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Introduction

Myocarditis, characterized by inflammation of the cardiac 
muscle, has implications on both the myocardial contrac-
tile function and the electrophysiological properties of the 
heart, potentially leading to heart failure and arrhythmias, 
respectively [1]. This condition’s etiology is multifaceted, 
encompassing infectious agents (for instance, viral patho-
gens like COVID-19 and parvovirus) [2], systemic inflam-
matory and autoimmune disorders, as well as adverse drug 
reactions. Clinical manifestations of myocarditis commonly 
include thoracic pain, lethargy, and dyspnea [3]. It is imper-
ative for individuals presenting with symptoms suggestive 
of myocarditis to obtain prompt cardiological consultation 
to facilitate early detection and management. In cases of 
severe myocarditis, endomyocardial biopsy, a diagnostic 
intervention, is advocated to substantiate the diagnosis and 
inform therapeutic strategies [4].

Management of myocarditis includes a range of support-
ive measures, therapeutic interventions for symptomatic 
heart failure, administration of antimicrobial agents against 
identified infectious pathogens, and the use of immunosup-
pressive therapy in cases of severe inflammatory responses 
[5]. Timely diagnosis and the immediate commencement of 
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Abstract
Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular function-
ality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims 
to identify the optimal cardiovascular magnetic resonance imaging (CMRI) views for distinguishing between normal and 
myocarditis cases, using deep learning (DL) methodologies. Analyzing CMRI data from a cohort of 269 individuals, with 
231 confirmed myocarditis cases and 38 as control participants, we implemented an innovative DL framework to facilitate 
the automated detection of myocarditis. Our approach was divided into single-frame and multi-frame analyses to evaluate 
different views and types of acquisitions for optimal diagnostic accuracy. The results demonstrated a weighted accuracy of 
96.9%, with the highest accuracy achieved using the late gadolinium enhancement (LGE) 2-chamber view, underscoring 
the potential of DL in distinguishing myocarditis from normal cases on CMRI data.
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treatment are crucial in significantly reducing the associated 
morbidity and mortality.

Non-invasive cardiac imaging, particularly CMRI [6], 
plays a vital role in confirming the diagnosis of myocardi-
tis. In their study on myocarditis, the authors [7] underline 
the necessity of utilizing the Lake Louise Criteria (LLC) in 
CMRI, which involves analyzing cine, T2-weighted black 
blood, and LGE images to accurately diagnose the condi-
tion. However, the interpretation of CMRI is heavily reli-
ant on expert analysis, which is both labor-intensive and 
susceptible to operator bias. To mitigate these challenges, 
the development of automated diagnostic systems utilizing 
advanced machine learning and data mining algorithms has 
been proposed. These systems are designed to efficiently 
address medical image classification challenges, thereby 
enhancing diagnostic accuracy and reducing subjectivity 
[8]. These technologies can be utilized within reporting 
workflows to automatically screen images, which helps in 
saving time for physicians, minimizing the incidence of 
errors, and improving the accuracy of diagnoses.

DL represents a category of machine learning algorithms 
characterized by the utilization of multiple layers to extract 
more abstract and advanced features from the raw input data 
[9]. In this study, we adopt the prototypical networks [10] 
approach for Few-Shot Learning (FSL). Prototypical net-
works operate by learning a metric space where each class is 
represented by a prototype, which is the mean of the exam-
ples in the embedding space. Classification is performed by 
computing the distance between the embedded query points 
and these class prototypes, enabling effective generalization 
to new classes with only a few examples. This approach 
simplifies the model’s inductive bias, making it particularly 
suited to the limited-data regime characteristic of FSL.

In the field of myocardial disease (MCD) diagnosis 
from CMRI, recent years have seen significant advance-
ments through the use of DL techniques, as evidenced by 
various studies [3, 11, 12]. Sharifrazi et al. [3] introduced 
the Convolutional Neural Network-Clustering (CNN-KCL) 
model, specifically designed for MCD detection using 
CMRI images, with testing conducted on the Z-Alizadeh 
[3] dataset. This model incorporates a comprehensive 
approach by analyzing CINE-segmented images in both 
long axis (LAX) and short axis (SAX) views, Pre-contrast 
T2-weighted (TIRM) images in LAX and SAX views, 
T1-Weighted relative images pre-contrast and post-contrast 
in axial views of the myocardium, and LGE high-resolu-
tion phase sensitive inversion-recovery (PSIR) sequences 
in SAX and LAX views. The integration of these diverse 
views through a 2D-CNN with k-means clustering results 
in an impressive accuracy of 97.41%. Another noteworthy 
contribution by Shoeibi et al. [11] involved the application 
of the cycle-GAN method alongside various pre-trained 

models for MCD diagnosis, also utilizing the Z-Alizadeh 
dataset. The key innovation here was the use of cycle-GAN 
in preprocessing to generate synthetic CMRI images, which 
were then processed through different pre-trained models. 
Among these, the EfficientNet V2 method stood out, achiev-
ing an accuracy of 99.33%. Moravvej et al. [12] explored a 
different avenue by introducing deep reinforcement learning 
(RL) for MCD detection, presenting the RLMD-PA method 
for diagnosing myocarditis using CMRI images from the 
Z-Alizadeh dataset. Furthermore, the study examined vari-
ous optimization methods to improve both the accuracy and 
efficiency of MCD diagnosis.

In this study, we introduce a DL approach designed to 
automate the detection of myocarditis from CMRI. Our 
methodology evaluates multiple CMR image sequences to 
ascertain which produces the best separation between nor-
mal and myocarditis cases. Through a comparative analy-
sis of different imaging views of the heart (short and long 
axis), we aim to assess the complementary contribution of 
different views for myocarditis detection. Additionally, we 
compare two distinct techniques: FSL and classical binary 
classification, to determine which approach offers superior 
diagnostic precision. This investigation is critical for refin-
ing diagnostic precision and could significantly impact clin-
ical decision-making by providing insights into the optimal 
CMRI view for diagnosing myocarditis, thereby enhancing 
patient care and treatment outcomes.

The remainder of this article is organized as follows. We 
start by discussing the available data and the model archi-
tecture (Materials and methods), followed by empirical 
results (Results) and a discussion and conclusions section 
(Discussions and conclusions).

Materials and methods

Dataset

Study design

This was a single-center, retrospective study that was car-
ried out at the Center of Advanced Research in Multi-
modality Cardiac Imaging, Cardio-Med Medical Center, 
Târgu-Mureș, Romania. The study complied with the Dec-
laration of Helsinki for investigation in human beings. The 
study protocol was approved by the local ethics committee 
and each patient signed an informed consent form before the 
enrolment in the study.
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Study population

Patients at least 18 years old, with atypical angina, dyspnoea 
and fatigue are indicated for performing a CMRI. Further 
inclusion criteria were: history of cold/flu in the last 2–3 
months, changes on the electrocardiogram (sinus tachy-
cardia, where T negative diffuse), fever and chills. Patients 
were excluded if they were unable to provide informed 
consent, and if they presented with myocardial ischemic 
injury (history of myocardial infarction STEMI and NON-
STEMI), autoimmune diseases and infiltrative diseases at 
the myocardial level (amyloidosis). The data was collected 
between August 2021 and September 2023. A total of 269 
patients were included in the study, of whom 231 had myo-
carditis, while the remaining 38 were control subjects. This 
binary label was derived based on the clinical report and 
represents the final clinical consensus. For this reason, a 
multi-observer study could not be performed. Patients from 
the control group have no other cardiac disease. However, 
the number of views per patient differs and some patients 
are missing specific views, which can result in a small dif-
ference in the number of samples employed during training 
for specific views.

Procedure protocol

Each patient included in the study was subjected to an 
CMRI examination with consent. Based on the obtained 
results, patients were divided into the two study groups. To 
perform the cardiac scenarios, we used CMRI acquired with 
a Magnetom Aera 1.5 T scanner (Siemens Healthineers AG, 
Erlangen, Germany).

A standard cardiac MR protocol was employed includ-
ing cine balanced steady-state free precession (bSSFP) short 
and long axis views, T2-weighted acquisitions, and LGE in 
LAX 2-chamber and 4-chamber views. For the LGE acqui-
sition a bolus of gadolinium-based contrast agent (Gadovist) 
was injected at a rate of 4 ml/s. Ten minutes after injection a 
PSIR sequence was acquired at the same LAX positions as 
the cine bSSFP to detect LGE.

Following the suggestion of the clinical experts in the 
study, the following CMRI acquisitions were considered for 
the detection of myocarditis:

	● PSIR LGE in 2-chamber and 4-chamber views (single 
frame).

	● T2-weighted 2-chamber and 4-chamber views (single 
frame).

	● Cine bSSFP in LAX 2-chamber, 3-chamber, and 
4-chamber views (multi-frame).

	● A SAX stack of cine bSSFP (x to y numbers) slices cov-
ering the left ventricle (multi-frame, mult-slice).

The term clinical expert refers to physicians who evaluate 
patients and establish the diagnosis of myocarditis. These 
clinicians have over 10 years of clinical experience in the 
field of cardiac pathology (including myocarditis). Addi-
tionally, for the imaging review, a senior radiologist with 
over 10 years of experience was involved, practicing as a 
radiologist for more than 40 years.

Figure 1 displays examples of all image acquisitions and 
views considered in the analysis. For the multi-frame views, 
we display the middle frame and for the multi-slice multi-
frame view we depict the middle frame of the middle slice. 
We adapted a DL approach for each of the single frame, 
multi-frame, and multi-slice type of data to perform myo-
carditis vs. normal classification.

Data pre-processing

All images were normalized using z-score normalization 
[13]. We computed the mean and standard deviation for the 
training data present in each view, respectively we normal-
ized each image using the mean and the standard deviation 
obtained for that specific view. To potentially enhance the 
neural network’s performance by focusing on the region of 
interest, the images were cropped. Given the central loca-
tion of myocardium in the images, the cropping procedure 
was implemented as follows: we retained the central 50% 
of the image in each dimension plus a proportional segment 
(j) of the image size: (imagesize

2
) + (j ∗ imagesize). Parameter 

j was set at 0.5 (non-cropped images) and at increments of 
0.05 ranging from 0.4 to 0.2. Details are included in the fol-
lowing subsections (see Fig. 2).

To evaluate the performance we computed the weighted 
accuracy [14]:

weighted accuracy = 0.5 ∗ ( TP

TP + FN
+

TN

TN + FP
)� (1)

Even though the weights are equal (0.5), the use of weighted 
accuracy ensures a balanced consideration of both sensitiv-
ity (true positive rate) and specificity (true negative rate). 
This approach is particularly important in medical imaging 
studies where dataset imbalance is common. and it helps 
in maintaining consistency and clarity in reporting perfor-
mance metrics. In our study, while the weights are equal, 
using weighted accuracy provides a framework that can eas-
ily adapt to future studies with different class distributions.

For the models that showed the highest weighted accu-
racy, receiver operating characteristic (ROC) analysis was 
performed as outlined in [15], and the area under the curve 
(AUC) score was calculated [16]. The selection of the 
optimal threshold for each model was guided by the ROC 
curves, identifying the point that most closely approached 
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Here, ER quantifies the shortest distance to the coordinate 
(0,1), c signifies the cut-off point, Se is sensitivity, and Sp 
represents specificity.

All the models were implemented using Python, spe-
cifically Pytorch [20]. All statistical analysis were also per-
formed in python.

Classification based on single frame images

The single-frame views were processed using a neural 
network architecture comprising six convolutional layers 

the ideal (0,1) coordinate, consistent with the methodol-
ogy recommended in [17]. The chosen threshold was then 
applied to obtain the results, which are reported using vari-
ous performance metrics (weighted accuracy, sensitivity, 
specificity, PPV, NPV) [18].

The determination of the cut-off point closest to the coor-
dinate (0,1) was achieved using the equation [19]:

ER (c) =

√
(1 − Se (c))2 + (1− Sp (c))2� (2)

Fig. 2  Visual illustration using different increments of k for LGE 2-chamber view and LGE 4-chamber view

 

Fig. 1  Views considered for the detection of myocarditis from CMRI: 
(a) T2 weighted 2-chamber view, (b) T2 weighted 4-chamber view, 
(c) LGE 2-chamber view, (d) LGE 4-chamber view, (e) cine bSSFP 
2-chamber view, (f) cine bSSFP 3-chamber view, (g) cine bSSFP 

4-chamber view, (h) cine bSSFP SAX stack. The middle frame is dis-
played for multi frame views, and for the multi-slice multi-frame view, 
we used the middle slice and the middle frame
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from all frames. An illustration of our approach is depicted 
in Fig. 3.

Similar to the single-frame views, the task was defined as 
a binary classification problem. For this, we employed two 
distinct methodologies, consistent with the ones previously 
described for single-frame view analysis. All multi frame 
views have a fixed number of frames (25).

For the stack of cine bSSFP SAX slices, each slice was 
processed independently using the approach depicted in 
Fig. 3. The training of the model on this particular view was 
conducted under three different scenarios: first, by using the 
complete set of slices for each patient; second, by employ-
ing a subset of three contiguous slices centred around the 
middle slice, and third, by selecting a broader subset of five 
slices centred around the middle slice (see Fig. 4). For each 
scenario, we calculated the weighted accuracy to evaluate 
the model performance. Based on this outcome, the scenario 
with the highest accuracy was adopted for all subsequent 
experiments pertaining to this view.

Post processing analyses

To analyze the features that the model is focusing on, we 
computed the saliency maps [26] for the models obtained 
on the views leading to the highest weighted accuracy. To 
obtain the saliency map for those models, we computed the 
derivative of the output with respect to the input for each 
individual model.

Additionally, we also used the best performing models to 
conduct a series of subgroup analysis based on the available 
patient characteristics.

Results

Population characteristics

Baseline patient characteristics are summarized in Table 1.

Cine bSSFP SAX stack results

The results obtained using the cine bSSFP SAX stack 
for classification are reported in Table  2. The best results 
for this view are obtained using three slices. This is to be 
expected since the myocardium is typically best visible 
in the middle slices. Hence, for all other experiments and 
results presented herein for this view, we have used a fixed 
number of slices equal to three.

followed by a fully connected layer to generate the final 
output. The task was structured as a binary classification 
problem [21], and we adopted two distinct training strate-
gies: a classical approach and a FSL approach. In the clas-
sic training paradigm, a sigmoid activation function [22] 
was used at the model’s output layer to obtain probabilistic 
predictions ranging from 0 to 1. Conversely, for the FSL 
strategy, we omitted the terminal fully connected layer. For 
this study we used prototypical networks implemented as in 
[10] for FSL.

In this study, given the constraints of a limited data-
set, we used k-fold cross-validation  [23] with k = 2, over 
50 training epochs using the following procedure. First, a 
model was trained from scratch on K1 and evaluated on K2 
for a total of 50 epochs. Second, the same model architec-
ture was trained from scratch on K2 and tested on K1 for 50 
epochs. This process ensured that both models were trained 
independently on independent subsets of the data, enabling 
their comparison.

To evaluate their performance, we computed the weighted 
accuracy for each epoch on the respective test set. At each 
epoch, we computed the performance of each model, and 
averaged the performance to obtain an overall score. We then 
select the best training epoch using this score. The defined 
score is described in the Data pre-processing section.

To preserve data integrity, the dataset was divided such 
that all CMRIs from a single patient were grouped into the 
same fold, preventing any patient’s data from being distrib-
uted across multiple folds. We also ensured a balanced dis-
tribution of normal and myocarditis cases in both folds to 
maintain class proportions across folds. The models were 
consistently trained using the Adam optimizer [24] with a 
learning rate maintained at 0.0001. For the last layer of the 
model, we have used a dropout function with a dropout rate 
of 0.5. As a loss function, for the classic models we have 
used the binary cross entropy (BCE) [25] and for FSL we 
have used the negative log-probability as described in [10]. 
The data augmentation process involved applying inten-
sity perturbation, random rotation within ± 10 degrees, and 
zooming between 0.9x and 1.15x to enhance the variability 
of the training dataset.

Classification based on multi frame images

For processing the multi-frame views, our approach involved 
using a spatial CNN (backbone) with six convolutional lay-
ers. The backbone was applied to individual frames inde-
pendently. The resulting feature maps from each frame were 
then concatenated. Subsequently, a single 2D convolutional 
layer was applied to this aggregated feature set. The goal 
of this layer is to extract both spatial and temporal features 
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All

The weighted accuracy computed for all the previously 
described models are reported in Table 3. The best results 
were obtained for PSIR LGE images in 2-chamber and 
4-chamber views. On both views the model obtained an 
accuracy greater than 90%. On the single frame views the 
models achieved higher overall performance than on the 
multi frame views. Cropping the images using increments 
of j improved the performance for some views (e.g. T2 
weighted 4-chamber view, cine bSSFP 2-chamber view), 
but for the best-performing views, the performance did not 
increase, and using the original images yielded the best 
results.

Table 1  Baseline patient characteristics and risk factors
Male 137 (51.89%)
Female 127 (48.1%)
Age (years) 54.46 ± 15.87 years
Origin All European
Weight 75.01 ± 10.96 kg
Height 169.79 ± 7.13 cm
Diabetes 34 (12.84%)
Hypertension (HTA) 193 (73.1%)
Hypercholesterolemia 156 (59.09%)
Smoking history 71 (26.89%)
Previous Angina 15 (5.68%)
Forced expiratory volume (FEVS) 47.47 ± 4.58%

Fig. 4  The five middle slices for the multi slice multi frame view (cine bSSFP SAX stack): (a) slice 5, (b) slice 6, (c) slice 7, (d) slice 8, (e) slice 
9. The middle frame is depicted for all 5 slices

 

Fig. 3  Illustration of the multi-
frame processing approach using 
a spatial CNN backbone with 
six convolutional layers. This 
diagram depicts the process 
where the backbone is applied 
independently to each frame, 
followed by the concatenation 
of resulting feature maps from 
all frames. A subsequent single 
2D convolutional layer is then 
utilized to extract and integrate 
both spatial and temporal features 
across the entire frame set
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ranges, with the highest accuracy in individuals weighing 
over 79  kg. The slight decrease in accuracy for patients 
under 69 kg indicates sensitivity to patient physique.

In the diabetes subgroup analysis, both models exhibited 
high accuracy in diabetic patients. The 2-chamber model 
maintained consistent accuracy across diabetic and non-dia-
betic patients, while the 4-chamber model showed a notable 
decrease in non-diabetic patients.

For the HTA subgroup, the 2-chamber model consistently 
outperformed the 4-chamber model in both hypertensive 
and non-hypertensive patients.

For patients with hypercholesterolemia, the 2-chamber 
model achieved slightly higher accuracy than the 4-chamber 
model. No notable difference in performance was observed 
between patients with or without hypercholesterolemia.

Regarding smoking status, the 2-chamber model showed 
exceptional accuracy, particularly among smokers, indicat-
ing superior effectiveness in myocarditis detection across 
smoking statuses.

In the angina subgroup, both models performed better in 
patients with angina, likely due to specific imaging markers 
introduced by angina.

For LVEF, the 2-chamber model maintained high accu-
racy across different LVEF values, while the 4-chamber 
model performed better as LVEF increased.

Given the limited number of samples, the conclusions 
drawn above require confirmation on larger datasets.

For the best performing models, we have included the 
metrics computed for the last epoch (Table 6) and the ROC 
curves (Fig. 11).

Discussions

Comparative analyses demonstrated that the FSL approach 
outperformed the classical training method across the 
majority of the image types and image views, underscoring 
its efficacy. In the control group, which includes 38 cases, 
the artificial intelligence algorithm identifies 1 case as pos-
sibly positive for the diagnosis of myocarditis. The patient 
was in the 24–40 years range, and his history has identi-
fied a recent viral disease. However, the patient was clini-
cally asymptomatic, and showed no changes in laboratory 
tests. CMRI imaging of the patient showed a small punctate 
change in the myocardium, indicating possible microvascu-
lar damage at this level without clinical significance. This 
fact proves that the algorithm developed during this study 

Table 4 displays the number of samples with myocardi-
tis and without myocarditis for each view in our dataset. 
Although the patient number is the same, for some patients 
certain views are missing views.

For the saliency analysis, we considered the two best-
performing models and views. Sample saliency map for 
both the LGE 2-chamber and 4-chamber views are dis-
played in Fig. 4. The top two images in Fig. 5 represent the 
2-chamber view, where the model predominantly examines 
the myocardial region to perform predictions. Similarly, the 
bottom two images represent the 4-chamber view, with the 
model focusing primarily on the myocardial region for the 
predictions.

Statistical analysis

In this subsection we further analyze the best performing 
models in terms of weighted accuracy. The ROC curves 
for both models are depicted in Fig. 6, alongside the AUC 
score. Both models reached AUC scores greater than 90% 
and the best results were obtained on LGE 2-chamber view. 
Using the thresholds derived from the ROC curves, we 
computed the performance metrics for both models (see 
Table 5). Given the already close to optimal performance, 
using the thresholds derived from the ROC curves did not 
further improve the model performance in terms of weighted 
accuracy. For the best two models, we have computed the 
DeLong test [27, 28]. The P-value between the models in 
Table 5 is 0.08, indicating that the difference between the 
models is statistically not significant.

The confusion matrix for the best model obtained on 
LGE 2-chamber view is depicted in Fig. 7: a single FN was 
obtained alongside eight FPs.

The confusion matrix for the best model obtained on 
LGE 4-chamber view is depicted in Fig. 8.

Figures 9 and 10 display four sample cases from the data-
set: one true positive (TP), one true negative (TN), one false 
positive (FP), and one false negative (FN) for LGE 2-cham-
ber view and LGE 4-chamber view.

For the age-based subgroup analysis, patients were 
divided into three equally sized bins. No significant varia-
tions in weighted accuracy were observed across the age 
intervals in the 2-chamber model. However, the 4-chamber 
model showed improved accuracy for patients older than 62 
years.

For the weight-based subgroup analysis, the 2-chamber 
model demonstrated superior accuracy across all weight 

Table 2  Weighted accuracy obtained for the cine bSSFP SAX stack, for different number of slices selected as input for the classification network
View Classic FSL Classic FSL Classic FSL
Number of slices All 3 5
Weighted accuracy [%] 64.2 61.9 67.2 67.5 65 67.3
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T2 weighted 2-chamber view 38 225
T2 weighted 4-chamber view 38 225
LGE 2-chamber view 38 226
LGE 4-chamber view 38 226
cine bSSFP 2-chamber view 38 227
cine bSSFP 3-chamber view 9 161
cine bSSFP 4-chamber view 38 227
cine bSSFP SAX stack (3 slices) 38 226

Fig. 5  Two sample saliency maps are shown for the LGE 2-chamber 
view (top row) and the LGE 4-chamber view (bottom row). For each 
view, the saliency maps are presented with the control subject on the 
top and the myocarditis case on the bottom
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number of patients included in the artificial analysis algo-
rithm allows it to detect even those minor changes occurring 
in the myocardium [29, 30].

In the area of myocardial disease diagnosis based on 
CMRI, our study adopts an approach where each CMR 
image sequence is examined independently, a strategy that 
differs from those seen in prior studies like those by Shari-
frazi et al. [3], Shoeibi et al. [11] and Moravvej et al. [12]. 
The approaches present in literature achieved an accuracy 
between 97.41 and 99.33% on the Z-Alizadeh dataset. 
Our model achieved a weighted accuracy of 96.9% for 
myocarditis detection on LGE 2-chamber view. While the 
results are slightly lower (0.5% difference), the results are 
not directly comparable. Our approach enabled a granular 
examination of how individual imaging views—ranging 

has a high detection rate of changes, even minor, occurring 
at the myocardial level.

Analyzing patients in the myocarditis group, we found 
that the artificial intelligence algorithm identified from a 
total of 231 cases, 8 cases, as being false negative. These 
false-negative results were likely caused by diffuse distribu-
tion of a small amount of fibrosis in the myocardium, with 
patients presenting with forms of self-limiting myocarditis. 
For some patients diagnosed with myocarditis it is possible 
that the fibrosis region is only visible in the 2-chamber or 
only in the 4-chamber orientation, further complicating 
the single image series-based classification. Another pos-
sible cause of these false negative results could also be the 
relatively small number of patients included in the group 
with myocarditis. Recent studies have proven that a larger 

Table 5  Performance metrics obtained for the best performing models
View Accuracy Weighted_Accuracy Sensitivity Specificity PPV NPV AUC score
LGE 2-chamber view 96.9 96.9 96.4 97.3 99.5 82.2 96.5
LGE 4-chamber view 90.3 90 91.1 89.4 98 61.8 90.9

Fig. 8  Confusion matrix obtained for the model corresponding to the 
LGE 4-chamber view classification

 

Fig. 7  Confusion matrix obtained for the model corresponding to the 
LGE 2-chamber view-based classification.

 

Fig. 6  ROC curvers obtained 
for the best performing models, 
i.e., employing FSL on the LGE 
2-chamber and LGE 4-chamber 
views respectively
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The saliency analysis, in particular, offers valuable insights 
into what the algorithm considers important when making 
decisions, focusing more on how the model prioritizes dif-
ferent areas of the images for diagnosis. This saliency analy-
sis underscores our model’s reliance on features within the 
myocardial region and fosters a greater understanding of 
the patterns indicative of myocarditis. Through this strat-
egy, our study contributes to the body of knowledge in car-
diovascular magnetic resonance imaging. Future research 
will focus on combining the different views and types of 

from T2-weighted acquisitions to LGE sequence—contrib-
ute distinctly to the accuracy and reliability of myocardi-
tis detection. By evaluating the diagnostic performance of 
each view, our research not only identified the most effec-
tive sequences for myocarditis detection but also offered a 
rich, multi-faceted understanding of the disease’s radiologi-
cal presentation. This contrasts with the aggregated view 
analysis in other studies, which, while effective in harness-
ing composite information, may overlook the unique diag-
nostic value embedded within each specific imaging angle. 

Fig. 9  Four sample cases for the LGE 2-chamber view: (a) TP, (b) FP, (c) TN, and (d) FN
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acquisitions (cine, LGE, T2) in an attempt to extract com-
plementary information and to further enhance the predic-
tion performance. Another future research direction aims at 
extending this model to differentiate myocarditis from other 
cardiac conditions, such as ischemic heart disease or car-
diomyopathies, which are also commonly encountered in 
clinical practice.

Limitations

The dataset’s limited size and notable imbalance (231 
myocarditis cases versus 38 controls) present potential 
limitations to the study’s generalizability, potentially not 
capturing the full clinical spectrum of myocarditis presen-
tations. The limited data may additionally pose challenges 
on the multi-frame classification network which has more 
parameters [31].

This is a single center study with all the annotations being 
binary labels. For the future we plan to perform (i) a multi-
center study with a larger number of samples, (ii) collect 
multiple expert annotations for each case. This will allow 
us, amongst others, to perform inter-observer analyses. The 
CMR views used in Z-Alizadeh dataset are different from 
the ones available in our dataset. As a result, a direct com-
parison was not possible.

In this study, our DL model was specifically trained to 
distinguish between normal and myocarditis cases based on 
CMRI data. While the model demonstrated high accuracy 
in differentiating these two groups, it is important to note 
that this study does not address the detection of myocarditis 
in the presence of other cardiac conditions. Therefore, the 
current findings are limited to distinguishing myocarditis 
from normal heart function, and the generalizability of this 
model to broader clinical scenarios involving other cardiac 
pathologies remains to be tested.

The use of k-fold cross-validation in this study may lead 
to an overestimation of model performance, particularly 
given the small size of the dataset. This is because, with 
a limited amount of data, even slight variations in the data 
splits can significantly influence the results. With the current 
dataset, we employed the best possible evaluation strategy. 
However, we acknowledge that a standard training-vali-
dation-test split would provide a more robust evaluation 
framework. We encourage others to build on our work using 
larger datasets. In the future, we also plan to implement this 
approach once more data is available.

Table 6  Weighted accuracy of the myocarditis classification task 
obtained for patient subsets
Gender 2-chamber 

[%]
4-cham-
ber [%]

Male 98.2 89.3
Female 95 90.5
Age > 62 years 96.7 96.7
Age > 48 years and Age ≤ 62 years 98.7 85.2
Age ≤ 48 years 97.2 89.4
Weight > 79 kg 100 94.3
Weight ≥ 69 kg and Weight ≤ 79 kg 97.5 93.2
Weight < 69 kg 94.2 86.6
Diabetes 96.8 98.4
No Diabetes 97 89.2
Hypertension (HTA) 97.9 92.9
No HTA 96.1 86.5
With hypercholesterolemia 97.4 91.4
Without hypercholesterolemia 96.9 89.6
Smoker 99.1 92
Non-smoker 95.8 89
Angina 100 96.4
No Angina 96.7 89.8
Left ventricular ejection fraction (LVEF) 
< 50%

97.9 85.4

LVEF ≥ 50% 97 90.7

Table 7  The metrics computed for the best performing models at the last epoch
View Weighted Accuracy Sensitivity Specificity AUC score TP TN FP FN
LGE 2-chamber view 94.9 94.2 97.3 96.9 209 37 1 17
LGE 4-chamber view 88.3 87.1 89.4 93.7 208 30 8 18

Fig. 10  Four sample cases for the LGE 2-chamber view: (a) TP, (b) FP, 
(c) TN, and (d) FN
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