
Article
iScience
Oropharyngeal resistome
 remains stable during
COVID-19 therapy, while fecal resistome shifts
toward a less diverse resistotype
Graphical abstract
Highlights
d Oropharyngeal resistome dynamics described for the first

time

d Three ‘‘core’’ streptococcal AR genes identified in

oropharyngeal and fecal samples

d Two distinct resistotypes identified in fecal samples

d Half of the patients underwent resistotype shifts during

COVID-19 therapy
Starikova et al., 2024, iScience 27, 111319
December 20, 2024 ª 2024 The Authors. Published by Elsevier In
https://doi.org/10.1016/j.isci.2024.111319
Authors

Elizaveta V. Starikova, Yulia S. Galeeva,

Dmitry E. Fedorov, ..., Igor V. Maev,

Vadim M. Govorun, Elena N. Ilina

Correspondence
hed.robin@gmail.com

In brief

Clinical microbiology; Evolutionary

mechanisms; Microbial genetics;

Microbiome
c.
ll

mailto:hed.robin@gmail.com
https://doi.org/10.1016/j.isci.2024.111319
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111319&domain=pdf


OPEN ACCESS

iScience ll
Article

Oropharyngeal resistome remains stable
during COVID-19 therapy, while fecal resistome
shifts toward a less diverse resistotype
Elizaveta V. Starikova,1,4,* Yulia S. Galeeva,1 Dmitry E. Fedorov,1 Elena V. Korneenko,1 Anna S. Speranskaya,1

Oksana V. Selezneva,2 Polina Y. Zoruk,2 Ksenia M. Klimina,2 Vladimir A. Veselovsky,2 Maxim D. Morozov,2

Daria I. Boldyreva,2 Evgenii I. Olekhnovich,2 Alexander I. Manolov,1 Alexander V. Pavlenko,1 Ivan E. Kozlov,1

Oleg O. Yanushevich,3 Natella I. Krikheli,3 Oleg V. Levchenko,3 Dmitry N. Andreev,3 Filipp S. Sokolov,3

Aleksey K. Fomenko,3 Mikhail K. Devkota,3 Nikolai G. Andreev,3 Andrey V. Zaborovsky,3 Sergei V. Tsaregorodtsev,3

Vladimir V. Evdokimov,3 Petr A. Bely,3 Igor V. Maev,3 Vadim M. Govorun,1 and Elena N. Ilina1
1Research Institute for Systems Biology and Medicine, Moscow 117246, Russian Federation
2Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435,

Russian Federation
3Moscow State University of Medicine and Dentistry, Moscow 127473, Russian Federation
4Lead contact

*Correspondence: hed.robin@gmail.com

https://doi.org/10.1016/j.isci.2024.111319
SUMMARY
Antimicrobial resistance poses a serious threat to global public health. The COVID-19 pandemic underscored
the need to monitor the dissemination of antimicrobial resistance genes and understand the mechanisms
driving this process. In this study, we analyzed changes to the oropharyngeal and fecal resistomes of patients
with COVID-19 undergoing therapy in a hospital setting. A targeted sequencing panel of 4,937 resistance
genes was used to comprehensively characterize resistomes. Our results demonstrated that the oropharyn-
geal resistome is homogeneous, showing low variability over time. In contrast, fecal samples clustered into
two distinct resistotypes that were only partially related to enterotypes. Approximately half of the patients
changed their resistotype within a week of therapy, with the majority transitioning to a less diverse and
ermB-dominated resistotype 2. Common macrolide resistance genes were identified in over 80% of both
oropharyngeal and fecal samples, likely originating from streptococci. Our findings suggest that the fecal re-
sistome is a dynamic system that can exist in certain ‘‘states’’ and is capable of transitioning from one state to
another. To date, this is the first study to comprehensively describe the oropharyngeal resistome and its vari-
ability over time, and one of the first studies to demonstrate the temporal dynamics of the fecal resistotypes.
INTRODUCTION

Antimicrobial resistance is a growing global health concern.

The emergence of multidrug-resistant pathogens has an

adverse effect on the efficacy of treatment for bacterial infec-

tions. The COVID-19 pandemic has underscored the impor-

tance of studying resistomes, as bacterial coinfections are

common during viral respiratory illnesses and can significantly

worsen outcomes. Microbial communities in the upper respira-

tory tract may be a potential source of such coinfecting

drug-resistant bacteria. Pathogens such as pneumococci and

staphylococci can reside in the nasal passages and the phar-

ynx without causing any symptoms.1 In some cases, these

pathogens can ascend to the lungs and cause infections in in-

dividuals with weakened immune systems. Some researchers

posit that the microbial composition of the upper respiratory

tract may also influence the course of SARS-CoV-2 infection,

with respiratory bacteria potentially interfering with viral particle

binding mechanisms.2,3
iScience 27, 111319, Decem
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At the same time, the gut microbiome was hypothesized to

serve as a reservoir for antimicrobial resistance (AR) genes,

which can be conveyed to pathogenic bacteria via horizontal

gene transfer.4 Once mobilized by transposons or plasmids,

AR genes can be spread across different bacterial species,

genera, and even families.5

Studying resistomes comes with challenges, as microbial

communities can contain thousands of different sequences

associated with antibiotic resistance. Shotgun metagenomic

sequencing has its advantages, however, AR genes only

represent a small fraction of metagenomic sequences, and the

results of the resistome analysis are highly dependent on the

sequencing depth of the samples. This makes it challenging to

access the true diversity of AR genes in a microbial community

and complicates the comparison of different samples. Moreover,

the analysis of oropharyngeal samples presents additional chal-

lenges, including the presence of a significant amount of human

DNA that cannot be easily removed. Targeted gene panel

sequencing has previously been shown to be a reliable method
ber 20, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Experiment scheme
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for specifically capturing resistomes and has shown better sensi-

tivity than shotgun metagenomic sequencing.6

In this study, we evaluated changes in the oropharyngeal and

fecal resistomes of patients undergoing COVID-19 therapy in a

hospital setting. To assess the AR gene composition of the

samples, we employed a newly designed targeted gene

sequencing panel that allowed us to capture up to 4,937 AR de-

terminants. Furthermore, we assessed the bacterial taxonomy

composition of the same samples using 16S rRNA gene

amplicon sequencing.

We deliberately did not include healthy controls as our

focus was on resistome dynamics throughout the course of the

disease. This approach allowed us to track of even small differ-

ences in gene abundance that might be otherwise overlooked

when comparing diseased and control groups. The Anna Kare-

nina principle applied to human microbiomes suggests that all

microbiomes that are considered ‘‘healthy’’ are similar in their

composition, whereas each disease-associated microbiome

has a unique pattern of ‘‘sickness.’’7 Therefore, the resistomes

of a cohort of patients diagnosed with the same disease and

sampled at two time points were analyzed in order to track the

changes that the patients’ resistomes and microbiomes under-

went during therapy.

To our knowledge, this is the first study to compare the

oropharyngeal and the fecal resistomes, and one of the first

studies to analyze gut microbiome resistotypes in a dynamic

manner.

RESULTS

Samples and patients
A total of one hundred patients with a confirmed SARS-CoV-2

infection who were undergoing therapy for the novel coronavi-

rus disease (COVID-19) were enrolled in the study (see

Figure 1 for the study design). The cohort consisted of 49

males and 51 females, with an age range between 25 and

88 years.
2 iScience 27, 111319, December 20, 2024
A total of 223 oropharyngeal and 158

fecal samples were collected from 100

patients at the Clinical Medical Center

‘‘Kuskovo’’ of the Moscow State Univer-

sity of Medicine and Dentistry (MSUMD)

between April and June 2021. The major-

ity of samples were collected at two time

points: at the time of admission to the hos-

pital and seven days after admission. For

some of the patients, it was possible to

collect samples on the fourteenth day af-

ter admission to the hospital (see Tables 1

and 2).

The standard treatment plans included

glucocorticoids, such as dexamethasone;

mucolytics, such as acetylcysteine; anti-

coagulants, such as enoxaparin sodium,
atorvastatin, or heparin; and proton pump inhibitors (PPIs),

such as omeprazole. Some patients were also administered

antibiotics, such as cephalosporins, penicillins, or macrolides.

Of the 100 patients sampled in the current study, 96 recovered,

and four died.

Targeted antimicrobial resistance gene panel design
and sequencing
We have designed a targeted antimicrobial resistance (AR)

gene sequencing panel based on 4,937 nucleotide sequences

selected from the MEGARes (v.2.0) database.8 The se-

quences correspond to different variants of 646 AR genes

that were responsible for specific resistance to 20 antibiotic

types as well as nonspecific resistance (such as multidrug

efflux pumps). A summary of the sequences corresponding

to specific antibiotic types and resistance mechanisms can

be found in Tables S2 and S3. We did not include AR genes

responsible for tetracycline and aminoglycoside resistance,

as previous researchers reported that these genes were

present in all the fecal samples analyzed.9 Our objective,

therefore, was to describe the distribution of other AR genes

in patients’ microbiomes.

The complete set of nucleotide sequences used for targeted

gene sequencing panel design can be downloaded at https://

figshare.com/articles/dataset/4937_AR_determinant_sequences_

from_MEGARes/23744580.

Based on the aforementioned sequences, a total of 5,277

probes were designed, including: 4,621 sequences covered by

a single probe, 294 sequences covered by two probes, 20

sequences covered by three probes, and 2 sequences covered

by four probes (see Table S4). High-throughput sequencing was

conducted on the MGI DNBSEQ-G400 platform (2 3 150 bp

paired-end sequencing). The median number of sequencing

reads obtained per sample was 648,161.

The sequencing reads for resistome sequencing data have

been deposited in the NCBI BioProject database under the

accession number PRJNA1005621.

https://figshare.com/articles/dataset/4937_AR_determinant_sequences_from_MEGARes/23744580
https://figshare.com/articles/dataset/4937_AR_determinant_sequences_from_MEGARes/23744580
https://figshare.com/articles/dataset/4937_AR_determinant_sequences_from_MEGARes/23744580


Table 1. Summary of samples collected from patients with

COVID-19 in a hospital setting

Oropharyngeal samples (n = 223) Fecal samples (n = 158)

Admission 7 days 14 days Admission 7 days 14 days

n = 95 n = 92 n = 36 n = 82 n = 62 n = 14

Table 2. Summary of patientswhowere sampled at different time

points

Oropharyngeal samples Fecal samples Total

patientsAdmission 7 days 14 days Admission 7 days 14 days

X – – – – – n = 95

X X – – – – n = 91

X X X – – – n = 32

– – – X – – n = 82

– – – X X – n = 51

– – – X X X n = 6

X – – X – – n = 77

X X – X X – n = 45

X X X X X X n = 5

For the full list of the patients and the collected samples, see Table S1.
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Antimicrobial resistance gene panel data processing
and analysis
Core resistome

The AR genes and AR gene sequence variants present in at least

80% of samples were considered ‘‘core.’’ We have identified

seven ‘‘core’’ genes in each biotope that are listed in Table 3.

Some of these genes were present in specific ‘‘core’’ variants

(see Tables S5 and S6). For example, a particular streptococcal

variant of the ermB macrolide resistance gene and the lnuC lin-

cosamide resistance gene were found in 91% and 87% of fecal

samples, respectively. Many other genes displayed variability,

being present in different sequence variants.

Three ‘‘core’’ genes that intersect between the two biotopes

have been identified: ermB, mefA, and msrD genes, which are

associated with macrolide resistance. Our findings revealed

the presence of ‘‘biotope-specific’’ sequence variants of the

ermB andmefA genes, which were more prevalent in either fecal

or oropharyngeal samples. These variants belonged to different

bacterial species and genera. Therefore, one mefA variant and

eight ermB variants were identified as being more prevalent in

fecal samples, while two mefA variants were observed to be

more common in oropharyngeal samples. The two oropharyn-

geal mefA sequence variants were reported in Streptococcus

genomes, according to the nt database. Additionally, one fecal

mefA sequence variant was reported in Clostridium genomes,

although none of the species belonging to Clostridium genera

were identified in fecal samples through 16S rRNA gene

sequencing analysis. The eight fecal ermB sequence variants

were identified in various bacterial genomes, including those of

Lactobacillus, Streptococcus, Enterococcus, and other genera.

All ‘‘biotope-specific’’ sequence variants with their possible

carriers are listed in Table S7.

At the same time, four genes were identified as being wide-

spread within a single biotope. The ‘‘core’’ oropharyngeal AR

genes included class A beta-lactamase cfx, class 2 ABC

transporter lsaC, ABC efflux pump gene patA, and 23S rRNA

methyltransferase ermX. The ‘‘core’’ fecal AR genes included

chloramphenicol acetyltransferase catA, streptococcal lincosa-

mide nucleotidyltransferase lnuC, streptothricin acetyltransfer-

ase sat, and 23S rRNA acetyltransferase ermF. The fecal sat

and ermF genes were found in multiple sequence variants.

Top antimicrobial resistance genes by abundance

The most abundant AR genes for each biotope are shown in

Figure 2. The macrolide resistance genes ermB and ermF

exhibited the highest total abundance in fecal samples, as calcu-

lated using both RPKM and TPM metrics. Additionally, sulfon-

amide-resistant dihydropteroate synthase sulII, chloramphenicol

acetyltransferase catA, and class A beta-lactamases ctx and cfx

demonstrated high total abundance. Similarly, beta-lactamase

cfx and macrolide resistance efflux pump genes msrD and mefA

exhibited the highest abundance in oropharyngeal samples.
Resistome diversity

Resistome diversity was evaluated based on the number of

genes that exhibited at least one sequence variant covered by

reads at 99–100% of the gene length.

The number of AR genes identified in oropharyngeal samples

ranged from 3 to 73 with a median of 15 genes and a standard

deviation of 9.5 genes (see Figure 3). The number of AR genes

identified in fecal samples ranged from 5 to 158 with a median

of 66.5 genes and a standard deviation of 34 genes. A bimodal

distribution of the number of AR genes identified in fecal

samples was observed, which is explained later in discussion

(see ‘‘Resistotypes’’ section).

Dissimilarity of fecal and oropharyngeal resistomes

To assess the dissimilarity of fecal and oropharyngeal resis-

tomes, we calculated Bray-Curtis distances between all the

samples from all the time points based on their RPKM values.

A CAP (Canonical Analysis of Principal Coordinates) plot repre-

senting these dissimilarities is shown in Figure 4. The plot shows

a clear partitioning of the oropharyngeal and fecal samples, with

the exception of a few individual samples.

Sample dissimilarity within biotopes

To ascertain whether the resistome samples obtained from the

same patient exhibit a greater degree of similarity to one another

than to any other samples, we have assigned the sample with the

lowest Bray-Curtis distance as the ‘‘closest’’ for each of the

‘‘paired’’ fecal and oropharyngeal samples. Of the 98 fecal sam-

ples, 18 (18.36%) demonstrated the highest similarity to their

paired samples. Similarly, 13 out of the 168 (7.74%) oropharyn-

geal samples showed the highest similarity to their ‘‘paired’’

samples.

Bray-Curtis distances between the paired samples and mini-

mal Bray-Curtis distances for each sample can be found in

Table S8.

Resistotypes

We attempted to identify potential resistotypes in both oropha-

ryngeal and fecal samples using Dirichlet-multinomial mixture

models. No discernible signs of clustering were identified in

oropharyngeal samples (see Figure 5A). As for the fecal samples,

all the three metrics used to evaluate model fit demonstrated a

notable decline at k = 2 (see Figure 5B), indicating that the
iScience 27, 111319, December 20, 2024 3



Table 3. Core AR genes identified in oropharyngeal and fecal samples

Fecal samples Oropharyngeal samples

Gene Antibiotic type N vara % smpb Gene Antibiotic type N var % smpb

ermB Macrolide 19 95 ermB Macrolide 18 81

mefA Macrolide 14 87 mefA Macrolide 14 99

msrD Macrolide 2 85 msrD Macrolide 2 99

catA Chloramphenicol 18 93 cfx Beta-lactam 13 97

ermF Macrolide 6 88 lsaC Lincosamide,

streptogramin

1 89

lnuC Lincosamide 1 87 patA Quinolone 1 81

sat Nucleoside 4 80 ermX Macrolide 7 80
aThe number of known sequence variants of these genes identified in samples of a certain biotope.
bThe percent of samples of a certain biotope having this gene in at least one sequence variant Also see Tables S5 and S6 for ‘‘core’’ AR gene sequence

variants, and Table S7 for biotope-specific sequence variants.
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samples could be divided into two clusters, Resistotype 1 (RT1,

n = 89 samples) and Resistotype 2 (RT2, n = 69 samples).

Resistotype RT1was characterizedwith ermB, cpxar, and sulII

as the top drivers contributing to the cluster, and resistotype

RT2 was mainly driven by ermB (see Figure 6 for a heatmap; Fig-

ure S3 for drivers; also see Figure 7 for the results of DESeq2

analysis).

The dissimilarity of resistotypes RT1 and RT2 is shown in

Figure 8. A principal coordinates analysis (PCoA) plot represent-

ing the Bray-Curtis distances of oropharyngeal samples and

fecal samples belonging to RT1 and RT2 is presented in Figure

9. It can be seen on the latter plot that some samples belonging

to fecal RT2 are more similar to oropharyngeal samples than

those of fecal RT1.

To evaluate the reproducibility of the observed resistotypes,

we have replicated the clustering 10 times, each with a different

random number seed. In all iterations, the samples split into two

clusters in the very same way, with the exception of one sample

(087_F2) that was assigned to RT1 two times out of ten, and to

RT2 eight times out of ten. To make the subsequent analysis
4 iScience 27, 111319, December 20, 2024
simpler, we assigned RT2 to that sample, keeping in mind its in-

termediate state.

It isnoteworthy that thesamplesbelonging toRT1andRT2each

showed a unimodal distribution of the numbers of AR genes iden-

tified (see Figure 10, which explains the bimodal distribution of the

numbers of AR genes found in fecal samples that were discussed

above (see ‘‘core resistome’’ subsection). RT1 showed a higher

number ofARgeneswith amedianof 81genes anda standardde-

viationof24genes,whileRT2showeda lowernumberofARgenes

with amedian of 27 genes and a standard deviation of 14.5 genes.

It should be noted here that the assignment of samples to RT1

with a higher number of AR genes or to RT2 with a lower number

of genes is unlikely to be explained by differences in sequencing

depth, as shown in Figure S4.

It is also worth mentioning that, unlike AR gene diversity

measures, bacterial alpha-diversity measures did not show a

bimodal distribution in fecal samples. However, the Chao1 index

obtained for bacterial taxonomy data was significantly higher in

samples belonging to RT1 than in those belonging to RT2 (see

Figure 19).
Figure 2. A heatmap comparing the most

abundant AR genes of the fecal (FEC) and

oropharyngeal (ORO) samples

The heatmap is based on square-root transformed

RPKM values. Fecal resistome (to the left, blue bar)

is characterized with high abundances of ermB and

ermF genes. Oropharyngeal resistome (to the right,

pink bar) is characterized with high abundances of

cfx, mefA, and msrD genes. X axis represents in-

dividual samples.



Figure 3. Distribution of the counts of antimicrobial resistance (AR)

genes identified in each biotope

Also see Figures S11 and S12 regarding the connection between the number

of AR genes and Bray-Curtis distances between the sampled time points.

Figure 5. Model fit evaluation for Dirichlet Multinomial Mixture

Models

The analysis is performed based on RPKM values of: (A) Oropharyngeal

samples (B) Fecal samples X axis displays the number of components, Y axis

displays fit metrics: Bayesian Information Criterion (BIC), Akaike Information

Criterion (AIC), and Laplace approximation. Lower metrics values indicate

better model fit.
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Interestingly, most of the samples (69%) assigned to RT1were

collected at ‘‘Day 0’’ time (upon admission to the hospital), while

most of the samples (71%) assigned to RT2were collected either

one week (‘‘Day 7’’) or two weeks (‘‘Day 14’’) after admission to

the hospital.
Figure 4. PCoA (principal coordinates analysis) plot based on Bray-

Curtis distances between fecal and oropharyngeal samples

Fecal samples are shown in dark blue. Oropharyngeal samples are shown in

red. Samples from all time points are considered. Also see Table S8 for Bray-

Curtis distances between paired samples.
Thus, at the time of admission to the hospital (‘‘Day 0’’), 61 of

82 patients who were sampled at that time point (74%) had RT1,

which is characterized by a higher number of AR genes (81–83

genes on average). That makes 38 of the 51 (74.5%) patients

that were sampled both on ‘‘Day 0’’ and ‘‘Day 7.’’ During therapy,

21 of 38 patients with RT1 (55%) underwent a transition to RT2

with a three times fewer number of AR genes (25–30 genes on

average) and the macrolide resistance gene ermB as a dominant

AR gene. 26 of the 51 patients (51%)maintained their initial resis-

totypes (of those, 17 had RT1 and 9 had RT2 at both time points).

Only 4 patients (7.8%) transitioned from RT2 to RT1. An alluvial

plot illustrating these resistotype transitions is shown in

Figure 11.

Furthermore, a comparison was conducted between the resis-

totypes observed at the time of hospital admission and their sub-

sequent transitions in relation to disease severity. Of the 61 pa-

tients that had RT1 at the time of the admission to the hospital,

30 (49%) got ‘‘severe’’ disease dynamics during the hospital

stay, and 31 (51%) got ‘‘mild’’ disease dynamics. Of the 21 pa-

tients wtho had RT2 at the time of admission to the hospital,

10 (48%) got ‘‘severe’’ dynamics, and 11 (52%) got ‘‘mild’’ dy-

namics. Of the 23 patients with the observed resistotype shift

within the first week after admission to the hospital, 10 (43%)

had ‘‘severe’’ disease dynamics, and 13 (57%) had ‘‘mild’’ dis-

ease dynamics. Of the 31 patients that have maintained their

initial resistotype 1 week after admission to the hospital, 14

(45%) had ‘‘severe’’ dynamics, and 17 (55%) had ‘‘mild’’

dynamics.
iScience 27, 111319, December 20, 2024 5



Figure 6. Heatmap showing the most abun-

dant AR genes in fecal samples in the two

identified fecal resistotypes

The heatmap is based on square-root transformed

RPKM values. Samples corresponding to re-

sistotype RT1 are shown on the left, while samples

corresponding to RT2 are shown on the right. Col-

umns correspond to samples, and samples are

grouped by Dirichlet component, with means sum-

marized as a separate wide column to the right of

each group. Darker colors correspond to higher

RPKM values. Also see Figure S3 for resistotype

drivers.
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Thus, we could not find a connection between the initial resis-

totypes or their transitions and the disease dynamics.

The complete data on the resistotypes assigned to each pa-

tient at each time point as well as resistotype transitions along

with the assigned severity group can be found in Table S9.

Antimicrobial resistance gene abundance differences

between resistotypes

A comparison of the AR gene compositions of the samples

belonging to RT1 and RT2 using DESeq2 revealed 32 genes

that were significantly overrepresented in either of the resisto-

types. A notable proportion of these geneswere beta-lactamases

and genes belonging to different efflux systems, including efflux

system regulators. Of these, 28 were overrepresented in RT1,

and 4 were overrepresented in RT2 (see Figure 13; Table S10).

Antimicrobial resistance gene abundance changes over

time

The changes in gene abundance that occurred during the course

of therapy in each biotope were assessed using the Wilcoxon

matched pairs signed rank test. For this analysis, only samples

collected on both day 0 and day 7 were used, resulting in a total

of 102 paired fecal samples from 51 patients and 168 oropharyn-

geal samples from 84 patients.

No changes were identified in the oropharyngeal resistome.

Given the small variation in the number of AR geneswe observed

for this biotope, we can suggest that the oropharyngeal resis-
6 iScience 27, 111319, December 20, 2024
tome is relatively stable and is unlikely to

undergo significant changes.

In contrast, the fecal resistome appears

to be more subject to change. We have

identified a total of 14 genes that have

significantly changed their abundance

during a week of therapy (See Table S11

for test details). These genes include

MFS efflux pump genes emrA, emrD,

and cmx genes, RND efflux pump genes

mexD, mexK, mexQ, mdtC, muxC, axy,

ceoB, and mexI genes, and beta-lacta-

mases aci, oxa, and pdc. One of the genes

with the most notable change was the oxa

gene which considerably increased in

abundance on the seventh day. Oxa

genes analyzed in this study were identi-

fied as oxa-22 and oxa-60, genes previ-

ously identified in Ralstonia.10,11 Boxplots
illustrating abundance changes for each of the genes can be

seen in Figure 12.

Co-abundant antimicrobial resistance genes

Clusters of co-abundant genes were identified within each

biotope and resistotype using Spearman’s rank correlation coef-

ficients. Overall, fecal and oropharyngeal samples showed

different patterns of co-abundant gene clusters. There were no

large co-abundant gene clusters in oropharyngeal samples

(see Figure S5), the largest cluster identified numbered four

genes (see Figure 13; Table S12). In fecal samples, there was a

large cluster consisting of 52 co-abundant genes (see Figures 14

and S6; Table S13). There were two clusters that were present in

both oropharyngeal and fecal samples. The first cluster con-

tained four genes, namely, patA and patB fluoroquinolone efflux

pumps, rlmA 23S rRNA methyltransferase, and pmrA regulator.

The latter is involved in polymyxin B resistance and was also

reported to be implicated in multidrug resistance.12 The second

cluster contained mefA and msrD ABC efflux pump genes that

are involved in macrolide resistance.13

Resistotypes 1 and 2 also showed varying patterns of

co-abundant gene clusters.We have identified a large gene clus-

ter in RT1 that was partially present in RT2 (see Figures S7 and

S8). This cluster numbered 42 and 22 genes in RT1 and RT2,

respectively, and contained mostly efflux pump genes and efflux

pump regulators. Most of the co-abundant genes present in RT2



Figure 7. Barplots illustrating log2 fold change of AR gene counts

between resistotypes 1 and 2 calculated during DESeq2 analysis

Bars oriented right (positive log2FC) correspond to AR genes overrepresented

in RT2, bars oriented left (negative log2FC) correspond to AR genes over-

represented in RT1. Genes with p-values < 0.05 are marked with ‘‘**,’’ and

species with p-values < 0.01 are marked with ‘‘***.’’ Also see Table S10 for

exact log2 fold change values, p-values and expected means.

Figure 8. PCoA (principal coordinates analysis) plot based on Bray-
Curtis between fecal samples assigned to resistotypes RT1 and RT2

RT1 samples are shown in dark blue, RT2 samples are shown in red. All time

points are considered.
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were also present in RT1, except for ermT–ermR genes encoding

23S rRNAmethyltransferases, and efrB–dfrE genes encoding an

ABC efflux pump component and a trimethoprim-resistant

dihydrofolate reductase, respectively.

16S rRNA amplicon sequencing data processing and
analysis
Enterotypes

We have employed Dirichlet-multinomial mixture modeling to

identify potential enterotypes using 16S rRNA gene amplicon

sequencing data for fecal samples. The analysis was conducted

at the genus level. Laplace approximation of the model fit that

showed the lowest value at k = 3 (see Figure 15), suggesting

that it is possible to split the samples into 3 enterotypes.

To assess the reproducibility of our findings, we conducted

10 repetitions of the clustering procedure, setting a different

random number seed for each repetition. The samples

were consistently divided into three enterotypes in seven out of

ten instances. These results substantiate the conclusion that

the optimal number of clusters is three.

The samples were divided into three enterotypes as follows:

Ent1 (n = 86 samples, hereinafter ‘‘EntBS’’), Ent2 (n = 53 sam-

ples, hereinafter ‘‘EntB’’), and Ent3 (n = 18 samples, hereinafter

‘‘EntS’’). The dissimilarity of the three enterotypes is shown on

a PCoA plot in Figure 16.

EntB was characterized by high abundances of Bacteroides,

Ruminococcus, Blautia, and Faecalibacterium. EntBS was char-

acterized by high abundances of Bacteroides, Ruminococcus,
Blautia, and Streptococcus. EntS was notably different from

the previous two and had Enterococcus and Streptococcus as

the most abundant genera (see Figure 17 for a heatmap;

Figure S9 for the top drivers).

We compared enterotypes assigned to the same patients at

different time points and found that the majority of patients

(89%) who had enterotype 2 (EntB) upon admission to the hos-

pital (‘‘Day 0’’) maintained it oneweek later (‘‘Day 7’’). Meanwhile,

approximately 30% of patients with enterotype 1 (EntBS) upon

admission changed to EntBS a week later (see Figure 18 for an

alluvial plot). However, the Chi-square test did not reveal any sig-

nificant association between the observed enterotypes and the

sampling day (p-value = 0.8303).

Furthermore, no connection could be established between the

observed enterotypes and disease severity.

Detailed data on the enterotypes assigned to each patient at

each time point as well as enterotype transitions along with the

assigned severity group can be found in Table S9.

Bacterial diversity

Bacterial diversity estimated for oropharyngeal and fecal data

using Chao1 indices and the number of observed genera is

illustrated in Figures 19 and S10. Using Kruskall-Wallis rank-

sum test, we found that diversity indices significantly differ be-

tween the three enterotypes. It can be seen in Figure 19, that

enterotype 1 (EntBS) is associated with higher bacterial diver-

sity, meanwhile enterotype 3 (EntS) is associated with lower

bacterial diversity.

Taxa abundance changes over time

We assessed changes in bacterial species and genera abun-

dances in patients during the first week of therapy using the
iScience 27, 111319, December 20, 2024 7



Figure 9. PCoA (Principal Coordinates Analysis) plot based on Bray-

Curtis between oropharyngeal samples and fecal samples assigned
to resistotypes RT1 and RT2

Oropharyngeal samples are shown in green, RT1 samples are is shown dark

blue, and RT2 samples are shown in red. All time points are considered.

Figure 11. Alluvial plot showing fecal resistotype transitions be-

tween time points ‘‘Day 0’’ and ‘‘Day 7’’

Only patients that have their samples collected in two time points are

considered. Also see Table S9 for the list of resistotypes assigned to each

patient.
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Wilcoxon matched-pairs signed-rank test. For this analysis,

we only used paired samples that were collected at the two

time points: 102 paired fecal samples collected from 51 pa-

tients and 168 oropharyngeal samples collected from 84

patients.

No changes were identified in the oropharyngeal samples at

the genus or species levels. As for fecal samples, we have

identified four species and four genera that had significant
Figure 10. Distribution of the counts of antimicrobial resistance (AR)

genes in each resistotype

Also see Figure S4 that illustrates the distribution of the number of reads in

samples belonging to each resistotype.
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differences in their abundance between the two time points

(see Table 4). The most notable change was the decrease in

the abundance of Blautia and Blautia obeum, specifically, at

the second time point. The observed increase in abundance of

fecal Ralstonia aligns with the increase in abundance of fecal

oxa-60 and oxa-22 carbapenemase genes (see ‘‘antimicrobial

resistance gene abundance changes over time’’ subsection),

although Ralstonia was not detectable in the first time point in

fecal samples and had quite low abundance at the second

time point, unlike oxa genes.

Sample dissimilarity

To determine if the samples taken from the same patient had

higher similarity to each other than to any other samples, we

calculated Bray-Curtis distances based on genus abundance

data. We have assigned the ‘‘closest’’ sample with the minimal

Bray-Curtis distance for each of the ‘‘paired’’ fecal and oropha-

ryngeal samples. Eleven out of the 98 (11.22%) fecal samples

and two out of the 168 (1.19%) oropharyngeal samples showed

the highest similarity to their ‘‘paired’’ samples (see Table S14).

Connecting antimicrobial resistance gene data with
taxonomy data
Abundance correlations

We attempted to identify potential correlations between AR gene

abundance data (RPKM values) and bacterial taxa abundance

data obtained via 16S rRNA amplicon sequencing. However,

we were not able to identify any significant (p C < 0.05) correla-

tions in oropharyngeal or fecal samples.

Bacterial composition differences between resistotypes

We assessed differences in bacterial composition between the

two resistotypes using DESeq2. Eight ASVs, three species,



Figure 12. Boxplots of square-root transformed RPKM values for 14 AR genes that were shown to significantly change their abundance

between time points in fecal biotopes

Also see Table S11 for test details.
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and 12 generawere identified as being overrepresented in RT2 in

comparison to RT1. At the same time, we have identified

12 ASVs, two species, and 16 genera that were overrepresented

in RT1 as compared to RT2 (see Figure 20 for the species level;

Figures S13 and S14 for the genus and ASV levels, correspond-

ingly). Bacterial taxa that were found to be associated with spe-

cific resistotypes are listed in Tables S15 and S16.

Bacterial diversity

Bacterial diversity was estimated for each resistotype as Chao1

indices and the number of the observed genera is illustrated in

Figures 19B and 19D. Using the Mann-Whitney U test, we found

that diversity indices differ significantly between the two resisto-

types. The measures of bacterial diversity estimated for fecal

samples as well as the results of the statistical tests.

Self-similarity and enterotypes

We have checked whether the number of AR genes and AR gene

variants at the time of admission to the hospital correlated with

Bray-Curtis distances between the first and the second time

points, as calculated based on sample genus composition

(see Figures S11 and S12). We did not find any significant

correlation.
We also compared the numbers of AR genes at the time of

admission to the hospital between the patients who did and

did not change their enterotype. We did not find a significant

difference between the two groups.

Interestingly, we found a connection between resistotypes

and enterotypes, as shown by the Chi-squared test (p-value =

0.003747). As illustrated in Figure 21, the majority of samples

(72%) assigned to enterotype 1 (EntBS) also belong to resisto-

type RT1. This aligns with the preceding observation that both

resistotype RT1 and enterotype 1 (EntBS) are associated with

higher bacterial diversity.

Antibiotic intake impact
To investigate the potential influence of antibiotic administration

on the observed alterations in fecal resistome, we stratified the

patients into two cohorts based on the presence or absence of

antibiotic therapy: the antibiotic group (n = 22) and the non-anti-

biotic group (n = 28).

We applied Wilcoxon matched-pairs signed-rank tests to

detect antibiotic resistance genes that showed significant

changes in abundance between the two sampling time points
iScience 27, 111319, December 20, 2024 9



Figure 13. Gene clusters showing high (> 0.9) correlation co-

efficients based of RPKM values in oropharyngeal samples

Pink color represents vertices that are also found in co-abundant gene clusters

of fecal samples. Also see Figure S5 for a correlation heatmap and Table S12

for exact correlation coefficients and adjusted p-values.

iScience
Article

ll
OPEN ACCESS
(‘‘Day 0’’ and ‘‘Day 7’’) within each group. In the antibiotic group,

only one gene (ceoB) displayed change with adjusted p-value of

0.041. Within the non-antibiotic group, two genes (the same

ceoB gene, and oxa beta-lactamase gene) showed possible

changes with adjusted p-values of 0.012 and 0.023.

Additionally, we conducted Mann-Whitney U tests based on

Bray-Curtis distances measured between paired samples using

both 16S genera abundance data and resistome AR gene abun-

dance data. We compared the means of these distance metrics

between the two groups. Our results did not allow us to reject the

null hypothesis for either the resistome data (p-value = 0.9766) or

the genus abundance data (p-value = 0.3205).

This suggests that antibiotic intake does not appear to

affect the similarity of paired samples within patients. Finally, a

Chi-square test was conducted to compare the frequencies of

resistome shifts in each group (see Figure 22 for alluvial plots).

We could not reject the null hypothesis (p-value = 0.4355),

suggesting that the patients might exhibit similar patterns of

resistome changes during COVID-19 therapy regardless of

whether or not they were taking antibiotics.

DISCUSSION

In our research, we assessed the resistomes andmicrobiomes of

the gut and oropharynx in patients diagnosed with COVID-19.

While the majority of studies examining the total resistomes of

microbial communities within the human body rely on shotgun

metagenomics sequencing data,9,14,15 this study employs a

more sensitive approach to specifically capture AR gene se-
10 iScience 27, 111319, December 20, 2024
quences. We have designed a targeted sequencing panel that

allows for the analysis of 4,937 selected antibiotic resistance

determinants simultaneously, and we supplemented the AR

gene targeted sequencing data with 16S rRNA gene amplicon

sequencing data. This targeted and sensitive approach allowed

us to specifically assess the two sets of the sequences of our

interest.

Using this method, we investigated the changes in the

fecal and oropharyngeal resistomes of patients diagnosed with

COVID-19 over the course of therapy and explored their connec-

tions with the taxonomic composition of the samples. To our

knowledge, this is one of the first descriptions of the oropharyn-

geal resistome, and the first study to assess oropharyngeal

resistome dynamics over time. We identified 7 AR genes that

are most widespread in the oropharynx as well as 7 genes that

are most widespread in the gut. Three of those genes, namely,

ermB, msrD, and mefA, were present in more than 80% of

both oropharyngeal and fecal samples.

We have identified three ‘‘core’’ genes that were present in

most of the oropharyngeal and fecal samples at the same time,

namely, 23S rRNA methyltransferase ermB, and efflux system

genes msrD and mefA. These genes belong to multiple

hosts, but in our data, all the three genes have sequence variants

that are found in streptococci. Streptococci, such as Strepto-

coccus salivarius, are common in airways,16 but are also gut com-

mensals.17 These bacteria have been shown to increase their

abundance in gut microbiomes in patients receiving

proton pump inhibitors (PPIs) such as omeprazole.18 PPIs lower

the barrier function of the stomach, leading to the increased sur-

vival of the oropharyngeal bacteria in the intestine.19 Since the pa-

tients from the current study received omeprazole as a part of

their therapy scheme, and streptococci were highly abundant in

both oropharyngeal and fecal samples, it is possible to suggest

that some sequence variants of the fecal ermB, msrD and mefA

might have originated from the oropharyngeal streptococci.

At the same time, we have found four ‘‘core’’ AR genes that

were only widespread in the oropharynx, namely, class A beta-

lactamase cfx, class 2 ABC transporter lsaC, patA ABC efflux

pump gene, and 23S rRNA methyltransferase ermX. The cfx

gene is found in several bacterial genera, mainly in Bacteroides

and Prevotella, which were both identified in oropharyngeal

samples.20,21 It is considered mobilizable due to its association

with the conjugative transposon Tn455521 and possibly with

other mobile elements.22 This gene was found in 97% of the

oropharyngeal samples, and we can assume that its wide

dissemination in the oropharynx might be a result of the activity

of the mobile elements. The lsaC gene, which is associated with

lincosamide and streptogramin A resistance, has only been re-

ported in group B streptococci, carried by a family of integrative

and mobilizable elements (IMEs).23 The patA is part of a strepto-

coccal ABC efflux system that is associated with fluoroquinolone

resistance.24 The ermX gene determines resistance to macro-

lides in Corynebacterium, which is commonly found in the air-

ways.25 ErmX and cfx genes (but not patA and lsaC genes)

were previously reported as a part of the ‘‘core’’ resistome of

the airways.26 Thus, the ‘‘core’’ resistome of the oropharynx

can most likely be explained by the high prevalence of certain

commensal bacteria in the airways.



Figure 14. Gene clusters showing high (>

0.9) correlation coefficients based of RPKM

values in fecal samples

Pink color represents vertices that are also found in

co-abundant gene clusters of oropharyngeal

samples. Also see Figure S6 for a correlation

heatmap, Figures S7 and S8 for co-abundance

graphs for each resistotype, and Table S13 for

exact correlation coefficients and adjusted p-

values.
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Analyzing the oropharyngeal resistome, we have noted its rela-

tively low dispersion.Wewere not able to identify any resistotypes

in the oropharyngeal samples, nor were we able to identify signif-
Figure 15. The results of DMM (Dirichlet Multinomial Mixtures)

clustering of genus abundance data obtained with 16s rRNA gene
amplicon sequencing

iSc
icant changes in certain AR gene abun-

dances through therapy. However, the

oropharyngeal resistome was not stable

over time, as the samples taken from the

same individuals at different time points

were rarely similar, with an overall self-sim-

ilarity ratio of 8%. By comparison, the

oropharyngeal microbiome self-similarity

ratio was even lower (1%). These results

suggest that the oropharyngeal resistomes

and microbiomes are changing systems,

especially under conditions of high drug

load. Given that they are characterized by

relatively lowvariance,asdescribedabove,

we can suggest that the changes in the

oropharyngeal resistomes and micro-

biomesof thesame individualsoccurwithin

a narrow range of possible compositions.

Interestingly, the fecal resistome

showed a relatively higher self-similarity
ratio than that of the oropharyngeal resistome (18% vs. 8%)

andmuch higher variance at the same time. The self-similarity ra-

tio of the fecal microbiome was 11%. We also found that the

changes that the fecal microbiomes underwent during one

week of therapy were not likely to be influenced by the initial

number of AR genes in the microbial community. Overall, both

resistome and microbiome samples from both biotopes showed

low self-similarity. Thismight be partly explained by a custom se-

lection of reference AR genes, where we excluded the most

widespread sequences, thus, we were more likely to detect

the variation.

One of the findings of our study is the identification of the

two distinct resistotypes in the fecal samples that were appar-

ently different in their AR gene number and composition. In our

study, one of the two resistotypes had three times fewer AR

genes than the other and was strongly dominated by a macro-

lide resistance 23S rRNA methyltransferase ermB gene. This

drastic difference in the diversity of AR genes between resis-

totypes could be partly, but not entirely explained by the dif-

ference in bacterial alpha diversity of the samples. Having

compared the AR gene compositions of the two sets of sam-

ples belonging to resistotypes 1 and 2, we found that RT2

lacks many AR genes that are present in RT1, but at the

same time, it shows a relatively higher abundance of lsaC, a

streptococcal MLS resistance gene that is a part of the

‘‘core’’ resistome of the oropharynx, as we showed above
ience 27, 111319, December 20, 2024 11



Figure 16. CAP (canonical analysis of principal coordinates) plot

representing the Bray-Curtis dissimilarities between samples

belonging to the three enterotypes

Bray-Curtis distances are calculated based on 16S genera abundance data.

Enterotype Ent1 (EntBS) is shown in green, enterotype Ent2 (EntB) is shown in

blue, and enterotype Ent3 (EntS) is shown in red. Also see Table S14 for Bray-

Curtis distances between the paired samples.
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(see Figure 13). Three other genes overrepresented in RT2

were mdtJ and mvrC small multidrug resistance (SMR) efflux

pump genes, and gadX gene encoding a transcriptional regu-

lator for RND efflux systems. All the three genes were reported

in Escherichia/Shigella.27–29
Figure 17. A heatmap shows the most abundant AR genes in fecal sam

The heatmap is based on square-root transformed RPKM values. Columns cor

means summarized as a separate wide column to the right of each group. Darke

drivers.
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Having analyzed the co-abundance AR gene clusters of resis-

totypes 1 and 2, we noted a large cluster of co-abundant efflux

pump genes in RT1 that was only partly present in RT2 (see

Figures S12 and S13). Two of these genes were gadX and

mdtJ, which were overrepresented in RT2, while none of these

genes were overrepresented in RT1. Interestingly, core resis-

tome genes mefA and msrD genes were highly correlated in

their abundance in resistotype RT1, but not in RT2. These

two genes are generally found in one operon associated with

macrolide resistancee.13 This might indicate that at least one

of the two genes is possibly present in a different genomic

context in RT2.

We have also compared the taxonomic composition of the

samples belonging to the two resistotypes. Of the 8 species

overrepresented in RT2, we have noted Leuconostoc mesenter-

oides, Blautia hansenii, Escherichia coli, and Streptococcus

gallolyticus (see Figure 20). The presence of ermB gene

associated with mobile genetic elements such as plasmids and

Tn916-like conjugative transposons was shown for all of the

four species.30–33 Of those, L. mesenteroides was able to trans-

fer ermB-containing conjugative elements to Enterococcus

faecalis both in laboratory conditions and on a food matrix.30

The increased abundance of E.coli in resistotype RT2 may be

linked to the increased abundances of mvrC, mdtJ, and gadX

efflux system genes in the same resistotype that was discussed

above. Some strains of the generaWeissella and Eggerthella that

were overrepresented in RT2 (see Figure S13were also shown to

contain ermB genes.34,35 Given these results, we can suggest

that ermB gene found in resistotype RT2 might possibly exist

in a different set of genomic contexts than in RT1.

Our findings align with one of the previous studies. In a recent

article, Lee et al. have identified two resistotypes as a part of the

population-level bioinformatics study assessing the impact of

per capita antibiotic usage rate on human gut resistomes across

ten countries.36 Although we cannot compare our results directly

due to the different methods used and the different sets of the
ples in the three identified fecal enterotypes

respond to samples, and samples are grouped by Dirichlet component, with

r colors correspond to higher RPKM values. Also see Figure S9 for enterotype



Figure 18. Alluvial plot shows fecal enterotype transitions within a

week of therapy

Only patients that have their samples collected in two time points are

considered. Also, see Table S9 for the list of enterotypes assigned to each

patient.
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AR genes analyzed, we find it worth noting that the two resisto-

types identified differed in overall AR gene abundance. Interest-

ingly, the researchers found an association between enterotypes

and resistotypes, although it was weak. Nevertheless, the re-

searchers suggested that resistotypes are independent of the

enterotypes.

In an earlier study, other researchers have identified six resis-

totypes in human gut metagenomes based onMEGAHit shotgun
metagenomic samples and linked them to the six identified

enterotypes.37

In our data, we were able to identify three enterotypes,

with two of them being dominated by Bacteroides, Blautia

and Ruminococcus and the third being dominated by entero-

cocci and streptococci. Bacteroides-dominated enterotypes

were reproducibly reported in earlier microbiome studies.38,39

However, Streptococcus- or Enterococcus-dominated entero-

types have never been reported in previous research. Due

to the small number of samples in entS (n = 18) and its hetero-

geneity (see Figure 16) as well as the nature of our samples,

we can assume that it might not be a true enterotype but

an abnormal pattern associated with low bacterial diversity

and decreased barrier function of the digestive system, result-

ing in the enrichment of the oropharyngeal streptococci. We

did not identify any Prevotella-dominated enterotypes in our

data, and the overall abundance of Prevotella was very low.

In our research, we have also found a connection between

resistotypes and enterotypes, as shown by the Chi-squared

test. Figure 21 shows a visible link between one of the identified

enterotypes (EntBS) and a certain resistotype, namely, RT1, with

most of the EntBS samples (72%) also belonging to this resisto-

type. However, since we could not identify any other noticeable

linkage between resistotypes and enterotypes, we can specu-

late that resistotypes and enterotypes only have a limited

connection and do not correlate strongly.

Another key finding of our study is the observed resistotype

shifts that the patients underwent through drug therapy. This is

one of the first studies assessing resistotype dynamics over time.

We discovered that approximately half of the patients

changed their resistotype within the first week of therapy in a

hospital setting. Most of these patients shifted from RT1 to

RT2, with a lower number of AR genes and a marked prevalence

of ermB gene. In other words, their gut microbiomes had lost

about two-thirds of the AR genes present at the time of the
Figure 19. Bacterial diversity metrics esti-

mated for the fecal samples

(A) Species diversity estimated as Chao1 index,

samples grouped by enterotypes.

(B) Species diversity estimated as Chao1 index,

samples grouped by resistotypes.

(C) Number of genera observed, samples grouped

by entrotypes.

(D) Number of genera observed, samples grouped

by resistotypes It can be seen that resistotype

RT1 is associated with higher bacterial diversity,

meanwhile resistotype RT2 is associated with

lower bacterial diversity Also see Figure S10 for

bacterial diversity metrics estimated for the

oropharyngeal samples.
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Table 4. Bacterial taxa that differed significantly in abundance between ‘‘Day 0’’ and ‘‘Day 7’’ time points in fecal samples

Genus Adjusted p-value Median in point 1 Median in point 2

Blautia 0.001325102019 3191 441.5

UCG-002a 0.003764494301 246.5 1022.5

Ralstonia 0.000005335958 0 30

Senegalimassilia 0.001372494724 40 0.5

Species Adjusted p-value Median in point 1 Median in point 2

Blautia obeum 0.000956556383 1064 172

Bifidobacterium adolescentis 0.006685909590 5 0

Dorea formicigenerans 0.007151366839 103.5 10.5

Ralstonia insidiosa 0.000005561421 0 30

The differences were identified using the Wilcoxon matched-pairs signed-rank test. Assigned taxonomy is provided according to the SILVA database

(v138).
auncultured bacteria currently assigned to Oscillospiraceae family.
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admission to the hospital. This might be explained by the deple-

tion of the hosts of these genes that occurred during the course

of the disease. Given the multihost nature of the ermB gene, we

can assume that the resistotype shift from RT1 to RT2 may as

well be accompanied by the change in the host range of the

ermB gene.

Similarly, several patients have undergone enterotype shifts

(see Figure 18), transiting from enterotype 1 (EntBS) to entero-

type 2 (EntB). However, we could not find any significant associ-
Figure 20. Barplots illustrating log2 fold change of species counts

between resistotypes 1 and 2 calculated during DESeq2 analysis

Bars oriented right (positive log2FC) correspond to species overrepresented

in RT2, bars oriented left (negative log2FC) correspond to species over-

represented in RT1. Species with p-values C < 0.05 are marked with ‘‘**,’’ and

species with p-values C < 0.01 are marked with ‘‘***.’’ For details, see

Table S16. For genus and ASV levels, see Figures S13 and S14 and Table S15.
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ation between the observed enterotypes composition and the

sampling day. These results suggest that the fecal resistome

has undergone more considerable changes than the fecal

microbiome.

When comparing the resistome and microbiome data with the

patients’ metadata, we were unable to find a connection be-

tween the observed resistotype and enterotype changes and

the severity of disease course, possibly due to the limitations

of our data, as COVID-19 often comes with comorbidities that

might as well affect the gut microbiome. Studies involving

different patient cohorts may provide insight into the potential

link between COVID-19 and the fecal resistome.

Interestingly, we could not establish a connection between the

observed resistotype shifts and antibiotic intake during therapy

(see Figure 22). This suggests a different driver for the resistome

changes reported in this study, possibly connected to an overall

drug load during hospital therapy or particular non-antibiotic

drugs used in therapy regimens. One of the possible drivers

contributing to the resistome changes might be proton pump
Figure 21. Barplots show how the three identified enterotypes

correspond to resistotypes

Y axis shows (A) the ratio of the samples assigned to certain resistotypeswithin

each enterotype (B) the ratio of samples assigned to certain enterotypes within

each resistotype.



Figure 22. Alluvial plot show fecal resistotype transitions within a

week of therapy in antibiotics and no-antibiotics groups

Also see Table S9 for the list of resistotypes and antibiotics intake groups

assigned to each patient.
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inhibitors, which could promote the transition of the drug-resis-

tant oropharyngeal microbes to the gut.18 This hypothesis is

consistent with the fact that specific streptococcal sequence

variants of several AR genes were found in both oropharyngeal

and fecal samples. However, other factors that could influence

resistome changes during hospital therapy should be consid-

ered in future studies.

In conclusion, given the distinct resistotypes identified and the

significant variance observed, we can infer that fecal resistomes

are dynamic systems, but the changes observed in our study

apparently occur within certain ranges of possible combinations,

or states. While these changes are in all likelihood influenced by

the taxonomical composition of the samples, resistotypes only

have a limited connection with enterotypes, possibly due to the

fact that many AR genes are present on mobile genetic elements

that can be shared between different bacterial hosts. So, we can

suggest that resistome is a part of amicrobiome that can have its

own properties that are only partly dependent on the taxonomic

composition of themicrobiome.We can also assume that micro-

biome and resistome can change differently under certain cir-

cumstances. We have observed resistome changes that we

could not fully explain by the taxonomic composition of the sam-

ples. The underlying mechanisms of such changes and the

triggers that provoke it have yet to be determined.
Limitations of the study
Our study claims to characterize the resistomes of the oropha-

ryngeal and fecal microbiomes. However, we only focused on

4,937 antibiotics resistance determinant sequences that were

selected from the MEGARes 3.0 database. We did not assess

sequences linked to tetracycline and aminoglycoside resistance

because of their wide dissemination in fecal samples. We also

realize that antibiotics resistance gene databases such as

MEGARes might be biased toward well-studied pathogenic

bacteria and model organisms such as E. coli and contain very

few AR gene sequences belonging to gut commensals. Some

studies suggest that AR genes belonging to gut commensals

show low identity to known AR genes found in AR gene data-

bases, so, most likely, they were not captured with our AR
gene panel. So, the set of AR genes present in our analysis is

far from being exhaustive. We believe that future researchers

will address this issue and include a comprehensive set of AR

gene sequences belonging to commensal bacteria in AR gene

databases. We also did not consider such resistance mecha-

nisms as antibiotic’s target gene point mutations. Another limita-

tion is that we only track resistome changes over a short period

of time (1–2 weeks). Although we were able to detect resistotype

shifts, we cannot tell if these shifts are permanent or temporary

just based on the given data.
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Quimioter. 18, 236–242.

26. Mac Aogain, M., Lau, K.J., Cai, Z., Kumar Narayana, J., Purbojati, R.W.,

Drautz-Moses, D.I., Gaultier, N.E., Jaggi, T.K., Tiew, P.Y., Ong, T.H.,

et al. (2020). Metagenomics reveals a core macrolide resistome related

to microbiota in chronic respiratory disease. Am. J. Respir. Crit. Care

Med. 202, 433–447. https://doi.org/10.1164/rccm.201911-2202OC.

27. Nishino, K., Senda, Y., and Yamaguchi, A. (2008). The AraC-family regu-

latorGadX enhances multidrug resistance in Escherichia coli by activating

expression of mdtEF multidrug efflux genes. J. Infect. Chemother. 14,

23–29. https://doi.org/10.1007/s10156-007-0575-Y.

28. Morimyo, M., Hongo, E., Hama-Inaba, H., and Machida, I. (1992). Cloning

and characterization of themvrC gene of Escherichia coli k-12 which con-

fers resistance against methyl viologen toxicity. Nucleic Acids Res. 20,

3159–3165. https://doi.org/10.1093/nar/20.12.3159.

29. Bay, D.C., Stremick, C.A., Slipski, C.J., and Turner, R.J. (2017). Secondary

multidrug efflux pump mutants alter Escherichia coli biofilm growth in the

presence of cationic antimicrobial compounds. Res. Microbiol. 168,

208–221. https://doi.org/10.1016/j.resmic.2016.11.003.
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SILVA database https://www.arb-silva.de/ version 138

Software and algorithms

Trimmomatic https://github.com/usadellab/Trimmomatic version 0.39–2

bowtie2 https://github.com/BenLangmead/bowtie2 version 2.4.2

R https://www.rproject.org/ version 4.2.2

Snakemake workflow for creating

resistome profiles used in this study

Current study https://github.com/bobeobibo/AR-panel-snake

samtools http://www.htslib.org version 1.6

DirichletMultinomial R package https://github.com/mtmorgan/

DirichletMultinomial

version 1.40.0

Custom R code and used in this study Current study https://figshare.com/articles/software/Targeted_

AR_gene_panel_sequencing_data_analysis_

R_markdown_/25250899

vegan R package https://github.com/vegandevs/vegan version 2.6–4

DESeq2 R package https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

version 1.38.3
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patients details
The study was conducted as part of a project evaluating the microbiomes of COVID-19 patients40 The study included one hundred

COVID-19 patients with a confirmed SARS-CoV-2 infection that were admitted to the Clinical Medical Center ‘‘Kuskovo’’ of the

Moscow State University of Medicine and Dentistry (MSUMD) from April to June 2021. The study population included patients

aged 18 or older. The cohort consisted of 49 males and 51 females, with an age range between 25 and 88 years. All patients enrolled

in the study gave informed consent to participate. The standard treatment regimens included glucocorticoids, mucolytics, anticoag-

ulants, non-steroidal anti-inflammatory drugs and proton pump inhibitors. The patients were divided into two groups according to

the severity of their disease course: ‘‘severe’’ and ‘‘mild’’. ‘‘Mild’’ patients had stable disease dynamics, while ‘‘severe’’ patients

had episodes of negative dynamics after admission to the hospital, such as.

(1) the progression of pneumonia (as detected with computed tomography)

(2) development of the disease complications

(3) transfer to the intensive care unit

(4) clinical conditions requiring enhances pharmacotherapy and interventional treatment, such as additional oxygen insufflation

and mechanical ventilation

(5) fatal outcome

The severity groups assigned to each patient can be seen in Table S9.

The study was approved by the Independent Interdisciplinary Ethics Committee on Ethical Review for Clinical Studies (http://

ethicuni.ru/about.php?l=0, protocol No. 01–21 from 28.01.2021). All the patients who participated in this study provided informed

consent to participate. All the experiments were performed in accordance with the relevant guidelines and regulations.
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METHOD DETAILS

The overall experiment scheme can be found in Figure 1.

Sample collection
The samples from 100 COVID-19 patients with a confirmed SARS-CoV-2 infection were collected at the Clinical Medical Center

‘‘Kuskovo’’ of the Moscow State University of Medicine and Dentistry (MSUMD) between April and June 2021.

Oropharyngeal samples were collected with cotton swabs from the affected areas of the oropharynx, including the tonsils, the

arms of the soft palate, the uvula and the posterior pharyngeal wall. Fecal samples were collected in sterile containers with a volume

of 5–15 mL. All samples were stored at �70� C.
Both oropharyngeal and fecal samples were collected at two time points: upon admission to the hospital and 7 days later. Some

patients also had samples collected 14 days after admission.

DNA extraction
The isolation of nucleic acids was conducted using theMagMAXMicrobiome Ultra Nucleic Acid Isolation Kit, with bead tubes and the

KingFisherPurification System (Thermo Fisher Scientific, USA), in accordance with the instructions provided by the manufacturer.

The DNA was subsequently quantified on Qubit 4 fluorometer by Quant-iT dsDNA BR Assay Kit (Thermo Fisher Scientific, USA).

Targeted AR gene panel design
A panel of antibiotic resistance genes potentially found in the human microbiome was constructed using the open GA database

MEGARes 2.0.8 The panel size was 4,937 regions with a total length of 4,803,602 base pairs. All target sequences were bacterial

genes and did not overlap with human genes. The panel of probes for target antibiotics resistance (AR) genes was synthesized by

Roche Diagnostics (Madison, USA) based on the target sequences we provided. Panel validation and testing were also conducted

by Roche Diagnostics.

Targeted AR gene panel sequencing
One hundred nanograms of the extracted DNA was used for library preparation using the KAPA HyperPlus Kit (Roche, Switzerland)

and KAPAHyperExploreMAX (Roche, Switzerland) according to themanufacturer’s instructions. The protocol included the following

steps: library preparation, hybridization, bead capture, washing, amplification enrichment QC, sequencing, and pre- and post-cap-

ture multiplexing. The library underwent a final cleanup using the KAPA HyperPure Beads (Roche, Switzerland) after which the library

size distribution and quality were assessed using a high sensitivity DNA chip (Agilent Technologies). Libraries were subsequently

quantified by Quant-iT DNA Assay Kit, High Sensitivity (Thermo Fisher Scientific). High-throughput sequencing of the obtained

libraries was performed on MGI DNBSEQ-G400 platform (2 3 150 bp paired-end sequencing) using MGIEasy Universal Library

Conversion Kit (App-A), High-throughput Sequencing Primer Kit-C (App-C), DNBSEQ-G400RS High-throughput Rapid Sequencing

Kit (FCS PE100) and DNBSEQ-G400RS Rapid Sequencing Flow Cell (FCS) according to the manufacturer’s protocol.

The resulting dataset was deposited in NCBI under the BioProject accession number PRJNA1005621.

16S rRNA gene sequencing
Library preparation was performed according to the 16SMetagenomic Sequencing Library Preparation Illumina protocol. Briefly, the

extracted DNA was amplified using the 341F and 801R primers, which are complementary to the V3-V4 region of the 16S rRNA gene

and contain 50-Illumina adapter sequences. During the next step, individual amplicons were PCR–indexed and pooled. DNA libraries

were sequenced with the MiSeq instrument (Illumina, USA) using the MiSeq reagent kit v3 (Illumina, USA).

16S rRNA amplicon sequencing data
Sequencing reads for 16S rRNA gene amplicons have been deposited in NCBI BioProject under project name PRJNA989180.

QUANTIFICATION AND STATISTICAL ANALYSIS

Targeted AR gene panel data processing and analysis
The full scheme of AR gene panel bioinformatics data processing and analysis is shown in Figure S1.

The remaining adapters were excised, and quality filtering of the reads was conducted using Trimmomatic (v.0.39–2)41 with the

following parameters: SLIDINGWINDOW:10:20, LEADING:20, TRAILING:20, MINLEN:75.

To eliminate potential contaminant sequences and samples with a low abundance of target genes, the reads were aligned to the

human genome assembly GTCh38 (hg38) using bowtie2 (v2.4.2) with the default parameters, i.e., end-to-end alignment, ‘‘sensitive’’

mode, and ambivalent mapping allowed. Reads that mapped to hg38 were excluded from subsequent analysis. In oropharyngeal

samples, the proportion of human sequences ranged from 0.8% to 92.4%, with a median value of 14.3%. In fecal samples, the

proportion of human sequences ranged from 0% to 11.5%, with a median value of 0.4%. Ten oropharyngeal samples containing

more than 70% of human sequences were excluded from subsequent analysis.
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The remaining reads that did not map to the human genome were then mapped to the reference database of 4,937 antibiotic

resistance (AR) determinants. Ambivalent reads that mapped simultaneously to sequences of different AR gene groups

(e.g., beta-lactamases and chloramphenicol acetyltransferases) were removed. Ambivalent reads that simultaneously mapped to

different AR genes (e.g., ermF and ermB) were also excluded to avoid confusion.

Non-ambivalent mappings of sequencing reads to the 4,937 target AR determinant sequences were employed for subsequent

analysis.

Upon evaluating AR gene coverage values, one fecal sample was identified as exhibiting inadequate AR gene coverage width,

despite satisfactory AR gene read mapping counts. This sample was thus excluded from further analysis.

For each target AR gene sequence, the coverage width was calculated as the proportion of nucleotides covered with at least one

read to the total sequence length. Coverage width was set at a 99% threshold. A gene was considered fully covered and present in a

given sample if at least one of its sequence variants was covered with reads at 99% of its width. Only fully covered sequences were

used in identifying the ‘‘core resistome’’. Oropharyngeal and fecal samples were analyzed separately.

Genes and sequence variants of genes identified in at least 80% of samples in each biotope were considered to constitute the

‘‘core’’ set of genes. We have also identified ‘‘biotope-specific’’ variants of ‘‘core’’ genes that can be considered ‘‘core’’ in both

biotopes. These are defined as specific sequence variants that occur in more than 50% of samples in one biotope and are present

in less than 50% of samples in the other. Differences between the frequencies of the core sequence variants of AR genes present in

oropharyngeal and fecal samples were assessed using the Chi-square test, and p-values were adjusted using the Bonferroni

correction.

Diversity scores for each sample were determined by assessing the number of genes that had at least one sequence variant

fully covered (R99 % coverage width) with reads. Diversity scores were then compared between the different datasets using the

Mann-Whitney U test.

For each of the 646 genes presented as 4,937 sequence variants in the reference database, coverage depth was calculated using

modified reads per kilobase permillionmapped reads (RPKM) and transcripts per millionmapped reads (TPM)metrics. RPKM values

were calculated according to the following formula:

RPKMgene =
reads mapped to all sequence variants

total reads in sample$median sequence variant lengh of a gene
(Equation 1)

In this calculation, the total number of reads in a sample is counted in millions, while themedian sequence variant length is counted in

kilobases.

Similarly, TPM values were calculated as follows:

TPMgene = 106$

reads mapped to all sequence variants

median sequence variant length of a gene
P

reads mapped to all sequence variants

median sequence variant length of a gene

(Equation 2)

These metrics are similar to those used in RNA-seq data processing, with the exception that high variability of target genes was

considered and the sum of reads mapped to each sequence variant of a target gene was divided by the median length of sequence

variants reported for each target gene.

In the subsequent analysis, RPKM values were predominantly employed, with the exception of the analysis of gene abundance

changes over time, where both RPKM and TPM values were used.

To evaluate the dissimilarity of fecal and oropharyngeal resistomes, we calculated Bray-Curtis distances based on RPKM values

obtained for each gene and each sample. Principal coordinates analysis (PCoA) was conducted based on Bray-Curtis dissimilarities

using the capscale method from the vegan R package (version 2.6–4).

Additionally, Bray-Curtis distances were calculated for each biotope within the patient cohort for whom samples were collected at

both time points. For each sample, the ‘‘closest’’ sample with the minimal Bray-Curtis distance was assigned. The proportion of

samples within each biotope where the sample with the minimal Bray-Curtis distance was the paired sample (i.e., a sample taken

from the same patient and the same biotope at a different time point) was then calculated.

A Dirichlet-multinomial mixture model was employed to perform clustering based on RPKM values of all samples. Clustering was

performed with the DirichletMultinomial R package (version 1.40.0).

To identify potential resistotypes, we have performed DMM clustering within each biotope. Model fit was evaluated using Laplace,

BIC andAICmetrics. The optimal number of clusters was determined based on the number of Dirichlet components corresponding to

lower values of all the three metrics.

The AR gene compositions of the samples belonging to different resistotypes were compared using the DESeq2 package in R

based on the mapped read counts for each of the genes. The sums of reads that mapped to all sequence variants of each gene

were utilized. Genes that accounted for more than 30% of samples with nonzero values were included in the analyses. The results

were filtered by p-value, with only significant entries with an adjusted p-value C < 0.05 being used for further analysis.
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To detect differences in AR gene abundance between different time points, we used samples that were collected at two time

points: at the time of the admission, and one week later. The Wilcoxon matched-pairs signed-rank test was performed using

RPKM and TPM values. To compensate for multiple comparisons, the Bonferroni correction was employed. A gene was deemed

to be significantly overrepresented at either time point if it was identified using both RPKM and TPM metrics with adjusted p-values

C < 0.05.

Within each biotope and resistotype, Spearman’s rank correlation coefficients were calculated for each pair of genes based on

their RPKM values. Correlation coefficients were only calculated for those genes that had non-zero RPKM values in more than

50% of the samples. P-values were adjusted using the Bonferroni correction. Genes were considered co-abundant, if their correla-

tion coefficient was greater than 0.9 and adjusted p-values were less than 0.05. Adjacency matrices of co-abundant genes were then

calculated.

16s rRNA gene data processing and analysis
The full scheme of the bioinformatics processing and analysis of the 16S rRNA gene amplicon sequencing data is shown in Figure S2.

The remaining adapters were removed using Trimmomatic v0.36,41 and quality filtering of the reads was performed using the

filterAndTrim function from the DADA2 package.42

Denoising, merging and chimera removal were carried out with the DADA2 v1.24.0 software with the following parameters:

learnErrors: nbases=1e+09, randomize=TRUE, MAX_CONSIST=2, dada: pool = TRUE, mergePairs: minOverlap=18, removeBimer-

aDenovo: allowOneOff=FALSE, method=‘‘consensus’’.

Taxonomic annotation was carried out against the SILVA v138 reference database.43

Potential contaminant sequences were removed with the ‘‘frequency’’ method using the package decontam44 version 1.10.0.

Statistical analysis of the decontaminated 16S rRNA gene data was performed in R using vegan and phyloseq45 packages.

To identify potential enterotypes, DMM clustering was performed as previously described (see "targeted AR gene panel data pro-

cessing and analysis" subsection) using genus-level abundance data.

The bacterial composition of the samples belonging to the different enterotypes was compared at the genus, species and amplicon

sequence variant (ASV) levels using the DESeq2 package in R.46 Only those taxa that accounted for more than 30% of the samples

with non-zero values were included in the subsequent analyses. The results were filtered by p-value in such a way that only those

entries with an adjusted p-value C < 0.05 were used in further analyses.

Bacterial diversity was estimated at the species level using the Chao1 index, a non-parametric measure that estimates total spe-

cies richness by accounting for unobserved species based on rare species data.47 The Chao1 index was calculated using the vegan

package. Additionally, the number of the observed genera was estimated as an additional diversity metric. Diversity values were

compared between different sets of samples using the Mann-Whitney U test and the Kruskal-Wallis rank-sum test.

To assess sample dissimilarity, Bray-Curtis distances were calculated for samples within each biotope using the vegan

package in R.

Comparing resistome and taxonomy data
We used taxonomy data obtained via 16S rRNA amplicon sequencing at the species and genus levels and have calculated

Spearman’s rank correlation coefficients of each pair of a taxon and an AR gene. Only genes and taxa with a minimum of 50%

non-zero values across samples were included in the analysis. The p-values obtained were subjected to a Bonferroni correction.

Only correlations with a coefficient of 0.5 or greater or less than �0.5 were subjected to analysis.

We have also calculated Spearman’s rank correlation coefficients for the number of AR genes and AR gene sequence variants

identified in each sample and Bray-Curtis distances between samples taken from the same patients at different time points based

on genus abundance data. Additionally, the Mann-Whitney U test was employed to ascertain whether there was a statistically

significant difference in the number of AR genes at the initial time point between patients who exhibited a change in enterotypes

during the first week of therapy and those who did not.

The bacterial composition of the samples belonging to different resistotypes was compared using the DESeq2 package in R. Only

taxa that accounted for more than 30% of the samples with nonzero values were included in the analyses. To account for multiple

comparisons, the Benjamini and Hochberg correction method was employed. Only significant entries with adjusted p-values C < 0.05

were used in the analysis.
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