
TYPE Mini Review
PUBLISHED 21 November 2024| DOI 10.3389/fspor.2024.1440652
EDITED BY

Gregory C. Bogdanis,

National and Kapodistrian University of Athens,

Greece

REVIEWED BY

Dimitrios I. Bourdas,

National and Kapodistrian University of Athens,

Greece

*CORRESPONDENCE

Fabienne Durand

fdurand@univ-perp.fr

RECEIVED 29 May 2024

ACCEPTED 04 November 2024

PUBLISHED 21 November 2024

CITATION

Boudry F, Durand F, Meric H and Mouakher A

(2024) The role of machine learning methods

in physiological explorations of endurance

trained athletes: a mini-review.

Front. Sports Act. Living 6:1440652.

doi: 10.3389/fspor.2024.1440652

COPYRIGHT

© 2024 Boudry, Durand, Meric and Mouakher.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.
Frontiers in Sports and Active Living
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methods in physiological
explorations of endurance trained
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Endurance-trained athletes require physiological explorations that have evolved
throughout the history of exercise physiology with technological advances. From
the use of the Douglas bag to measure gas exchange to the development of
wearable connected devices, advances in physiological explorations have
enabled us to move from the classic but still widely used cardiopulmonary
exercise test (CPET) to the collection of data under real conditions on
outdoor endurance or ultra-endurance events. However, such explorations are
often costly, time-consuming, and complex, creating a need for efficient
analysis methods. Machine Learning (ML) has emerged as a powerful tool in
exercise physiology, offering solutions to these challenges. Given that exercise
physiologists may be unfamiliar with ML, this mini-review provides a concise
overview of its relevance to the field. It introduces key ML methods, highlights
their ability to predict important physiological parameters (e.g., heart rate
variability and exercise-induced hypoxemia), and discusses their strengths and
limitations. Finally, it outlines future directions based on the challenges
identified, serving as an initial reference for physiologists exploring the
application of ML in endurance exercise.
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Introduction

The rapid advancement in computational power has catalyzed the development of

artificial intelligence (AI) techniques, particularly ML. Artificial intelligence involves

creating systems capable of tasks that typically require human intelligence, such as

learning, reasoning, and decision-making (1). Within this framework, ML, a subset of

AI, refers to algorithms that enable computers to learn from data without explicit

programming. These algorithms identify patterns and make decisions or predictions by

improving their performance over time with experience (2). This potential has led to

valuable applications across various fields, including exercise physiology.

Exercise physiology focuses on understanding the body’s responses to physical effort.

This field has a rich history dating back to 1889 (3), but labor-intensive data collection and

analysis have historically constrained its development (4). Modern technologies, such as

automated gas analyzers used during cardiopulmonary exercise testing (CPET), have

improved efficiency. Often used to assess cardiorespiratory and metabolic responses in

endurance athletes, CPET presents several limitations (5). Expansive and bulky
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equipment is required, and the whole process, including subject

preparation, testing, and data analysis, can be time-consuming.

Additionally, CPET is often inaccessible to many practitioners

and requires qualified personnel. Despite these drawbacks, CPET

is valuable for athletes, determining key parameters for

endurance performance like maximal oxygen uptake (VO2max)

and ventilatory thresholds, concepts that can be challenging to

interpret (6), or detecting cardiac events. Moreover, exercise-

induced hypoxemia (EIH) exhibited by some endurance athletes,

leading to specific adaptations to exercise, is a phenomenon

measured during CPET based on the fall of pulse oxygen

saturation (SpO2) (7).

With the development of endurance and ultra-endurance

activities, physiologists need to explore physiological parameters

in ecological conditions (8, 9). On one hand, the miniaturization

of technologies over the last few decades has made it possible to

develop portable metabolic systems that can be used in free-

living environments (10, 11). However, these systems still share

some drawbacks with CPET, such as bulkiness and complexity.

On the other hand, advancements in wearable technology have

significantly impacted exercise data collection, enabling real-

time monitoring of performance parameters (6, 12). Devices

like smartwatches and biosensors can continuously track

physiological parameters during endurance exercise (13) and

generate extensive data, though much of this complex data

remains underutilized.

Physiologists confront the analysis, interpretation, and

management of big and complex datasets, regardless of the

context of physiological data exploration in endurance exercise.

Traditional statistical methods often struggle with the complexity

of handling nonlinear and multivariate data relationships

inherent in physiological data. As machine learning methods

continue to evolve, they offer novel ways to process such data,

which is essential in fields like exercise physiology. Machine

learning algorithms excel at identifying hidden patterns within

these datasets, providing new insights into how the body

responds to exercise. For instance, ML models have been used to

predict key physiological outcomes, such as VO2max, based on

non-invasive data, offering practical alternatives to traditional

testing methods (14). However, the integration of ML in exercise

physiology also presents some limitations and challenges.

This mini-review aims to discuss the types of ML methods in

exercise physiology and their strengths and limitations, providing

a comprehensive overview of the current state of the art

regarding the role of ML methods in the field of exercise

endurance physiology, with a focus on key physiological

parameters for endurance performance.
Machine learning methodologies

There are numerous and diverse ML methods, each tailored

to specific tasks and data types (15). Machine learning

methods can be classified into four categories: supervised

learning, unsupervised learning, semi-supervised learning, and

reinforcement learning.
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Supervised learning

Supervised learning methods involve training models on

labeled data. The goal is for the model to generalize to new,

unseen data. Like a student learning from a teacher, supervised

learning requires supervision during training (16). Common

supervised learning algorithms include decision trees, random

forests, Bayesian methods, support vector machines (SVMs), k-

nearest neighbors, and neural networks (17).

Supervised learning has demonstrated particular value in

exercise physiology, enabling structured prediction and

categorization of physiological data, particularly in classification

and regression tasks (18).
Unsupervised learning

Unsupervised learningmethods operate independently to identify

patterns without human guidance. They work with unlabeled data

to discover patterns, detect anomalies, identify frequently occurring

items in a dataset (association rule mining), and reduce the

number of variables in a dataset (dimensionality reduction) (19).
Semi-Supervised learning

Semi-supervised learning combines labeled and unlabeled data,

improving model accuracy when labeling data is costly or time-

consuming (20). This approach balances the robust performance of

supervised learning with the efficiency of unsupervised learning.

The labeled data helps the algorithm learn relationships between

data points, their characteristics, and their corresponding labels,

which can then be applied to classify new unlabeled data. While

labeled data generally improves algorithm performance, acquiring

it can be expensive and time-consuming.
Reinforcement learning

Reinforcement learning is an adaptive approach where algorithms

learn by interacting with their environment, optimizing actions over

time, and providing real-time feedback (21). This approach finds

primary applications in robotics and video games. While less

common in exercise physiology, this method has potential for

future applications in providing adaptive training protocols.
Applications in exercise endurance
physiology

Machine learning has significantly advanced exercise

physiology, particularly in endurance sports, by providing

innovative methods to analyze complex physiological data and

enhance endurance performance. The applications of ML

techniques in this domain can be categorized into different areas.
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VO2max prediction

Accurate estimation of VO2max is crucial for assessing aerobic

fitness and designing endurance training programs. Traditional

methods require laboratory tools, like metabolic carts, and involve

exhaustive exercise protocols that can be invasive, time-consuming,

and impractical for large-scale or field-based assessments (14). By

leveraging ML algorithms, researchers have developed models that

predict VO2max using data from submaximal or non-exercise tests,

enabling more accessible and frequent assessments.

Several supervised ML models have been developed for

VO2max prediction, including multiple linear regression, SVMs,

artificial neural networks (ANNs), and multilayer perceptrons

(15). These models utilize inputs such as heart rate (HR), age,

sex, body composition, and physical activity levels to estimate

VO2max without the need for maximal exercise testing. Among

these techniques, ANNs have often outperformed others due to

their ability to capture complex nonlinear relationships between

variables (15).

Advancements in ML approaches have further improved non-

exercise VO2max prediction algorithms. Liu et al. (22) employed a

Light Gradient Boosting Machine (LightGBM, supervised ML) on

data from U.S. national surveys, achieving significantly better

accuracy compared to existing non-exercise algorithms. Their

model reduced the error by 12%–15%, demonstrating the

potential of ML to enhance the generalizability and predictive

power of VO2max estimation methods.

Beyond VO2max prediction from non-exercise data, ML models

have been applied to predict VO2 responses during various physical

activities. Beltrame et al. (14) utilized ML analysis of wearable sensor

data to predict oxygen uptake dynamics during daily activities. Their

regression model, trained on accelerometer and HR data, achieved

high accuracy, facilitating continuous monitoring of aerobic

metabolism in free-living conditions. This approach allows for

real-time feedback and personalized exercise prescriptions based

on individual metabolic responses.

Similarly, Borror et al. (23) predicted VO2 responses during

cycling at varied intensities with ANNs. Using inputs such as

HR, cadence, power output, and cycling speed, their model

provided accurate estimations of VO2. The incorporation of

mechanical and physiological data enhanced the model’s

predictive capability, highlighting the importance of combining

diverse data sources in ML models.

Hedge et al. (24) employed a temporal convolutional neural

network to predict VO2 kinetics during heavy intensity cycling

exercise. By analyzing data from wearable sensors measuring

HR, ventilation (VE), and breathing frequency (BF), they

developed a model capable of providing real-time predictions

of VO2 dynamics. This advancement is particularly valuable

for high-performance athletes and clinical populations, where

understanding VO2 kinetics can inform training adaptations and

monitor rehabilitation progress.

Khurshid et al. (25) demonstrated the use of deep learning, a

subset of ML that utilizes neural networks with multiple layers to

model complex patterns in data, to predict VO2max from resting
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12-lead ECGs. Their model analyzed ECG features to estimate

VO2max without requiring exercise testing, achieving a

concordance correlation coefficient of 0.80. This non-invasive

and efficient method for assessing cardiovascular fitness can be

applied in large-scale screenings and in populations where

exercise testing is contraindicated.
Estimation of physiological thresholds

Physiological thresholds like ventilatory thresholds (VT1

and VT2) are critical indicators of endurance performance.

Traditionally, determining these thresholds requires exhaustive

CPET and at least two physiologists (26). Metabolic indicators of

endurance performance, as lactate thresholds (LT), need invasive

procedures like blood lactate sampling, which can be impractical in

many settings (6, 27, 28). Non-invasive alternatives by analyzing

readily obtainable physiological signals are offered with ML.

Including recurrent neural networks (RNNs) and convolutional

neural networks (CNNs), ML techniques have shown promising

results in detecting ventilatory thresholds during CPET. Zignoli

et al. (27) successfully applied these models to automatically

detect VT1 and VT2 from CPET data, achieving expert-level

performance. The models uncovered complex nonlinear

relationships and demonstrated high competence in classifying

exercise intensity levels.

Training algorithms on crowd-sourced CPET data has

outperformed experts in finding ventilatory thresholds (6, 27, 29).

However, neural network performance in detecting VT1 may

deteriorate for individuals with poor aerobic fitness, indicating a

need for more diverse training data. Incorporating these AI-assisted

methods into CPET hardware and software could provide more

objective and efficient analysis of exercise data.

Badawi et al. (30) reported success in estimating lactate

thresholds using ML models trained on non-invasive parameters

such as HR, perceived exertion, and power output. Their approach

simplifies performance testing by removing the need for blood

lactate sampling, allowing for more frequent monitoring of

training adaptations.

Cho et al. (31) employed deep learning to estimate dynamic

ventilatory thresholds from ECG data alone. By extracting

features from ECG signals, their model could determine

thresholds without additional respiratory measurements. This

method simplifies the assessment process and enables continuous

monitoring during training sessions, providing valuable feedback

for adjusting exercise intensity in real time.
Cardiovascular assessments and heart rate
variability analysis

Cardiovascular health is paramount in exercise physiology,

especially in endurance exercise (32). Machine learning has been

employed to predict cardiovascular events during exercise testing.

Shen et al. (33) compared several algorithms and found that
frontiersin.org
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Extreme Gradient Boosting (XGBoost, supervised ML) was most

effective. This application underscores how ML can improve risk

assessment and safety in cardiopulmonary exercise testing.

A crucial indicator of autonomic nervous system activity and the

overall physiological state of endurance athletes is heart rate variability

(HRV) (32). Advanced ML models, such as deep learning algorithms,

have been developed to analyze HRV data, surpassing traditional

methods. Hernández-Ruiz et al. (34) utilized support vector

machines (SVMs) to classify HRV data, achieving an accuracy of

90.3% in determining whether HRV was decreased or increased.

Ahmad et al. (35) applied artificial neural networks (ANNs) to

predict levels of physical fatigue using HRV features in time and

frequency domains. The model achieved an accuracy of 80.6% in

classifying fatigue levels. Xu et al. (36) demonstrated the use of a

deep recurrent neural network to extract pulse rate variability from

photoplethysmography signals during intense physical exercise,

effectively handling motion artifacts common in such signals.
Prediction of exercise-induced hypoxemia
a posteriori

Around 70% of endurance-trained athletes exhibit EIH (37).

A simple diagnostic criterion is a drop in SpO2 of at least 4%

between rest and maximal exercise during a CPET (7). Although

oximetry is simple to use, EIH is not always measured, despite

its known influence on specific adaptations to exercise in

normoxia and hypoxia (38).
FIGURE 1

Supervised learning workflow used to predict exercise-induced hypoxe
measurements, based on previous cardiopulmonary exercise test param
carbon dioxide production (VCO2), heart rate (HR). The machine learning
Boudry et al. (39)].
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Supervised learning models, such as those used by Boudry et al.

(39), have successfully predicted EIH based on parameters

measured during a CPET without SpO2 measurement. Figure 1

shows the supervised learning workflow used to predict EIH in

endurance-trained athletes without SpO2 measurement, using

cardiorespiratory parameters of a CPET. These included ventilation

(VE), oxygen consumption (VO2), carbon dioxide production

(VCO2), HR, and ratios like VE/VCO2, VCO2/VO2, VE/VO2, and

VO2/HR, in addition to demographic information. The data

were then analyzed, and the results refined using labeled data

indicating EIH or non-EIH (NEIH). This means that EIH or NEIH

status can be determined a posteriori using previous data. This

possibility could change the way we understand endurance

adaptations, particularly in hypoxia, improving our understanding

of exercise physiology.
Strengths of machine learning in
exercise physiology

One of the primary strengths of ML is its ability to handle

large, high-dimensional datasets. ML algorithms can uncover

complex, nonlinear relationships among variables that traditional

statistical methods may overlook (40, 41). This capability is

particularly valuable in analyzing physiological data, which often

involves multiple interconnected variables.

The capacity to process real-time data from wearable sensors is

another significant advantage. Wearable devices continuously
mia (EIH) in endurance-trained athletes, without oxygen saturation
eters (not all included): oxygen consumption (VO2), ventilation (VE),
classifies athletes as either having or not having EIH [adapted from
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collect high-frequency data on variables such as HR and VO2.

Machine learning models can analyze this data instantaneously,

providing immediate feedback that enables dynamic adjustments

to training plans. For example, Gao et al. (13) demonstrated how

real-time analysis can enhance performance monitoring.

By integrating diverse data types, machine learning facilitates

the analysis of individual responses to exercise, accounting for

the unique physiological profile of each athlete (42).
Limitations of machine learning in
exercise physiology

Machine learning in exercise physiology faces several key

challenges, notably the risk of overfitting when small or

homogeneous datasets are used, which restricts the generalizability

across diverse populations. For instance, models trained to

predict VO2max based on a specific population of elite athletes

may not generalize well to recreational athletes or individuals with

different physiological characteristics (15). Techniques like cross-

validation and regularization help mitigate this issue by improving

generalization (43). Additionally, gathering larger datasets that

encompass a wide range of physiological profiles enhances the

model’s ability to generalize.

Model transparency is another concern, as deep learning often

functions as a “black box,” obscuring the physiological basis for

predictions (44). For instance, a deep learning model might

accurately predict lactate thresholds but provides little insight

into which physiological variables are most influential (27). This

lack of transparency can reduce trust in ML applications,

especially in critical decision-making contexts. Methods from

Explainable Artificial Intelligence (XAI), can address this by

providing interpretable insights into model outputs (45).

Lastly, there is often a trade-off between model complexity and

interpretability, with simpler models, such as linear regression,
FIGURE 2

SHAP summary plot illustrating feature importance and effects in predi
cardiopulmonary exercise test (CPET) data [adapted from Rosoł et al. (51)].
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offering clearer insights but at the expense of predictive accuracy

(46). Balancing these factors is critical for effective ML

applications in this domain.
Challenges and future directions

Interpretability

The main challenge of ML in exercise physiology, as well as in

other domains, is model interpretability, which allows practitioners

to understand and trust outputs, facilitating informed decision-

making (44). To address this issue, the field of XAI offers tools

designed to enhance the transparency of ML models (47). Tools

like ELI5 (48), LIME (49) and SHAP aid users in understanding

the decision-making processes of ML models by visualizing the

importance of individual features. For instance, SHAP values

quantify the contribution of each feature to a prediction, offering

insights into the model’s workings (50). In studies using ML to

analyze physiological data, SHAP summary plots have

demonstrated the importance and effects of top features, helping

exercise physiologists validate model accuracy. Figure 2 depicts a

SHAP summary plot from a study by Rosol et al. (51)

investigating the prediction of VO2max using ML techniques

from demographic and cardiorespiratory parameters obtained

during a submaximal treadmill CPET. In this example, a high

maximal VE measured during the test up to 85% of the

maximum HR predicted by age increases the predicted VO2max.

Similarly, the 75th quantile of HR measured under the same

conditions contributes positively to the prediction but to a lesser

extent. Understanding the importance of features and their

physiological significance remains the domain of exercise

physiologists. Their expertise allows for a deeper interpretation of

the model, ensuring that predictions align with known

physiological principles. Selecting appropriate XAI tools is critical
cting maximal oxygen consumption (VO2max) based on submaximal
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for ensuring clear communication of results, particularly when

translating complex ML predictions into actionable insights for

practitioners (52). If we take the example of EIH prediction, the

next step will be to develop a tool capable of capturing CPET

results to classify athletes as EIH or NEIH.
Data quality

Enhancing data quality and availability is also essential.

Standardizing data collection protocols and compiling high-quality

datasets from diverse populations will improve ML model reliability

and generalizability (53). Collaborative data-sharing initiatives can

expand access to valuable datasets. Adopting technologies like

federated learning can address privacy concerns by enabling ML

training on decentralized data without sharing sensitive information

(54), fostering collaborative research while protecting privacy.
Ethical considerations

Another important aspect concerns ethical approaches. Ensuring

that machine learning models are developed and deployed

responsibly is crucial, particularly when dealing with sensitive

physiological data. Privacy and data protection are paramount;

researchers must adhere to ethical guidelines and regulations

such as the General Data Protection Regulation (GDPR) to

safeguard personal health information (55). Informed consent and

transparency about data usage are essential to maintain participant

trust. Additionally, ML models should be scrutinized for potential

biases that could lead to unfair outcomes or misinterpretations,

especially across different demographic groups (56). Ethical

deployment also involves accountability mechanisms to address

errors or unintended consequences. By embedding ethical

considerations into the design and implementation of ML models,

practitioners can ensure that advancements in exercise physiology

benefit all stakeholders responsibly and equitably.
Conclusion

The integration of machine learning into endurance exercise

physiology is essential to save time for athletes and physiologists

who must analyze data from both laboratory practices (e.g.,
Frontiers in Sports and Active Living 06
CPET) and field settings (e.g., connected devices). However,

exercise physiologists must strike a balance between model

complexity and the quality of available data, as simpler models

may often suffice and provide more interpretable results. By

focusing on interpretability, data quality, and ethical approaches,

the field can fully realize ML’s benefits. To ensure that ML

applications develop under optimal conditions and meet the

challenges in the field, at the service of athletes and trainers,

it is imperative to foster interdisciplinary collaboration between

exercise physiologists, data scientists, engineers, ethicists and

other stakeholders.
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