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The rice panicle traits substantially influence grain yield, making them a primary target for rice 
phenotyping studies. However, most existing techniques are limited to controlled indoor environments 
and have difficulty in capturing the rice panicle traits under natural growth conditions. Here, we developed 
PanicleNeRF, a novel method that enables high-precision and low-cost reconstruction of rice panicle 
three-dimensional (3D) models in the field based on the video acquired by the smartphone. The proposed 
method combined the large model Segment Anything Model (SAM) and the small model You Only Look 
Once version 8 (YOLOv8) to achieve high-precision segmentation of rice panicle images. The neural 
radiance fields (NeRF) technique was then employed for 3D reconstruction using the images with 2D 
segmentation. Finally, the resulting point clouds are processed to successfully extract panicle traits. The 
results show that PanicleNeRF effectively addressed the 2D image segmentation task, achieving a mean 
F1 score of 86.9% and a mean Intersection over Union (IoU) of 79.8%, with nearly double the boundary 
overlap (BO) performance compared to YOLOv8. As for point cloud quality, PanicleNeRF significantly 
outperformed traditional SfM-MVS (structure-from-motion and multi-view stereo) methods, such as 
COLMAP and Metashape. The panicle length was then accurately extracted with the rRMSE of 2.94% for 
indica and 1.75% for japonica rice. The panicle volume estimated from 3D point clouds strongly correlated 
with the grain number (R2 = 0.85 for indica and 0.82 for japonica) and grain mass (0.80 for indica and 
0.76 for japonica). This method provides a low-cost solution for high-throughput in-field phenotyping of 
rice panicles, accelerating the efficiency of rice breeding.

Introduction

   Rice (Oryza sativa L.) is a crucial crop globally, feeding more 
than half of the world’s population [  1 ,  2 ]. Among the various 
factors influencing rice yield and quality, panicle traits such as 
panicle length, grain count, and grain mass are of great signifi-
cance [  3 ,  4 ]. Panicle traits not only are closely associated with 
rice yield but also serve as essential indicators in rice breeding 
[  5 ,  6 ]. Therefore, approaches that enable high-precision mea-
surements of rice panicle traits are crucial for accelerating rice 
breeding and improving overall crop productivity.

   Numerous laboratory-based studies have been conducted 
on rice panicle phenotyping with machine vision technologies. 
Reported studies have employed different approaches, such as 
RGB scanning [  7 ,  8 ], x-ray computed tomography (CT) [  9 ,  10 ], 
structured light projection [  11 ], hyperspectral imaging [  12 ], and 
multi-view imaging [  13 ], to extract several panicle traits, including 
grain number, grain dimensions (length, width, and perimeter), 
kernel dimensions (length, width, and perimeter), seed setting 
rate, and panicle health status based on spectral signatures. 
While these methods are capable of phenotyping of rice panicle 

traits, they are limited to the controlled indoor environments 
and are still labor intensive as panicles have to be harvested 
from the field and manually processed, including spreading 
the branches and fixing them in place. Thereby, development 
of high-throughput in-field phenotyping of rice panicles would 
be highly desired for improving efficiency and monitoring 
panicle development over time [  14 ,  15 ].

   In recent years, three-dimensional (3D) reconstruction meth-
ods have been increasingly employed for in-field plant phenotyp-
ing at different scales, offering more comprehensive and accurate 
information compared to 2D approaches. At the field scale, 
unmanned aerial vehicles (UAVs) equipped with RGB cameras 
[  16 ] and airborne LiDAR [  17 ] have been used to generate 3D 
point clouds of the entire field, which provide valuable insights 
into crop growth, canopy structure, and yield estimation. At the 
plot scale, terrestrial laser scanning (TLS) [  18 ], depth cameras 
[  19 ], and stereo vision systems [  20 ] mounted on ground-based 
platforms have been utilized to reconstruct 3D models of plants 
within breeding plots, enabling the extraction of plant pheno-
typic traits and the assessment of genotypic differences. However, 
when it comes to the organ-level phenotyping, particularly for 
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rice panicles, the intricate structure and repetitive textures of 
rice panicles, combined with complex field conditions, present 
substantial challenges for accurate 3D reconstruction [  21 ]. CT 
is impractical in field environments due to its bulky size and 
weight. Structured light cameras suffer from reduced measure-
ment precision under strong outdoor lighting. Terrestrial laser 
scanners (TLS) and handheld laser scanners are limited by the 
need for coordination, with host computers hindering their field 
flexibility. Additionally, depth cameras can capture point cloud 
data quickly, but their low density is insufficient for detailed rice 
panicle analysis. With the fast development of 3D reconstruction 
algorithms, multi-view imaging using smartphones holds great 
promise in providing a low-cost and convenient solution for 3D 
reconstruction of plants at the organ level, making it accessible 
to almost everyone.

   To process multi-view images captured by smartphones, vari-
ous 3D reconstruction methods such as space carving, structure-
from-motion [  22 ] with multi-view stereo [  23 ] (SfM-MVS), 3D 
gaussian splatting (3D-GS) [  24 ], and neural radiance fields (NeRF) 
[  25 ] can be employed. Space carving relies on controlled lighting 
and distinct textures, but uneven lighting and textures conditions 
in the field often lead to incomplete reconstructions. SfM-MVS, 
a traditional technique integrated into commercial software like 
COLMAP [  26 ] and Metashape (Agisoft LLC, St. Petersburg, 
Russia), has been widely utilized to extract phenotypic parameters 
such as plant height, leaf length, and leaf width of soybean plants 
and sugar beets at two growth stages [  27 ,  28 ]. However, when 
applied to individual rice panicles, SfM-MVS often fails to gener-
ate complete and detailed point clouds due to limitations in feature 
matching and dense reconstruction algorithms. Similarly, 3D-GS, 
an emerging image rendering technology, enables models to gen-
erate high-quality images from specified viewpoints and produce 
3D Gaussian point clouds, as demonstrated by developing a 
method based on 3D-GS to measure cotton phenotypic traits 
through instance segmentation [  29 ]. Nonetheless, in the analysis 
of rice panicle phenotypes, the point clouds generated by 3D-GS 
remain too sparse because of the low density of Gaussian points. 
NeRF, a novel 3D reconstruction technique, has shown great 
potential in overcoming the limitations of traditional SfM-MVS 
methods by enabling the reconstruction of high-quality 3D mod-
els [  30 –  32 ]. Recent advancements in NeRF have enhanced render-
ing quality and computational speed, making it effective for 
efficiently reconstructing detailed 3D models of rice panicles with 
reduced computational time. Hu et al. [  33 ] explored the effective-
ness of NeRF for 3D reconstruction in various crops, revealing 
the potential application of NeRF technology in the field of plant 
phenotyping. Zhang et al. [  34 ] used NeRF technology to explore 
the robustness of the method at different scales in strawberry 
orchards, suggesting its high-performance rendering in real 
orchards. However, NeRF primarily focuses on scene reconstruc-
tion and lacks capabilities for object detection and segmentation. 
To accurately extract phenotypic traits of rice panicles, it is essen-
tial to remove background elements and segment the target pan-
icles from the reconstructed 3D scene, necessitating the 
development of high-quality image segmentation methods that 
can be integrated with NeRF models for precise detection and 
segmentation in field conditions.

   The overall goal of this study is to develop a novel in-field 
phenotyping method by combining NeRF with You Only Look 
Once version 8 (YOLOv8) [  35 ] and Segment Anything Model 
(SAM) [  36 ], called PanicleNeRF, to extract rice panicle traits in 
the field accurately using a smartphone. The specific objectives 

are as follows: (a) to accurately segment target rice panicles 
and label from 2D images, (b) to reconstruct complete, high-
precision, and low-noise 3D models of rice panicles, (c) to pre-
process and calibrate the point clouds, and (d) to extract panicle 
length and volume traits from the calibrated point cloud models 
and predict panicle grain number and grain mass.   

Materials and Methods

Field experimental design and rice plant materials
   Two field experiments were conducted during the ripening 
stage of rice crops at the breeding sites of Longping High-Tech 
in Lingshui, Hainan Province on 2023 May 20 (Exp 1) and 
Jiaxing Academy of Agricultural Sciences in Jiaxing, Zhejiang 
Province on 2023 November 15 (Exp 2). Indica rice (S616-
2261-4/Hua Hui 8612) and japonica rice crops (Pigm/Zhejiang 
 japonica 99) were planted at Exp 1 and Exp 2, respectively. The 
 indica rice was transplanted with a spacing of 8 inches in length 
and 5 inches in width, with two seedlings per hole, while the 
 japonica rice was spaced 6 inches in length and 5 inches in 
width, with one seedling per hole, as shown in Fig.  1 A and B.           

Data acquisition
   In-field data acquisition was conducted on 50 rice panicles each 
in Exp 1 and Exp 2. For Exp 1, data acquisition was performed 
between 1:30 PM and 3:30 PM under sunny conditions with wind 
speeds below 1.5 m/s. Similarly, for Exp 2, data acquisition 
occurred between 12:30 PM and 2:30 PM under sunny conditions 
with wind speeds below 1.5 m/s. The target rice panicles were 
randomly selected, and a label with known dimensions was affixed 
to each panicle for the size calibration. A 15-s video with the size 
of 1,920 × 1,080 pixels and a frame rate of 30 frames per second 
was then recorded by circling around the target rice panicle using 
a smartphone, as shown in Fig.  1 C. Images were extracted from 
the collected video at a frequency of 15 frames per second to 
obtain multi-view images of each rice panicle. Two hundred 
twenty-five original images were finally obtained for each rice 
panicle sample. After video recording, rice panicles were cut and 
brought back to the laboratory for specific trait measurements as 
the ground truth. A steel ruler was used to measure the panicle 
length, and the number of grains and grain mass per panicle were 
measured using a Thousand-Grain Weight Instrument developed 
by the Digital Agriculture and Agricultural Internet-of-things 
Innovation (DAAI) team at Zhejiang University [  37 ].   

Data preprocessing
   Data preprocessing was performed to compute the camera 
position and orientation as well as filter out images that did not 
adequately direct toward the target rice panicle to reduce the 
image processing time. SfM was employed to calculate the posi-
tion and orientation of the camera [ 22 ]. Pose-derived viewing 
direction (PDVD) and image alignment filtering (IAF) were 
proposed for image filtering. PDVD constructed a scene center 
point based on the camera’s position and orientation. IAF cal-
culated the angle between the line from the camera to the center 
point and the camera’s orientation, filtering out images with an 
angle greater than 20°. For each sample, the number of images 
ranged from 168 to 225 after filtering.   

2D image segmentation
   In order to remove the background from 2D images and achieve 
an accurate generation of point clouds including only the target 
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rice panicle and the label, an ensemble model by integrating a 
large model with a small model was proposed in this study (Fig. 
 2 B). The ensemble model utilized the SAM, a versatile image 
segmentation model for generic segmentation of the images [ 36 ]. 
However, SAM can only generate segmentation masks without 
providing pixel-level semantic information. The segmentation 
results were then filtered based on area and stability; regions with 
an area smaller than 10,000 pixels or with a stability score below 
0.8 were removed to eliminate the noise. To compensate for the 
lack of semantic information in the segmentation results by 
SAM, the real-time object detection and instance segmentation 
model YOLOv8 was employed for instance segmentation, which 
generated rough masks of the target rice panicle and label [ 35 ]. 
These rough masks underwent edge erosion, resulting in red 
inner regions and white edge regions. For each red inner region, 
three to five positive points were randomly selected based on the 
pixel size of the region, and three negative points were randomly 
selected from the corresponding white outer region. These posi-
tive and negative points were then aligned to the mask regions 
in the SAM image after filter processing. Finally, the aligned mask 
regions were merged by taking their union to complete the 
matching process. The segmented images were processed to 
remove backgrounds, generating transparent PNG images and 
completing the 2D segmentation.        

   The specific parameters used for data training are shown in 
Table S2. The performance of 2D image segmentation was 
evaluated with F1 score, Intersection over Union (IoU), and 
boundary overlap (BO), which are defined as follows:

     

     

     
     

      

   where  TP    represents the number of true positive pixels,  FP    rep-
resents the number of false positive pixels,  FN    represents the 
number of false negative pixels,  Ep    represents the set of pre-
dicted edge pixels,  Eg    represents the set of ground-truth edge 
pixels,  ∩    denotes the intersection, and  ∪    denotes the union. In 
addition, the PanicleNeRF method was also compared with 
well-known instance segmentation methods, YOLOv8 and 
mask region-based convolutional neural network (Mask-
RCNN) [  38 ]. YOLOv8 is an object detection and instance seg-
mentation method that utilizes a single-stage architecture for 
efficient and accurate predictions. It is an improved version of 
the YOLO series, offering enhanced performance and flexibil-
ity. While Mask-RCNN is a two-stage instance segmentation 
algorithm that extends the faster R-CNN framework by adding 
a branch for predicting segmentation masks. It has been widely 
used in both object detection and instance segmentation tasks 
by using a region proposal network (RPN) and a network head 
for mask prediction.   

3D reconstruction of rice panicles
   To develop high-quality 3D point cloud models of rice panicles, 
several NeRF methods were evaluated. Meanwhile, instant neural 
graphics primitives (Instant-NGP), which uses multi-resolution 
hash encoding and spherical harmonics for fast and efficient 
training and inference, was selected for 3D reconstruction [  39 ]. 
The 3D reconstruction process is illustrated in Fig.  2 C. The inputs 
comprised multi-view PNG images of rice panicles and their 
corresponding camera positions and orientations. The Instant-
NGP algorithm was applied to learn a compact NeRF model 
representing the 3D structure of the target panicle and label. To 
convert the implicit density field generated by NeRF into an 
explicit 3D model and streamline the data processing pipeline, 
the marching cubes algorithm was combined with mesh point 
extraction, enabling direct export of point clouds from the 
trained NeRF model [  40 ]. Specifically, the marching cubes algo-
rithm was used to extract density isosurfaces, forming a closed 
triangular mesh model. By extracting the vertices from the 

Precision =
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TP + FP
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TP

TP + FN

F1 =
2 × Precision × Recall

Precision + Recall

IoU =
TP

TP + FP + FN

BO =
|
| Ep∩Eg

|
|

|
| Ep∪Eg

|
|

Fig. 1. Experimental fields and data acquisition. (A) Ripening stage of indica rice at the field of Longping High-Tech in Lingshui, Hainan Province, China. (B) Ripening stage of 
japonica rice at the field of Jiaxing Academy of Agricultural Sciences in Jiaxing, Zhejiang Province, China. (C) Data acquisition by circling around the target rice panicle using 
a smartphone.

(1)

(2)

(3)

(4)

(5)
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resulting mesh, the corresponding point clouds were obtained. 
The algorithm for optimized marching cubes was then applied 
to the trained NeRF model, producing dense point clouds of the 
rice panicle and label without background elements.

   The 3D point clouds of rice panicle generated by PanicleNeRF 
were evaluated by the correlation with ground-truth phenotypic 
traits. Specifically, the coefficient of determination (R 2), root 
mean square error (RMSE), and relative root mean square error 
(rRMSE) between the predicted panicle length and the ground 
truth were calculated to validate the accuracy of the point cloud. 
 R 2 measures the proportion of variance in the ground truth 
explained by the predicted values, while RMSE and rRMSE quan-
tify the average magnitude of prediction errors in absolute and 
relative terms, respectively. These metrics provide a comprehen-
sive evaluation of the accuracy and reliability of the PanicleNeRF 
method for 3D reconstruction of rice panicles.   

Extraction of rice panicle traits
Point cloud processing
   Point cloud clustering was conducted using the density-based 
spatial clustering of applications with noise (DBSCAN) method 
[  41 ]. It started with identifying core points by comparing the 
number of points within a predefined neighborhood to a set 
threshold. Then, points were assessed to determine if they were 
in the same cluster as a core point based on density-reachable 
relationships, effectively clustering the point cloud and removing 
insufficiently sized clusters deemed as outliers. After clustering, 
principal components analysis (PCA) was utilized to differentiate 
between the label and rice panicle clusters based on normal vector 
features, with the former marked in red and the latter in blue [  42 ].

   The size calibration of point clouds was performed based on 
a reference label with known dimensions. A bounding box algo-
rithm was employed to locate the smallest enclosing rectangle 

Fig. 2. Flowchart of PanicleNeRF method. (A) Data acquisition and preprocessing. (B) 2D image segmentation. (C) 3D reconstruction.
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of the point cloud representing the label, which had three faces 
with different areas. The point cloud was then projected onto the 
face with the median area and was fitted to calculate the length 
of the label in the point cloud scene. The size calibration was 
ultimately achieved by calculating the ratio between the length 
of the label and its corresponding length in the point cloud scene.   

Extraction of panicle length trait
   The point cloud of the target rice panicle was downsampled for 
rapid skeleton extraction and length calculation. As the standard 
Laplacian-based contraction (LBC) skeleton method had difficulty 
in identifying the start and end points of the rice panicle skeleton, 
a multi-tangent angle constraint was incorporated to avoid treating 
the tips of the rice panicle branches as endpoints [  43 ]. After that, 
the skeleton was fitted with a curve to calculate the length of the 
panicle within the point cloud scene, and the panicle length trait 
was determined using the following formula:
      

   where  L    is the predicted length of the rice panicle,  L1    is the 
length of the rice panicle in the point cloud scene,  X    is the 
length of the label, which equals 7.5 cm, and  X1    is the length of 
the label in the point cloud scene.   

Extraction of panicle volume trait
   After the size calibration of point clouds, the rice panicle point 
cloud was voxelized with a voxel size of 0.01 units. The number 
of voxel units encompassed by the rice panicle point cloud was 
then calculated to determine the panicle volume using the fol-
lowing formula:
      

   where  V     is the predicted volume of the rice panicle,  Num    is the 
number of voxel units encompassed by the rice panicle point, 
and  X    is the length of the label, which equals to 7.5 cm.    

Development of a web-based platform
   To enhance the accessibility and user-friendliness of our pro-
posed PanicleNeRF method, we developed a web-based platform 
( http://www.paniclenerf.com ). The platform offers researchers 
an intuitive interface to utilize our method without requiring 
extensive technical expertise or specialized computer hardware. 
Users can upload videos of rice panicles recorded under windless 
or gentle wind conditions using smartphones or other RGB cam-
eras, with a 7.5-cm label attached to the panicle for accurate size 
calibration. Detailed images and dimensions of the label are 
provided in Fig. S1 to facilitate accurate printing and usage. The 
video should be captured by circling around the target rice pan-
icle, providing a comprehensive view from multiple angles. An 
example of the recording process is available in Movie S1. Upon 
uploading the video, the platform processes the data automati-
cally using our PanicleNeRF method and generates a rotating 
demonstration video of the reconstructed point cloud, along with 
the predicted phenotypic traits for the given rice panicle.    

Results

2D image segmentation
   Table  1  presents the results of three different 2D image segmen-
tation methods for indica and japonica rice varieties. The 

proposed method, PanicleNeRF, outperformed the baseline 
method Mask-RCNN. For indica rice, PanicleNeRF achieved 
an F1 score of 87.3% and 84.0% on the validation and test data-
sets, representing an improvement of 2.3% and 1.4%, respec-
tively. Similarly, PanicleNeRF attained an IoU of 81.1% and 
78.6%, surpassing Mask-RCNN by 4.8% and 5.1%. PanicleNeRF 
also demonstrated superior performance on japonica rice, with 
an F1 score of 89.2% and 87.0%, exceeding Mask-RCNN by 
3.7% and 1.2%. The IoU reached 81.3% and 78.2%, outperform-
ing Mask-RCNN by 5.6% and 2.3%. Moreover, PanicleNeRF 
performed slightly better than YOLOv8 across all metrics for 
both rice varieties. 

   The boundary segmentation performance is presented in 
Fig.  3 . PanicleNeRF achieved the best BO results in indica with 
8.5% for both validation and test, and in japonica with 9.5% for 
validation and 10.0% for test. These results showed improve-
ments of 4.0%, 3.9%, 5.1%, and 5.6% over the second-best 
results obtained by YOLOv8. Notably, the interquartile range 
(IQR) of PanicleNeRF’s performance was entirely above that of 
Mask-RCNN and YOLOv8 across all four categories. Figure  4  
illustrates the representative results of the three methods on the 
testing set. Despite the complex background and branching 
structure of rice panicles, PanicleNeRF achieved excellent seg-
mentation performance, while Mask-RCNN displayed signifi-
cant fluctuations in edge segmentation and YOLOv8 produced 
noticeable jagged edges when segmenting the branches. The 
substantial improvement in the BO value distribution, along with 
the enhanced segmentation results, demonstrated the superior 
performance and robustness of the PanicleNeRF method.                   

3D reconstruction of rice panicle
   Figure  5  presents the background removal results in the NeRF 
model after using the PanicleNeRF method for representative 
samples of indica and japonica rice. Figure  5 A and C shows the 
NeRF model obtained by inputting the original image set, while 
Fig.  5 B and D displays the NeRF model obtained by inputting 
the same set of images after 2D segmentation. The results dem-
onstrate that PanicleNeRF effectively removed nonregions of 
interest and extracts the target rice panicles and labels in the 
NeRF model. Furthermore, the clustering results of the panicle 
and label point clouds are illustrated in Fig.  6 , where panels (A) 
and (B) represent indica and japonica rice, respectively. In both 
cases, the blue points indicate the panicle semantics, while the 

L = L1 ×
X

X1

V = Num × (0.01)3 × X3

Table 1. The comparison of 2D image segmentation methods 
for indica and japonica rice varieties. The best results are in 
boldface.

Variety Method

F1 score (%) IoU (%)

Val Test Val Test

 Indica 
rice

 Mask-RCNN 85.0 82.6 76.3 73.5

 YOLOv8 86.1 82.9 79.2 76.4

 PanicleNeRF 87.3 84.0 81.1 78.6

 Japonica 
rice

 Mask-RCNN 85.5 85.8 75.7 75.9

 YOLOv8 88.7 85.3 80.9 77.4

 PanicleNeRF 89.2 87.0 81.3 78.2

(6)

(7)
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red points indicate the label semantics. The clear separation of 
the panicle and label point clouds demonstrates the effective-
ness of PanicleNeRF in distinguishing between the two seman-
tic categories. This effective clustering lays the foundation for 
subsequent extraction of rice panicle traits.                

   Figure  7  presents a comparison of the point clouds gener-
ated by PanicleNeRF with those generated by COLMAP and 
Metashape. Figure  7 A and B shows the front and side views 
of the indica rice point cloud, while Fig.  7 C and D displays 
the front and side views of the japonica rice point cloud. 
Overall, the point cloud generated by PanicleNeRF was the 

most complete, with the fewest point cloud holes and the high-
est resolution. The side view of the indica rice point cloud (Fig. 
 7 B) clearly illustrates that the point cloud generated by 
COLMAP had more noise and could not distinguish the 
branches of the rice panicle, while the point cloud generated 
by Metashape was more fragmented and had poor complete-
ness. The other viewpoints also demonstrate the fragmenta-
tion and incompleteness of COLMAP and Metashape point 
clouds in the reconstruction of rice panicles and labels, which 
leads to difficulties in their practical application for field phe-
notype extraction.           

Fig. 3. The boundary overlap performance of different methods on rice varieties. (A) Performance on indica rice dataset. (B) Performance on japonica rice dataset.

Fig. 4. Illustration of the representative image segmentation results on indica rice (left column) and japonica rice (right column) by different methods. (A) Mask-RCNN 
segmentation results. (B) YOLOv8 segmentation results. (C) PanicleNeRF segmentation results.
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Fig. 5. NeRF models of indica and japonica rice reconstructed using original image set and 2D segmented images, viewed from three different perspectives of the NeRF model. 
(A) Indica NeRF model obtained from the original image set. (B) Indica NeRF model obtained from images with 2D segmentation. (C) Japonica NeRF model obtained from the 
original image set. (D) Japonica NeRF model obtained from images with 2D segmentation.

Fig. 6. Illustration of the representative clustering results of rice panicle and label point clouds for (A) indica rice and (B) japonica rice, where blue indicates the panicle 
semantics and red indicates the label semantics.

https://doi.org/10.34133/plantphenomics.0279
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Panicle trait extraction
   Figure  8  shows the correlation between the predicted and mea-
sured panicle lengths for indica and japonica rice. For indica 

rice, the R 2 value was 0.90, the RMSE was 0.71, and the rRMSE 
was 2.94%, while for japonica rice, the R 2 value was 0.95, the RMSE 
was 0.26, and the rRMSE was 1.75%. These results validated the 

Fig. 7. The comparison of representative rice panicle point clouds reconstructed by PanicleNeRF and traditional 3D reconstruction methods (COLMAP and Metashape). 
(A) Front view of indica rice. (B) Side view of indica rice. (C) Front view of japonica rice. (D) Side view of japonica rice.

https://doi.org/10.34133/plantphenomics.0279
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effectiveness of the size calibration and the accuracy of the 3D 
point clouds. The results also indicated that the prediction accu-
racy for japonica rice was higher than that for indica rice, as the 
 R 2 value was higher and the rRMSE was lower for japonica rice.        

   Figure  9  shows the correlation between the predicted pan-
icle volume and the measured grain count and grain mass for 
 indica and japonica rice. For indica rice, the R 2, RMSE, and 
rRMSE values were 0.85, 15.61, and 7.45%, respectively, for 
grain count and 0.80, 0.45, and 8.51%, respectively, for grain 
mass. For japonica rice, the corresponding values were 0.82, 
15.42, and 9.74% for grain count and 0.76, 0.47, and 10.33% 
for grain mass. These results demonstrated a strong correlation 
between the predicted panicle volume and grain count, as well 
as grain mass. Besides, the prediction accuracy for both grain 
count and grain mass was higher in indica rice than in japonica 
rice, with indica rice having higher R 2 values and lower rRMSE 
values for both traits.        

   The correlations between panicle length, panicle volume, 
grain count, and grain mass in the indica and japonica rice 
datasets were calculated and visualized in Fig.  10 . For indica 
rice, the correlations between panicle length and the other 
three phenotypes were only 0.37, 0.32, and 0.43, while the 
correlations between panicle volume and grain count and 
grain mass were 0.85 and 0.80, respectively. A similar pattern 
was observed for japonica rice.        

   The average time spent on the entire PanicleNeRF workflow 
is summarized in Table  2 . Data acquisition takes 15 s, while 
data preprocessing requires 15 min. The 2D image segmenta-
tion and 3D reconstruction steps each take 2 min. Finally, the 
extraction of rice panicle traits takes 4 min.     

Discussion

Multi-model fusion outperforms single models in 
rice panicle 2D segmentation
   The results demonstrated that the proposed 2D rice panicle 
segmentation method, which combined the advantages of the 
large model SAM and the small model YOLOv8, achieved supe-
rior performance compared to using a single model. As illus-
trated in Fig.  4 , utilizing a single model for segmentation often 
led to incomplete target contours, while the accuracy of the 3D 
reconstruction method employed in this research relied on the 

segmentation quality of 2D images. Existing models struggled 
to achieve satisfactory results because they were primarily 
designed to perform well on public datasets such as ImageNet, 
where crop categories accounted for only around 2.4% of the 
total image categories, with the majority of targets being common 
rigid objects encountered in daily life and exhibiting distinct 
features compared to crops [  44 ]. It is unsurprising that using 
transfer learning to fine-tune existing models on crop datasets 
caused suboptimal segmentation contours [  45 ]. However, train-
ing a new network specifically tailored for crop segmentation 
requires a substantial amount of samples, and currently, there is 
a lack of sufficient data to train a model capable of achieving 
high-precision contour segmentation.

   With the advancement of ultra-large models such as SAM, 
their generalization ability has significantly improved, enabling 
accurate contour segmentation even for targets not included 
in the training set. Nevertheless, these models could not per-
form individual segmentation for specific targets without 
appropriate prompts. It is precisely by leveraging the strengths 
of both large and small models that our proposed method 
achieved superior segmentation results. Targets with inaccurate 
segmentation can be used as prompts and fed into large models, 
thereby obtaining targets with precise contour segmentation.   

Superiority of PanicleNeRF in fine-scale
   Traditional SfM-MVS-based methods, such as COLMAP and 
Metashape, produce noisy and incomplete point clouds when 
dealing with in-field rice panicle scenes. This suboptimal per-
formance could be attributed to the following reasons. First, 
objects with repetitive textures, such as rice panicles, are prone 
to feature matching errors due to the high similarity of feature 
points at different positions, leading to incorrect matching and 
large deviations in the recovered 3D point positions [  46 ]. Second, 
small objects present challenges for accurate 3D structure recov-
ery due to inadequate parallax information. The small disparities 
of small objects across different views lead to large depth estima-
tion errors in triangulation and 3D point recovery. Lastly, SfM-
MVS relies on geometric constraints between images, which are 
often not satisfied when objects have occlusions and complex 
shapes [  47 ]. Complex shapes reduce the correspondence between 
images, while occlusions obstruct feature matching, resulting in 

Fig. 8. Correlation analysis between predicted and measured panicle lengths for (A) indica rice and (B) japonica rice.
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a lack of effective geometric constraints and compromising the 
completeness and precision of the reconstructed objects.

   In contrast, PanicleNeRF achieved the least noisy and most 
complete point cloud compared to the SfM-MVS-based method. 
The superiority of PanicleNeRF can be attributed to its ability to 
learn the geometric structure and appearance information of the 
scene through neural networks. Unlike traditional methods that 
rely on feature point matching and triangulation, PanicleNeRF 
directly learns the 3D structure from images, enabling it to 
handle situations with similar features, repetitive textures, and 
insufficient parallax. Furthermore, by representing the scene 
through continuous density and color fields, PanicleNeRF can 
generate more complete and detail-rich reconstruction results. 
The significant advantages demonstrated by PanicleNeRF in fine-
grained 3D reconstruction tasks under complex scenes highlight 
its potential to advance plant phenotypic analysis.   

Panicle trait extraction performance and comparisons
   The results demonstrate that high R 2 and low rRMSE were 
achieved in panicle length, grain count, and grain mass prediction. 

During this process, we discovered that the panicle length predic-
tion for indica rice was not as accurate as that for japonica rice, 
possibly due to the more compact and convergent branches 
of japonica rice compared to the looser and more dispersed 
branches of indica rice. When extracting the skeleton, the cen-
tral skeleton extraction of multi-branched panicles is more 
challenging than that of panicles with branches clustered 
together. Additionally, we found that when using panicle vol-
ume to predict grain count and grain mass, the indica rice 
dataset performed better than the japonica rice dataset. This is 
primarily attributed to the compact branches of japonica rice, 
which might have created gaps within the panicle that were 
treated as solid matter, potentially limiting the accuracy of the 
model. Such limitations are common in visible image-based 
reconstructions and may only be addressed by adopting other 
techniques like CT or magnetic resonance imaging [  48 ,  49 ]. 
Figure  10  demonstrates that panicle volume, extractable through 
3D reconstruction methods, exhibits significantly stronger cor-
relations with grain count and grain mass than panicle length. 
This underscores the importance of accurate 3D models and 

Fig. 9. Correlation analysis between predicted panicle volume and measured grain count and grain mass for indica and japonica rice. (A) Predicted volume versus measured 
grain count for indica rice. (B) Predicted volume versus measured grain count for japonica rice. (C) Predicted volume versus measured grain mass for indica rice. (D) Predicted 
volume versus measured grain mass for japonica rice.
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their unique capability to extract panicle volume, providing valu-
able information that cannot be achievable with 2D models.

   In recent years, researchers have utilized 2D images captured 
by smartphones to perform phenotyping of panicles both at 
the indoor and infield conditions. Qiu et al. [  50 ] fixed a smart-
phone and detached panicles in relative positions, enabling 
grain counting indoors. Sun et al. [  51 ] used a smartphone with 
a black background board to achieve panicle segmentation and 
phenotyping of rice grains in the field. However, because rice 
panicles are inherently 3D structures, 2D images inevitably 

result in information loss, such as difficulties in accurately ana-
lyzing panicle volume, while Sandhu et al. [  52 ] fixed panicles 
in the isolated environments and reconstructed 3D point clouds 
indoors, achieving the R 2 values ranging from 0.70 to 0.76 for 
grain count and mass prediction. In comparison, the PanicleNeRF 
method proposed in this study enables fast evaluation of rice 
panicle traits in the field with better performance than that of 
other 3D methods, with the R 2 values of 0.83 for the grain count 
and 0.78 for the grain mass, demonstrating its effectiveness in 
field rice panicle phenotyping.   

Fig. 10. Heatmap of correlations among panicle length, panicle volume, grain count, and grain mass for different rice panicle types in the indica and japonica datasets.
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Limitation and future prospects
   PanicleNeRF had achieved promising performance in rice 
panicle phenotyping. However, there were still some limitations 
of our method. One limitation was that the throughput was 
limited as it focused on extracting detailed 3D models of indi-
vidual rice panicle. In the future, by extending PanicleNeRF, 
low-cost remote sensing equipment, such as UAVs, could poten-
tially be employed to analyze high-throughput and large-scale 
fine-grained 3D models of rice panicles in the field [  53 –  55 ]. In 
addition, the method required data acquisition under windless 
or light breeze conditions, which restricted its convenience of 
application in actual paddy fields. To address this issue, multiple 
cameras could be utilized for synchronous exposure, enabling 
simultaneous acquisition of multi-view high-quality imaging 
of rice plants, effectively reducing the interference of natural 
wind. Moreover, the camera extrinsic parameter inference in 
data preprocessing was time consuming, taking up to 15 min 
(Table  2 ). This could be improved in the future by designing a 
specialized data acquisition device that enables consistent rela-
tive positions and orientations of cameras in each acquisition, 
thereby utilizing fixed camera extrinsic parameters to avoid this 
time-consuming step.    

Conclusion
   The conventional 3D reconstruction and segmentation methods 
often generate noisy and fragmented point clouds when dealing 
with the complex structure and repetitive texture of rice pani-
cles, which is not suitable for phenotyping panicles in the field. 
To address this challenging problem, we propose PanicleNeRF, 
a novel method that enables high-precision and low-cost recon-
struction of rice panicle 3D models in the field based on the 
video acquired by the smartphone. The proposed method com-
bined the large model SAM and the small model YOLOv8 to 
achieve high-precision segmentation of rice panicle images. The 
NeRF technique was then employed for 3D reconstruction using 
the images with 2D segmentation. Finally, the resulting point 
clouds are processed to successfully extract and analyze panicle 
phenotypes. The results show that PanicleNeRF effectively 
addressed the task of 2D image segmentation, achieving a mean 
F1 score of 86.9% and a mean IoU of 79.8%, with nearly double 
the BO performance compared to YOLOv8. In terms of point 
cloud quality, PanicleNeRF significantly outperformed tradi-
tional SfM-MVS methods, such as COLMAP and Metashape. 
The panicle length was then accurately extracted with the rRMSE 
of 2.94% for indica and 1.75% for japonica rice. The panicle 

volume estimated from high-quality 3D point clouds strongly 
correlated with the actual grain number (R 2 = 0.85 for indica 
and R 2 = 0.82 for japonica) and grain mass (R 2 = 0.80 for indica 
and R 2 = 0.76 for japonica). This work is expected to contribute 
to the advancement of high-quality in-field rice panicle pheno-
typing, facilitating the progress of rice phenotyping and breed-
ing efforts.   
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