant j
at group r is included in the model; λrj = 0 indicates otherwise. To make the variable selection

more flexible, we assume beta priors on πi,

pi � Betaðai; biÞ;

with hyper-parameters ai and bi, i = 1, 2, 3. This creates Beta-Bernoulli prior on all inclusion

indicators. We use the hyper-parameters to balance power and multiplicity correction for the

number of variants similar to [29]. Specifically, we use ai = 1(i = 1, 2, 3), and set b1 as the total

number of common variants, b2 as the total number of groups of rare variants, and b3 as the

total number of rare variants.

Conditional on the selection indicator, the prior for the coefficient of a common variant, βs,

is defined as a normal distribution,

pðbsjgsÞ ¼ Nð0; dsÞ ð9Þ

where ds is defined by the corresponding γs:

ds ¼
v1 if gs ¼ 1;

v0 if gs ¼ 0:
s ¼ 1; 2; � � � ; S:

(

Here, we set v0 as a very small positive value that has the effect of restricting the value of βs

to be close to 0 when the SNP is not selected and v1 (v1 > 0) large to allow the βs coefficient to

be estimated. Defining the prior on βs in this way results in marginal normal mixture distribu-

tions that are defined by inclusion, typical of common Bayesian variable selection paradigms

[29, 42, 43]. For each common variant, βs is distributed as a normal distribution with the fol-

lowing mean and variance

ms ¼ 0; and varðbsÞ ¼ ð1 � gsÞv0 þ gsv1:

For the rare variant coefficient α = (α11, α12, � � �, αrj, � � �)
0, we proposed:

pðarjjZr; lrjÞ � ð1 � ZrlrjÞNð0; v2Þ þ ZrlrjNð0; v3Þ; ð10Þ

where r is the index of region, r = 1, 2, � � �, R; and j is the index of individual rare variant in the

region r, j = 1, 2, � � �, Jr; ηr is the binary selection indicator of region r, λrj is the binary selection

indicator of individual rare variant j in region r; v2 is the exclusion parameter of individual
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rare variant when either ηr = 0 or λrj = 0, v3 is the inclusion parameter of individual rare variant

when both ηr = 1 and λrj = 1.

Posterior inference using the EM algorithm

Let γ, η, and λ denote the collections of binary selection indicators for individual common var-

iants, regions, and individual rare variants, γ = {γs, s = 1, 2, � � �, S}, η = {ηr, r = 1, 2, � � �, R}, and

λ = {λrj, r = 1, 2, � � �, R;j = 1, 2, � � �, Jr}. The full posterior distribution is denoted as logP(β, α,

π1, π2, π3, γ, η, λ|g, Gm, Gf, D+). Given the likelihood of Eq (7), and priors of Eqs (8) to (10) as

defined above, the posterior distribution does not have a closed form. Instead of simulating

large samples directly from the posterior using Markov Chain Monte Carlo (MCMC) meth-

ods, we employ the expectation maximization (EM) algorithm to estimate the posterior modes

of interest. In the EM algorithm, we treat the variable selection indicators γ, η, and λ as missing

data and alternate between conditional expectation using the current best estimates for the

parameters and maximization of the expectation of the complete log-likelihood (Q function)

to estimate the posterior modes of β and α [43].

For the E-step, we determine the Q-function which is the conditional expectation of log-

likelihood of complete data with respect to the missing indicator variables, γ, η, and λ, given

the current estimates of the unknown parameters b
ðkÞ
; aðkÞ; p

ðkÞ
1 , p

ðkÞ
2 ; p

ðkÞ
3 , where k is the index of

current iteration. For the M-step, we maximize the Q-function with respect to the parameters

β, α, π1, π2, π3 and iterate both steps until convergence. For iteration k, the Q-function is

defined as:

Q
h
b; a; p1; p2; p3jb

ðkÞ
; aðkÞ; p

ðkÞ
1 ; p

ðkÞ
2 ; p

ðkÞ
3

i

¼ Eg;Z;lj:½log Lðb; a;p1;p2;p3; g; Z; ljg;Gm;Gf ;DþÞ�

ð11Þ

where Eg;Z;lj: ¼ E
g;Z;ljbðkÞ ;aðkÞ ;p

ðkÞ
1
;p
ðkÞ
2
;p
ðkÞ
3
;g;Gm ;Gf ;Dþ

, where the distributions of γ, η, λ are given by

Eq (8), and L(β, α, π1, π2, π3, γ, η, λ|g, Gm, Gf, D+) is the likelihood of complete data which is

given by Eq (7).

E-step. The objective function Q can be simplified as the sum of conditional functions

Qð�Þ ¼ C þ Q1

h
b; ajb

ðkÞ
; aðkÞ; p

ðkÞ
1 ; p

ðkÞ
2 ; p

ðkÞ
3

i
þ Q2

h
p1jb

ðkÞ
; aðkÞ; p

ðkÞ
1

i

þQ3

h
p2jb

ðkÞ
; aðkÞ; p

ðkÞ
2

i
þ Q4

h
p3jb

ðkÞ
; aðkÞ; p

ðkÞ
3

i
;

ð12Þ

where C is constant term and each Q1, Q2, Q3, Q4 can be maximized independently. For conve-

nience, we index the genotype of cases in each family as g0n, and all the genotypes of pseudo-

siblings are indexed by i 2 {1, 2, 3}. Then, the common and rare SNPs of the case child from

family n are denoted as gc0n and gr0n, respectively; and the common and rare SNPs of pseudo-

siblings from family n are denoted as gcin and grin, i = 1, 2, 3, respectively. In total of N families,

according to the likelihood function Eqs (6) and (7), the Q-function with respect to β and α
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can be written as

Q1

h
b; ajb

ðkÞ
; aðkÞ; p

ðkÞ
1 ; p

ðkÞ
2 ; p

ðkÞ
3

i

¼
XN

n¼1

log
expðgc0nbþ gr0naÞ

expðgc0nbþ gr0naÞ þ
P3

i¼1
expðgcinbþ grinaÞ

" #

�
1

2

XS

s¼1

b
2

s Egs j:

1

v0ð1 � gsÞ þ v1gs

� �

�
1

2

XR

r¼1

XJr

j¼1

a2

rjEZr ;lrjj:

1

v2ð1 � ZrlrjÞ þ v3Zrlrj

" #

¼ �
XN

n¼1

logð1þ
X3

i¼1

e� xcinb� xrinaÞ �
1

2
b
0PðkÞc b �

1

2
a0PðkÞr a

ð13Þ

where xin = g0n − gin which is a 1 × p vector; PðkÞc is a S×S diagonal matrix with elements

ð1 � pðkÞs Þ
1

v0
þ pðkÞs

1

v1
; s 2 f1; 2; . . . ; Sg, and S is the total number of the common variants, pðkÞs

is the conditional expectation of inclusion parameter. Based on Bayes’ rule, pðkÞs can be calcu-

lated as follows.

pðkÞs ¼ Egs j:
gs½ � ¼ Pðgs ¼ 1jb

ðkÞ
; p
ðkÞ
1 Þ ¼

as

as þ bs
; ð14Þ

where as ¼ PðbðkÞjgs ¼ 1ÞPðgs ¼ 1jp
ðkÞ
1 Þ, bs ¼ PðbðkÞs jgs ¼ 0ÞPðgs ¼ 0jp

ðkÞ
1 Þ and

Pðgs ¼ 1jp
ðkÞ
1 Þ ¼ p

ðkÞ
1 . PðkÞr is a L × L diagonal matrix with elements ð1 � qðkÞrj Þ

1

v2
þ qðkÞrj

1

v3
, r = 1, 2,

� � �, R, j = 1, 2, � � �, Jr, L is the total number of rare variants, R is the number of groups (regions)

of variants, Jr is the number of rare variants in the group (region) r, and

qðkÞrj ¼ Elrj¼1jZr¼1;���½lrj� ¼ Pðlrj ¼ 1jZr ¼ 1; a
ðkÞ
rj ; p

ðkÞ
2 ; p

ðkÞ
3 Þ ¼

crj

crj þ drj
; ð15Þ

where crj ¼ p
ðkÞ
3 PðaðkÞrj jlrj ¼ 1; Zr ¼ 1Þ, and drj ¼ ð1 � p

ðkÞ
3 ÞPða

ðkÞ
rj jlrj ¼ 0; Zr ¼ 1Þ. The second

and third terms of the Q function can be calculated as

Q2 p1jb
ðkÞ
; p
ðkÞ
1

h i
¼
XS

s¼1

Egsj:
gs½ �log

p1

1 � p1

� �

þ ð2S � 1Þlogð1 � p1Þ: ð16Þ

Q3 p2ja
ðkÞ; p

ðkÞ
2

h i
¼
XR

r¼1

EZr j:
½Zr�log

p2

1 � p2

� �

þ ð2R � 1Þlogð1 � p2Þ; ð17Þ

where

EZr j�
½Zr� ¼ PðZr ¼ 1ja

ðkÞ
r1 ; � � � ; a

ðkÞ
rJr ; p

ðkÞ
2 ; p

ðkÞ
3 Þ ¼

er

er þ fr
¼
: gðkÞr ; ð18Þ

in which er and fr are defined as

er ¼ p
ðkÞ
2

YJr

j¼1

h
p
ðkÞ
3 PðaðkÞrj jlrj ¼ 1; Zr ¼ 1Þ þ ð1 � p

ðkÞ
3 ÞPða

ðkÞ
rj jlrj ¼ 0; Zr ¼ 1Þ

i
;
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and

fr ¼ ð1 � p
ðkÞ
2 Þ
YJr

j¼1

PðaðkÞrj jlrj ¼ 0; Zr ¼ 0Þ:

The last term of the Q function is written as

Q4

h
p3ja

ðkÞ; p
ðkÞ
2 ; p

ðkÞ
3

i
¼ EZ;lj�log

"

Pðp3Þ
YR

r¼1

YJr

j¼1

PðlrjjZr; p3Þ

#

¼
XR

r¼1

gðkÞr

XJr

j¼1

qðkÞrj log
p3

1 � p3

� �

þ ðLþ
XR

r¼1

gðkÞr Jr � 1Þlogð1 � p3Þ

ð19Þ

M-step. For the M-step, we maximize Q1, Q2, Q3 and Q4 separately. There is no closed-

form solution for Q1 function. However, maximizing the Q1 with respect to β and α is equiva-

lent to a minimization problem with respect to parameter ω (p × 1), where p = S + L, S is the

total number of common variants, and L is the total number of rare variants. Based on Eq (13),

max
b;a

Q1

h
b; ajb

ðkÞ
; aðkÞ; p

ðkÞ
1 ; p

ðkÞ
2 ; p

ðkÞ
3

i

¼ max
b;a

�
XN

n¼1

logð1þ
X3

i¼1

e� xcinb� xrinaÞ �
1

2
b
0PðkÞc b �

1

2
a0PðkÞr a

 !

¼ min
b;a

XN

n¼1

logð1þ
X3

i¼1

e� xcinb� xrinaÞ þ
1

2
b
0PðkÞc bþ

1

2
a0PðkÞr a

 !

¼ min
o

XN

n¼1

logð1þ
X3

i¼1

e� xinoÞ þ
1

2
o0PðkÞo

 !

;

ð20Þ

where xin = (xcin, xrin),o ¼ ðb1; b2; . . . ; bS; a11; a12; . . . ; arj; . . . ; aRJR
Þ
0
; P(k) is a p × p (p = S + L)

diagonal matrix with diagonal elements ð1 � pðkÞs Þ
1

v0
þ pðkÞs

1

v1
; s 2 f1; 2; . . . ; SgÞ for the first S

elements, and ð1 � qðkÞrj Þ
1

v2
þ qðkÞrj

1

v3
for the rest of L elements.

Since the likelihood function of conditional logistic regression and 1

2
o0PðkÞo are vector con-

vex functions [43], we used stochastic dual coordinate ascent (SDCA) [45, 46], an efficient

technique for solving regularized loss minimization problems in machine learning, to solve the

minimization problem above. Particularly, the accelerated min-batch SDCA was implemented

and the details of the algorithm can be found in the Supplemental Materials [46]. Accordingly,

we compute the β and α estimates for the next iteration based on the Q1 function. The remain-

ing components Q2, Q3, and Q4 have closed forms. The details of solving the closed form solu-

tions to the maximization of Q2, Q3, and Q4 are shown in the Supplemental Materials. The

closed form solution for Q2 is:

p
ðkþ1Þ

1 ¼

PS
s¼1

pðkÞs

2S � 1
ð21Þ
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The closed form solution for Q3 is:

p
ðkþ1Þ

2 ¼

PR
r¼1

gðkÞr

2R � 1
ð22Þ

The closed form solution for Q4 is:

p
ðkþ1Þ

3 ¼

PR
r¼1

gðkÞr

PJr
j¼1

qðkÞrj

Lþ
PR

r¼1
gðkÞr Jr � 1

ð23Þ

Convergence of the algorithm is determined if the difference between two successive

observed-data likelihood is less than �, i.e.

lðyðkþ1Þ
jyobsÞ � ðy

ðkÞ
jyobsÞ

¼
h
Qðyðkþ1Þ

; y
ðkÞ
Þ � QðyðkÞ; yðkÞÞ

i
�
h
Rðyðkþ1Þ

; y
ðkÞ
Þ � RðyðkÞ; yðkÞÞ

i
< �;

ð24Þ

where � is a pre-specified threshold, θ = (β, α, π1, π2, π3), and

R
h
b; a; p1; p2; p3jb

ðkÞ
; aðkÞ; p

ðkÞ
1 ; p

ðkÞ
2 ; p

ðkÞ
3

i

¼ Eg;Z;lj:½log Pðg; Z; ljg;Gm;Gf ;Dþ; b; a;p1; p2; p3Þ�

¼
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s¼1

Egs j:
gs½ �log

p1

1 � p1

� �

þ S logð1 � p1Þ

þ
XR

r¼1

EZr j:
Zr log

p2

1 � p2

� �

þ R logð1 � p2Þ

þ
XR

r¼1

gðkÞr

XJr

j¼1

qðkÞrj log
p3

1 � p3

� �

þ ð
XR

r¼1

gðkÞr JrÞlogð1 � p3Þ:

ð25Þ

Deterministic annealing

Though the conventional EM algorithm has attractive features, it can become trapped in local

maximums in multimodal posterior distributions. To enhance the chance of discovering a

global mode, the Deterministic Annealing variant of the EM algorithm (DAEM) is considered

[47]. During each DAEM iteration, the conditional probability of inclusion indicators is

parameterized by temperature 1/t (0< t< 1). Therefore, pðkÞs , qðkÞrj and gðkÞr from Eqs (14), (15)

and (18) were substituted by:

pðkÞs ¼
at

s

at
s þ bt

s
ð26Þ

qðkÞrj ¼
ct

rj

ct
rj þ dt

rj
ð27Þ

gðkÞr ¼
et

r

et
r þ f t

r
ð28Þ
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where as, bs, crj, drj, er and fr are the same as in Eqs (14), (15) and (18). In this study, for both

simulation and real-data analysis, the initial value of coefficients of common and rare variants

is 0.5; the initial value of t is 0.1 with an incremental value of 0.1.

Selection parameter tuning

Here, we present a recommendation for tuning the selection parameters in TRIO_RVEMVS.

Specifically, selection is controlled through the exclusion parameters, v0 and v2, and inclusion

parameters, v1 and v3, as similar to [43]. To determine suitable values for these parameters, we

first considered an odds ratio between [0.95,1.05] to be clinically irrelevant. Then, given a 95%

prior probability of variable inclusion of an odds ratio that covers [0.29,3.45] and [0.27,4.3] for

common and rare variants respectively. Thus, we set v1 = 0.4 and v3 = 0.5. Next, we evaluated

the local stability of regularization plots with respect to exclusion parameters. The tuning pro-

cess proceeded as follows:

• We initially set the exclusion parameters for common and rare variants to be equal, i.e. v0 =

v2, and chose the common exclusion parameter in the local stable regularization plot

window.

• Subsequently, with the common exclusion parameter fixed, we evaluated the local stability of

the regularization plot with respect to the rare variant exclusion parameter v2, and chose the

v2 within a stable window defined by at least 3 points in the grid where no shrinkage occurs.

This procedure was applied in both simulated and real data analyses.

Simulation

We simulated two scenarios consisting of 500 datasets each to evaluate the performance of

TRIO_RVEMVS in identifying regions/genes of interest relative to existing methods (PedGene

[37] and RV-TDT [38]) as well as its ability to identify individual variants. One scenario gener-

ates 1500 case-parent trios per data set, while the other involves generating 350 case-parent

trios per dataset. These scenarios allowed us to assess the performance of TRIO_RVEMVS

under large-sample and small-sample conditions, respectively.

To measure the overall performance of region detection, we calculated the weighted average

correct association percentage with

1

2

P
PðselectedjassociatedÞ

total number of associated regions
þ

P
PðunselectedjunassociatedÞ

total number of unassociated regions

� �

ð29Þ

Considering that most of the rare variants were not polymorphic across all data sets, we

defined the Average True and False Positive Rate (ATPR and AFPR) for individual variants as

follows:

ATPR ¼
1

# of data sets

X

data set d

NdðselectedjassociatedÞ
Ndð# of polymorphic associated variantsÞ

AFPR ¼
1

# of data sets

X

data set d

NdðselectedjunassociatedÞ
Ndð# of polymorphic unassociated variantsÞ

ð30Þ

where Nd(selected|�) denotes the number of detected variants given the variants are associated

or unassociated in data set d.
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Data simulation

We simulated the population of haplotypes using Cosi2 [48], which is a forward-time genetic

simulator. We used the 1000 Genomes Project [49] haplotypes as the reference population for

Cosi2 and simulated a 30kb region of chromosome 1, consisting of 45965 SNPs. We simulated

populations of 80,000 African haplotypes and 80,000 European haplotypes. Then we con-

structed 500 samples, each consisting of 60,000 haplotypes (15,000 African and 45,000 Euro-

pean, reflecting 25% and 75%, respectively) from the simulated population (with

replacement). For each of the 500 samples of haplotypes, we randomly selected and paired

haplotypes within the race to construct individuals, and then randomly paired individuals

within the race to construct parents. Then from each set of parents, we randomly selected one

haplotype from each parent to be transmitted to the child to form 15,000 trios. The full simula-

tion algorithm is described in the Supplemental Materials.

We defined a gene region as 2700 base pairs, resulting in 12 simulated gene regions. Within

gene regions, we used population allele frequencies to determine rare and common variants.

Since we simulated admixed samples, we computed a weighted minor allele frequency (MAF)

for each SNP. This was based on the frequency estimates from our reference genome (the 1000

Genomes Project) for each population (African and European), weighted by the proportion of

each population admixed for our simulation (25% African and 75% European). Rare variants

were defined as variants with a weighted MAF < 0.05. For simplicity, we simulated our causal

SNPs on genes 1–6. We modeled disease based on two causal common SNPs (risk-increasing

allele on gene 3 and risk-decreasing allele on gene 6) and 5% of any variant with weighted

MAF less than 3% were randomly chosen as causal rare variants. In total, 1212 rare variants

were simulated as causal to the simulated disease, with 606 simulated as risk increasing and

606 as risk decreasing. The distribution of associated rare variants across the 6 genes is

reported in Table 1.

We simulated the disease status of each child according to the logistic model:

logitðPðy ¼ 1ÞÞ ¼ a0 þ b1Gc
1
þ b2Gc

2
þ � � � þ bpGc

p; ð31Þ

where Gc
1
;Gc

2
; . . . ;Gc

p were the children’s genotypes for the p causal variants (consisting of the

2 common variants, and the rest are rare variants), and we set α0 = −2.2 to control the disease

incidence to be low. For the simulation, we set the magnitude of the coefficients for our causal

common variants to be 0.9, and the magnitude of the coefficients for causal rare variants was

computed as in [28]: c|log10MAFi|, where c = 0.4 for causal risk rare variants, and c = −0.4 for

causal protective rare variants, and MAFi is the weighted MAF of locus i. Assigning the coeffi-

cients in this way results in rarer variants having a stronger effect on disease.

Table 1. Number of associated rare variants with different range of weighted MAF by region in the haplotype

pool. Across all simulated data sets, most of the variants with weighted MAF less than 0.0001 were those non-polymor-

phic, singleton, doubletons, or triptons.

Region (0, 0.0001) [0.0001, 0.001) [0.001, 0.01) [0.01, 0.05)

1 204 4 3 1

2 172 2 0 0

3 204 3 2 0

4 220 5 0 0

5 197 2 1 0

6 185 6 1 0

Total 1182 22 7 1

https://doi.org/10.1371/journal.pone.0314502.t001
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The distribution of associated rare variants across 6 regions is shown in Table 1. After simu-

lating diseased probands in each set of 15,000 trios, we generated 500 replicates of 1,500 case-

parent trios, and another 500 replicates of 350 case-parent trios to assess performance for large

and small sample sizes, respectively.

Due to sampling, some loci that were polymorphic in the population with rare variants

became non-polymorphic in the 500 samples, and the number of polymorphic loci varied

across the 500 data sets. Some of the polymorphic loci with rare variants that were in the dis-

ease-generating model were not polymorphic in one or more samples. The distribution of

polymorphic variants across the 500 data sets for each sample size is depicted in Table 2.

Analysis of simulated data

We used the same analysis strategy across all simulated datasets. First, we classified variants as

either common or rare in each simulated data set. We estimated the MAF of each variant in

each dataset for each sample size. For each sample size, we defined rare variants based on the

median MAF across the 500 data sets, with the threshold of rare variants being median

MAF< 5%. To assess performance in identifying regions of interest, we applied all three meth-

ods (TRIO_RVEMVS, PedGene, and RV-TDT) to the 500 data sets, summarizing the perfor-

mance of each method using the weighted average correct association metric. Since only

TRIO_RVEMVS identifies specific rare variants, we also report a similar weighted correct

association metric for individual rare variants. For TRIO_RVEMVS, the detailed exclusion

parameter tuning using regularization plot can be found in the Supplemental Materials.

Simulation results

In this section, we first compare selection at the region level with PedGene [37] and RV-TDT

[38] with the weighted average correct association percentage. Specifically, we compared

TRIO_RVEMVS with PedGene kernel and burden methods [37]. For RV-TDT, we evaluated

different variants, such as BRV-Haplo, VT-BRV-Haplo, WSS-Haplo, CMC-Analytical,

CMC-Haplo, and VT-CMC-Haplo [38]. TRIO_RVEMVS outperformed both PedGene and

RV-TDT when jointly considering common and rare variants. Our simulation analyses also

confirmed that PedGene showed improved performance in detecting rare variants compared

to RV-TDT [50]. We conclude our simulation analysis by discussing the capacity of TRIO_R-

VEMVS to detect individual rare variants, which is not accomplished by either PedGene or

RV-TDT.

We compared the performance of all methods in two ways. First, we compared each meth-

od’s ability to select risk regions based on rare variants only. Second, we compared each meth-

od’s ability to identify risk regions when jointly analyzing rare and common variants. For all

Table 2. Summary statistics of data sets with 1,500 and 350 case-trios.

Summary statistics 1500 case-trios 350 case-trios

Average # polymorphic variants 4008 1442

Average # polymorphic common variants 48 47

Average # polymorphic causal common variants 2 2

Average # polymorphic rare variants 3960 1395

Average # polymorphic causal rare variants 132 45

# polymorphic variants across 500 data sets 431 133

# polymorphic causal variants across 500 data sets 12 4

https://doi.org/10.1371/journal.pone.0314502.t002
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analyses, we defined rare variants as SNPs whose MAF < 5%. Panels a) and b) of Fig 1 show

the true and false positive rate of region selection when jointly analyzing common and rare

variants using datasets with 1500 case-trios. In panel a), it shows that TRIO_RVEMVS outper-

formed both PedGene and RV_TDT with higher true positive rates across the 6 simulated

causal regions except for simulated region 5, where PedGene shows a better true positive rate

of detection. Considering the false positive rates across regions 7–12, PedGene and Trio_R-

VEMVS were competitive, TRIO_RVEMVS outperformed PedGene’s false positive rate across

regions 7, 8,10, and 12, while PedGene had slightly lower false positive rates for regions 9 and

11. Panels c) and d) of Fig 1 show the true and false positive rates when focusing solely on rare

variants detection for data sets with 1500 case-trios. TRIO_RVEMVS outperformed PedGene

in regions 1 and 3 in terms of true positive rate but performed just behind PedGene in regions

2, 4, 5, and 6.

Table 3 summarizes the weighted average correct association percentage (WACAP), Eq

(29), for TRIO_RVEMVS, RV-TDT, and PedGene. TRIO_RVEMVS shows the highest

WACAP when selecting both common and rare variants. When focusing on using rare

Fig 1. For the data sets with 1,500 case-trios, panels (a) and (b) showed the true and false positive rates of analyzing regions using both common

and rare variants; panels (c) and (d) showed the true and false positive rates of regions with rare variants only.

https://doi.org/10.1371/journal.pone.0314502.g001
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variants only, TRIO_RVEMVS was competitive with PedGene-Kernel, but did not always

have the highest WACAP.

In the 350 case-trio data sets, TRIO_RVEMVS outperformed both PedGene and RV_TDT

with respect to the weighted average correct association percentage, shown in Table 3.

TRIO_RVEMVS achieved the highest average correct association percentage among all meth-

ods at 66.37%. VT-CMC-Haplo had the second-highest WACAP at 57.33%. In each region, we

observed a consistent pattern of true and false positive rates when analyzing both common

and rare variants, Fig 2. Specifically, TRIO_RVEMVS exhibited superior performance in

terms of the true positive rate in regions 1, 3, and 6, shown in panel a) in Fig 2. With respect to

the false positive rate, TRIO_RVEMVS performed similarly to PedGene; and both have smaller

false positive rates compared to RV_TDT. See panel b) in Fig 2. When analyzing only rare vari-

ants, all methods demonstrated similar average correct association percentages, as indicated in

Table 3. Because of the smaller sample size, all methods showed low power to detect the causal

rare variants in general, shown in panels c) and d) in Fig 2. Therefore, compared to the 1500

case-trios, we did not observe notably higher true positive rates or false positive rates at the

region level when analyzing only rare variants in the 350 case-trios data analysis.

At the individual variants level, TRIO_RVEMVS detected 94 variants including 8 causal in

500 datasets with 1500 case-trios, and 57 variants with 4 causal in 500 datasets with 350 case-

trios. The true positive rate (TPR) and false positive rate (FPR) of detected variants are shown

in Figs 3 and 4. We primarily focus on reporting the individual-level selection results for vari-

ants that were polymorphic across all datasets, due to the low MAF of rare variants, Table 4.

When considering the variants that were not all polymorphic across datasets, individual-level

selection results were summarized in the Supplemental Materials. For datasets with 1500 case-

trios, the ATPRs were 26.83% and 12.20% with and without common variants. The two causal

common variants were constantly detected with ATPR of 100%. The AFPRs were 0.67% and

0.74% with and without common variants. For datasets with 350 case-trios, when the common

and rare variants were jointly analyzed the ATPR was 48.45%, and the AFPR was 1.38%; when

only rare variants were analyzed the ATPR was 13.10% and AFPR was 1.30%. ATPR and

AFPR for variants in different ranges of MAF were summarized in Table 4.

We observe that the true positive rate is lower and the false positive rate is higher for vari-

ants that have lower MAF. We illustrate this using the dataset of 1500 case-trios. For variants

with a median MAF less than 0.01, the ATPR and AFPR were 3.08% and 0.09%, respectively.

The highest FPR in this group was 8.8%, and the variant with such a high FPR had an equal

median MAF to one of the associated variants (0.006) in region 1. In addition, the associated

Table 3. The comparison of weighted average correct association percentage between TRIO_RVEMVS, PedGene and RV-TDT with and without common variants.

Methods 1500 case-trios 350 case-trios

common and rare rare only common and rare rare only

TRIO_RVEMVS 74.53 60.55 66.37 52.07

PedGene-kernel 66.17 61.25 55.73 52.65

PedGene-burden 50.97 50.77 49.90 49.70

CMC-Analytical 32.80 55.86 36.32 52.35

BRV-Haplo 42.60 56.98 40.58 53.08

CMC-Haplo 41.23 56.68 39.00 52.95

VT-BRV-Haplo 42.60 55.25 52.73 52.65

VT-CMC-Haplo 41.21 54.53 57.33 52.10

WSS-Haplo 52.65 55.33 50.18 52.75

https://doi.org/10.1371/journal.pone.0314502.t003
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variant in region 1 and this falsely detected unassociated variant was only separated by 53 base-

pairs, and the linkage disequilibrium between them was 1 (both Dprime and rSquare), Fig 5.

The average FPR in the group of variants that had MAF in the range of [0.01, 0.05) was 6.08%.

The TPR of the only associated variant (median MAF: 0.026) was 94.2%. Two variants in the

same group have relatively high FPR: one rare variant from region 5 had an FPR of 71.8%;

another rare variant from region 10 had an FPR of 62.8%. (Those three variants may have con-

tributed the high true and false positive rates, respectively, at the region level for both methods

TRIO_RVEMVS and PedGene, Fig 1).

Real data application

We applied TRIO_RVEMVS to a trio data set from the Gabriella Miller Kids First Pediatric

Research Program (https://commonfund.nih.gov/kidsfirst/overview). Access to the data and

analysis was exempted by the UTHealth IRB under protocol HSC-SPH-18–1127. On Novem-

ber 11, 2019, we obtained a total of 380 trios afflicted with cleft lip with or without cleft palate

from the Gabriella Miller Kids First Data Resource Center (DRC). All authors confirmed that

Fig 2. For the data sets with 350 case-trios, panels (a) and (b) showed the true and false positive rates of regions with common variants; panels (c)

and (d) showed the true and false positive rates of regions with rare variants only.

https://doi.org/10.1371/journal.pone.0314502.g002
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we did not have access to any information that could identify individual participants during

and after data collection. We applied TRIO_RVEMVS to analyze chromosome 8 sequencing

data for association with the risk of orofacial clefts in the European population. Quality control

was performed using PLINK [51] according to the guidance from [52], including sample and

marker genotyping efficiency/call rate, Mendelian inconsistency, and Hardy-Weinberg equi-

librium. Subsequently, SHAPEIT2 [53] was utilized to phase the genotypes and obtain haplo-

types for each trio of individuals. For TRIO_RVEMVS testing, our focus was on the region

around 8q24 where the SNPs have been identified to be associated with the risk of orofacial

clefts in the previous literature [54]. First, we identified the LD blocks in Chromosome 8 using

Big-LD [55]. The LD block covering the region previously associated with orofacial clefts con-

sists of 10401 SNPs after omitting singletons, doubletons, and tripletons from our analysis

across the 380 trios (1140 individuals). We used the same procedure as described above for the

simulated data to determine the exclusion parameters of the priors, which incorporates the

regularization plot, Fig 6. The final selected SNPs were shown in Table 5. In total, we identified

Fig 3. The true and false positive rate of SNPs with corresponding median MAF in 500 data sets with 1500 case-trios respectively. The horizontal

dash line represents a threshold of rate 0.05; the vertical line separates the causal and non-causal variants. Variants with black color are true positives;

grey illustrates the false positive variants; dot denotes rare variants; triangle denotes common variants.

https://doi.org/10.1371/journal.pone.0314502.g003
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Fig 4. The true and false positive rate of SNPs with corresponding median MAF in 500 data sets with 350 case-trios respectively. The horizontal

dash line represents a threshold of rate 0.05; the vertical line separates the causal and non-causal variants. Variants with black color are true positives;

grey illustrates the false positive variants; dot denotes rare variants; triangle denotes common variants.

https://doi.org/10.1371/journal.pone.0314502.g004

Table 4. The average true and false positive rate of individual variants detection in different median MAF ranges for variants that were polymorphic across 500

datasets with different sample sizes.

Sample size MAF<0.01 0.01�MAF<0.05 MAF�0.05 Total

Number of associated 1500 9 1 2 12

350 1 1 2 4

ATPR (%) 1500 3.08 94.2 100 26.83

350 0 26.2 83.8 48.45

Number of unassociated 1500 332 41 46 419

350 43 40 46 129

AFPR (%) 1500 0.09 6.08 0.09 0.67

350 0 2.70 1.51 1.38

https://doi.org/10.1371/journal.pone.0314502.t004
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8 SNPs in q24.21 and q24.22 associated with the risk of orofacial clefts in the Kids First Euro-

pean population.

Discussion

Although new sequencing technologies and statistical methods have accelerated genome-wide

association studies, a large portion of the genetic variability associated with birth defects

remains to be discovered [6, 56–58]. These missing inheritances may reside in rare variants.

Most existing genetic association methods, such as SKAT [28], PedGene [37], and RV-TDT

[38], aggregate the burden of risks of rare variants within a region to test for association

between that region and diseases. These methods often experience reduced power when a

large number of unassociated rare variants are present within the region pooled, or when the

rare variants are antagonistic within the same region (i.e. some promote risk while some offer

protection against the disease) [29]. Additionally, it is well known that trio data is more robust

to population stratification, and trio methods are well suited to help identify the risk of birth

Fig 5. Linkage-disequilibrium (LD) for variants that were polymorphic across 500 data sets with 350 case-trios. The symbol ‘+’ before variant

names denote detected associated rare variants; ‘-’ denotes detected non-associated variants; ‘<’ denotes never detected associated variants. V16613

from region 5, and V37318 from region 10 display a high false positive rate, potentially due to LD. They both have strong LD with all the causal rare

variants that are polymorphic across 500 data sets.

https://doi.org/10.1371/journal.pone.0314502.g005
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defects stemming from genetic variation [6, 56–59]. We developed a statistical tool based on

trio family data, TRIO_RVEMVS, that jointly models common and rare variants to identify

the rare variants driving the association of a genetic region with the disease rather than simply

assessing genetic regions. One of the advantages of the proposed method is that the common

and rare variants are detected simultaneously. The selection of rare variants does not need to

be restricted to the region where common variants have been detected previously. Addition-

ally, TRIO_RVEMVS can be potentially applied in fine-mapping studies, particularly following

genome-wide association studies (GWAS) that have identified broad regions associated with

certain phenotypes or diseases.

Using simulated data, we assessed the performance of TRIO_RVEMVS by comparing

its performance at the region level with PedGene and RV-TDT using a weighted average

Fig 6. Regularization plot for rare variants based on the trio data from the Gabriella Miller Kids First Data Resource Center

(DRC).

https://doi.org/10.1371/journal.pone.0314502.g006

Table 5. Final selected SNPs in the trio data from the Gabriella Miller Kids First Data Resource Center (DRC).

dbSNP Position ref MAF Locus Coefficients

rs1474668949 128825584 0.01 q24.21 -0.12

rs7017665 128946138 0.29 q24.21 0.26

rs17242358 128952627 0.29 q24.21 0.26

rs55658222 128963890 0.29 q24.21 0.27

rs1472381856 129156395 0.07 q24.21 -0.23

– 129243536 0.04 – -0.15

rs1192270083 129364943 0.02 q24.21 -0.13

rs78061696 130619334 0.03 q24.22 0.12

https://doi.org/10.1371/journal.pone.0314502.t005
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correct association metric. We also examined the average true positive rate (ATPR) and

average false positive rates (AFPR) when identifying individual variants. TRIO_RVEMVS

outperformed PedGene when common variants were included whereas both methods

were competitive when considering only rare variants. In this study, we also confirmed

the result that PedGene outperformed RV-TDT whether common variants were included

or not at the region level [50]. For 500 datasets with 1,500 trios, the ATPR was 2.45%

and AFPR was 0.07% when both common and rare were considered at the individual level;

the ATPR was 0.94%, and AFPR was 0.07% when the rare variants were considered. For

500 data sets with 350 trios, the ATPR was 4.33% and AFPR was 0.13% with common

variants; ATPR was 0.62% and AFPR was 0.08% without common variants at the individ-

ual level.

When applying TRIO_RVEMVS to real data from the Gabriella Miller Kids First Data

Resource Center (DRC), it identified 8 SNPs in q24.21 and q24.22 that were associated with

the risk of orofacial clefts in the Kids First European population. Three SNPs were previously

reported as common variants in locus 8q24. SNP rs7017665 has been reported in literature

[60] and is highly correlated with another generally reported SNP, rs987525, with LD (r2 =

0.847, D0 = 0.983) [54, 60–62]. SNP rs55658222 and rs17242358 have both been previously

reported in the literature [63, 64], respectively. One SNP we identified, rs78061696 has not yet

been identified in the literature as associated with orofacial clefts.

We admit that one limitation of the proposed method is modeling the haplotype data

which needs the assumption of accurate phasing. Therefore, accurate phasing is crucial before

applying the proposed TRIO_EVEMVS. Fortunately, many phasing methods and software

have been developed and different methods can be applied in different situations to achieve

better accuracy [65]. For example, given the trio data, one can apply MERLIN [66], BEAGLE

[67], and SHAPE-IT2 [53] et al. These methods work well for trios and parent-offspring pairs.

In this study, we applied SHAPE-IT2 for phasing the real-data analysis. However, comparing

different phasing methods and exploring their effect on the downstream analysis is beyond the

scope of this study. Incorporating the uncertainty of phasing in the TRIO_EVEMVS is consid-

ered future research. Some challenges remain for TRIO_RVEMVS to detect rare variants: 1)

TRIO_RVEMVS may fail to detect associated rare variants if their MAF is too small (less than

0.0027), and this threshold varies by sample size. 2) If there are too few rare variants associated

with a disease in a given region, TRIO_RVEMVS may only detect the region and not detect

the individual variant. 3) TRIO_RVEMVS may falsely detect some variants due to high LD.

Despite these challenges, TRIO_RVEMVS is pioneering in its ability to identify individual rare

variants alongside gene regions. Extending TRIO_RVEMVS to genome-wide data is consid-

ered as future research.
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