Abstract
Kupffer cells isolated from the rat liver are able to bind neuraminidase-treated rat erythrocytes via a D-galactose-specific receptor on the cell surface. Binding of desialylated erythrocytes was inhibited by several mono- and oligo-saccharides related to D-galactose, but not by unrelated sugars. However, after phosphorylation at position 6 D-glucose was as good an inhibitor as D-galactose. Two synthetic glycoproteins, D-galactosyl-albumin and, at a higher concentration, D-glucosyl-albumin, strongly inhibit cell contacts. Lectin-mediated binding of desialylated erythrocytes is dependent on the presence of Ca2'ons, but independent of ATP formation and cell motility. It is concluded that binding of desialylated erythrocytes by rat Kupffer cells is mediated by a Ca2-dependent D-galactosyl/D-glucosyl-recognition system.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aminoff D., Bruegge W. F., Bell W. C., Sarpolis K., Williams R. Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1521–1524. doi: 10.1073/pnas.74.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashwell G., Morell A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
- Baxter A., Beeley J. G. Changes in surface carbohydrate of human erythrocytes aged in vivo. Biochem Soc Trans. 1975;3(1):134–136. doi: 10.1042/bst0030134. [DOI] [PubMed] [Google Scholar]
- Durocher J. R., Payne R. C., Conrad M. E. Role of sialic acid in erythrocyte survival. Blood. 1975 Jan;45(1):11–20. [PubMed] [Google Scholar]
- Friedrich E., Sinn H., Kühnlein R., Carubelli R. Studies of erythrocyte sequestration. II. Liver homing. Virchows Arch B Cell Pathol. 1978 Dec 21;29(3):201–209. doi: 10.1007/BF02899353. [DOI] [PubMed] [Google Scholar]
- Hakomori S. Structures and organization of cell surface glycolipids dependency on cell growth and malignant transformation. Biochim Biophys Acta. 1975 Mar 20;417(1):55–89. doi: 10.1016/0304-419x(75)90008-6. [DOI] [PubMed] [Google Scholar]
- Horejsí V. Galactose oxidase. An enzyme with lectin properties. Biochim Biophys Acta. 1979 Apr 25;577(2):383–388. [PubMed] [Google Scholar]
- Janicik J. M., Schauer R., Andres K. H., von Düring M. Sequestration of neuraminidase-treated erythrocytes. Studies on its topographic, morphologic and immunologic aspects. Cell Tissue Res. 1978 Jan 17;186(2):209–226. doi: 10.1007/BF00225532. [DOI] [PubMed] [Google Scholar]
- Kaplan A., Achord D. T., Sly W. S. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci U S A. 1977 May;74(5):2026–2030. doi: 10.1073/pnas.74.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolb H. A., Adam G. Regulation of ion permeabilities of isolated rat liver cells by external calcium concentration and temperature. J Membr Biol. 1976 Mar 18;26(2-3):121–151. doi: 10.1007/BF01868870. [DOI] [PubMed] [Google Scholar]
- Kolb H., Kolb-Bachofen V. A lectin-like receptor on mammalian macrophages. Biochem Biophys Res Commun. 1978 Nov 29;85(2):678–683. doi: 10.1016/0006-291x(78)91215-9. [DOI] [PubMed] [Google Scholar]
- Kolb H., Schudt C., Kolb-Bachofen V., Kolb H. A. Cellular recognition by rat liver cells of neuraminidase-treated erythrocytes. Demonstration and analysis of cell contacts. Exp Cell Res. 1978 May;113(2):319–325. doi: 10.1016/0014-4827(78)90372-5. [DOI] [PubMed] [Google Scholar]
- Lunney J., Ashwell G. A hepatic receptor of avian origin capable of binding specifically modified glycoproteins. Proc Natl Acad Sci U S A. 1976 Feb;73(2):341–343. doi: 10.1073/pnas.73.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marikovsky Y., Lotan R., Lis H., Sharon N., Danon D. Agglutination and labeling density of soybean agglutinin on young and old human red blood cells. Exp Cell Res. 1976 May;99(2):453–456. doi: 10.1016/0014-4827(76)90607-8. [DOI] [PubMed] [Google Scholar]
- Martin W. J. Immune surveillance directed against depressed cellular and viral alloantigens. Cell Immunol. 1975 Jan;15(1):1–10. doi: 10.1016/0008-8749(75)90159-8. [DOI] [PubMed] [Google Scholar]
- Sando G. N., Neufeld E. F. Recognition and receptor-mediated uptake of a lysosomal enzyme, alpha-l-iduronidase, by cultured human fibroblasts. Cell. 1977 Nov;12(3):619–627. doi: 10.1016/0092-8674(77)90262-8. [DOI] [PubMed] [Google Scholar]
- Springer G. F. Blood-group and Forssman antigenic determinants shared between microbes and mammalian cells. Prog Allergy. 1971;15:9–77. [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Stockert R. J., Morell A. G., Scheinberg I. H. Hepatic binding protein: the protective role of its sialic acid residues. Science. 1977 Aug 12;197(4304):667–668. doi: 10.1126/science.877581. [DOI] [PubMed] [Google Scholar]
- Stowell C. P., Lee Y. C. The binding of d-glucosyl-neoglycoproteins to the hepatic asialoglycoprotein receptor. J Biol Chem. 1978 Sep 10;253(17):6107–6110. [PubMed] [Google Scholar]
- Ullrich K., Mersmann G., Fleischer M., von Figura K. Epithelial rat liver cells have cell surface receptors recognizing a phosphorylated carbohydrate on lysosomal enzymes. Hoppe Seylers Z Physiol Chem. 1978 Nov;359(11):1591–1598. doi: 10.1515/bchm2.1978.359.2.1591. [DOI] [PubMed] [Google Scholar]
- Warren L., Buck C. A., Tuszynski G. P. Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behavior. Biochim Biophys Acta. 1978 Sep 18;516(1):97–127. doi: 10.1016/0304-419x(78)90005-7. [DOI] [PubMed] [Google Scholar]

