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Revolutionizing healthcare: 
a comparative insight into deep 
learning’s role in medical imaging
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Recently, Deep Learning (DL) models have shown promising accuracy in analysis of medical images. 
Alzeheimer Disease (AD), a prevalent form of dementia, uses Magnetic Resonance Imaging (MRI) 
scans, which is then analysed via DL models. To address the model computational constraints, 
Cloud Computing (CC) is integrated to operate with the DL models. Recent articles on DL-based 
MRI have not discussed datasets specific to different diseases, which makes it difficult to build the 
specific DL model. Thus, the article systematically explores a tutorial approach, where we first 
discuss a classification taxonomy of medical imaging datasets. Next, we present a case-study on 
AD MRI classification using the DL methods. We analyse three distinct models-Convolutional Neural 
Networks (CNN), Visual Geometry Group 16 (VGG-16), and an ensemble approach-for classification 
and predictive outcomes. In addition, we designed a novel framework that offers insight into how 
various layers interact with the dataset. Our architecture comprises an input layer, a cloud-based 
layer responsible for preprocessing and model execution, and a diagnostic layer that issues alerts 
after successful classification and prediction. According to our simulations, CNN outperformed other 
models with a test accuracy of 99.285%, followed by VGG-16 with 85.113%, while the ensemble model 
lagged with a disappointing test accuracy of 79.192%. Our cloud Computing framework serves as an 
efficient mechanism for medical image processing while safeguarding patient confidentiality and data 
privacy.
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In recent years, the healthcare industry has become increasingly interested in the latest technologies. Cloud 
computing (CC)1 and Deep Learning (DL)2 are two main domains that have revolutionized the healthcare eco-
system, having a great amount of potential in providing effective and innovative solutions to the challenges faced 
by healthcare professionals. One such example and challenge is the early treatment and diagnosis of Alzheimer’s 
Disease (AD), which is a neurological disorder that has affected millions of people worldwide. CC allows users 
to process and access data, storing data and applications on remote servers via Internet. The ability of healthcare 
providers to store and process enormous amounts of data in an economical and scalable manner due to CC has 
completely changed the healthcare  sector3. However, significant security and privacy risks are associated with 
using CC in healthcare, especially when dealing with sensitive patient  data4. Today, healthcare services make 
use of drones to deliver medical aid to remote places to extend the medical  facility5,6.

The impact of AI in 2022 was estimated at around 15 billion USD and it is expected to be 187 billion USD by 
the year 2030 which is a 36% compound annual growth rate. Figure 1 shows the growth of AI in healthcare over 
the  year7. The use of digital technologies and enhanced care of patients are the main factors to boost the growth 
of market size in the healthcare domain. There have been observations on DL-based solutions over the years for 
diagnosis that have enhanced the trust of the medical community in primary  research8. Moreover, explainable AI 
has provided a new dimension to verify and provide explanations for the decision  made9. The projected number 
of people in different age groups in the U.S. suffering from Alzheimer’s Disease from the year 2010 to 2050 are 
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shown in Fig. 2, as per study  at10. Figure 2 also indicates drastic growth of Alzheimer’s Disease from 4.7 million 
to 13.8 million after the age of 85 years because of social and environmental conditions.

DL is a promising approach that has demonstrated impressive performance in a number of areas, including 
Speech Recognition, Medical Image Classification, and Natural Language  Processing11–14. Consequently, there 
has been a lot of interest in using DL models in healthcare in recent years. DL models in healthcare can help with 

Figure 1.  Market size of AI in healthcare  domain7.

Figure 2.  Impact of Alzheimer on  age10.
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early disease detection, effective diagnosis, and individualized  treatment15. The early detection and diagnosis of 
AD is one of the most promising uses of DL in healthcare.

The field of medical imaging is progressing very fast with the developments presented for 2019 and beyond 
giving us interesting insights on both technology adoption and market dynamics. Ultrasound imaging, a critical 
aspect of diagnostic procedures, accounted for a large share in the market of 20.6% across globes as at 2019. North 
America was also prominent in this period by having a leading market portion of 42.1%, thereby emphasizing the 
pioneering nature of the region’s healthcare  innovation16. An important trend is that Artificial Intelligence (AI) 
is being integrated into medical imaging, and it is anticipated to hit $4.3 billion by 2026 with regard to estimates. 
The global shift towards these diagnostic imaging processes is expected to reach 7.6 billion by 2030. Additionally, 
X-ray systems had dominated the market at around 30% in terms of its total sales in the year 2019 while multi-
slice CT scanners had taken up about three quarters of their own markets back in 2018. The financial landscape 
valued this total at $3,199 million in FY2020 setting pace for notable valuations anticipated for MRI scanners’ 
markets in FY2027 or PET scanners market by FY2019 respectively. Moreover, the push towards advanced 
imaging techniques is mirrored in the growth predictions for nuclear medicine imaging and medical imaging 
software, poised for significant growth by 2026. The Asia-Pacific region, not to be outdone, is projected to experi-
ence a 5.9% CAGR in the medical imaging market between 2018 and 2023, reflecting a global tilt towards more 
sophisticated diagnostic capabilities. Teleradiology emerges as a pivotal technology, with its market projected 
to reach $10.8 billion by 2026. Amidst these advancements, General Electric’s market presence, with a 15.2% 
share in 2019, illustrates the competitive nature of the industry. Despite these technological strides, challenges 
such as the 20% of breast cancers undetected by mammography alone highlight the ongoing need for innovation 
and improvement in imaging modalities, including the promising growth of Optical Coherence Tomography 
(OCT) systems, expected to ascend at a CAGR of 10.4% from 2021 to 2028. These developments not only reflect 
the current state but also chart a course for the future of medical imaging, underscoring a blend of technological 
advancements, market shifts, and the perpetual aim of enhancing diagnostic accuracy and patient care.

Dataset images need to be processed into the platform that supports high computational environment. Hence, 
a platform for the storing, processing, and analysis of massive datasets is provided by CC that has transformed 
image-based categorization analysis in the healthcare system. CC offers a scalable and economical alternative 
for processing, storing, and analyzing enormous numbers of medical images in light of the growing digitization 
of medical data and the explosion in high-resolution medical imaging. Healthcare organizations can use the 
enormous computing capacity of the cloud to speed up challenging image classification tasks, such as locating 
cancers, lesions, or anomalies in radiological scans. Healthcare providers can drastically cut processing time by 
outsourcing resource-intensive computations to the cloud, enabling quicker diagnostic and  treatments17.

Additionally, the collaborative nature of the cloud enables seamless data exchange and inter-institutional 
collaboration, allowing medical professionals to access and examine images from a distance. This has signifi-
cant benefits for telemedicine and second-opinion settings where experts can share their opinion irrespective 
of regional  limitations18. Advanced ML and AI techniques can also be used with cloud-based image analysis. 
These algorithms are capable of learning from various datasets and progressively increasing the precision. Hence, 
they can spot patterns and anomalies in medical images. The healthcare sector can increase diagnostic precision, 
boost patient outcomes, and streamline the entire healthcare workflow by utilizing the power of  CC19. Therefore, 
CC is the best option for healthcare providers to store and process massive amount of patient data because of its 
scalability and everywhere accessibility. Using the given data, DL models can be trained on cloud platforms to 
find patterns and forecast  outcomes20. As the CC resources are widely available so, DL models especially suited 
for CC in the healthcare industry must be  developed21.

CC has completely changed how data is processed and  stored22. CC has made it possible for healthcare workers 
to communicate effectively, share medical data, and monitor patients from a distance. With the help of the Cloud 
and DL the image classifications can be done in the optimal and fastest way. In this study we have focused on 
application of DL models for the early identification and diagnosis of AD in the healthcare industry. Alzheimer’s 
Disease (AD) is a degenerative neurological condition that impairs elderly people’s memory and cognitive abili-
ties. A lot of patient information is needed for the diagnosis and treatment of AD, including medical histories, 
blood tests, and brain imaging studies. There is a need for effective and precise tools to analyze and derive valuable 
insights from the growing amount of healthcare provider data. A subset of ML called DL has demonstrated well 
in addressing this demand and has been used in a number of healthcare fields, including  AD23.

In the field of categorizing AD, Machine Learning (ML) and DL have become crucial tools, providing previ-
ously unattainable insights into the complicated patterns of neuroimaging, clinical, and other medical-related 
 data24. Support Vector Machines (SVMs) and Random Forests, ML approaches, have demonstrated proficiency 
in extracting discriminative features from neuroimaging modalities like Magnetic Resonance Imaging (MRI) and 
Positron Emission Tomography (PET) scans. These techniques work well in lower-dimensional areas when the 
retrieved characteristics indicate distinct neuroanatomical differences linked to various illness phases. In addi-
tion to this, the development of DL has also played important advances in the classification of AD. Convolution 
Neural Networks (CNN) have demonstrated a special aptitude for identifying spatial patterns in neuroimaging 
data, catching minute structural anomalies that would challenge conventional analysis. The architecture’s innate 
capacity to preserve context from earlier time steps gives them the sensitivity to spot early alterations in brain 
activity linked to diseases. Utilizing Transfer Learning (TL), which allows pre-trained DL models, has also proved 
a good option for the identification of AD from the available  datasets25.

For both medical professionals and patients, accurate classification of medical images using cutting-edge 
image analysis algorithms has important  consequences26,27. The accurate classification of images serves as a 
powerful tool for decision-making for clinicians, enhancing their clinical knowledge with quantitative and 
data-driven  insights28,29. By identifying small patterns and anomalies that can be invisible to the human eye, 
physicians can improve diagnostic accuracy by utilizing ML and DL  models30. This is especially important in 
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fields like radiology, where proper classification of medical pictures can help early discovery of the diseases, allow-
ing prompt treatment and better patient  health31. Additionally, automated image analysis lessens the cognitive 
burden on doctors, enabling them to devote more time for tailored patient care and nuanced interpretations as 
opposed to lengthy routine picture  assessments32. Doctors may confidently diagnose illnesses, create personal-
ized treatment plans, and track disease development with increased precision by incorporating computational 
models into their workflow.

Accurate medical picture classification benefits patients by earlier identification, more potent therapies, ear-
lier start of suitable treatments, all-around improved healthcare experiences, and possibly preventing disease 
progression in its early stages. Advanced image analysis can also reduce diagnostic ambiguity, which reduces 
patient anxiety since people are better able to make educated decisions about their healthcare when informa-
tion is disseminated quickly and  accurately33. As medical technology develops, patients gain from a healthcare 
ecosystem where clinical  knowledge34 and AI-powered image analysis work together to provide optimized care 
 routes35. This environment promotes patient population trust and well-being36. For the classification challenge 
of the medical images for Alzheimer’s Disease, three DL models are analyzed and implemented using CNN, 
Visual Geometry Group (VGG-16), and the Ensembled model, in this study. The topic of early identification 
and detection of AD is addressed by the proposed architecture and algorithm.

Research contributions

• This research offers insights into the current status of DL and CC research in healthcare. Through a compre-
hensive review of existing literature, it uncovers research gaps. By utilizing MRI images, the study enhances 
AD diagnosis and prognosis, potentially leading to faster and more precise treatment.

• The paper compares the performance of three distinct DL models namely: CNN, VGG-16, and Ensembled 
model for classification and prediction task of Alzheimer’s Disease. This evaluation offers important insights 
into the applicability and efficicny of various models for medical image analysis.

• Simulation results show that CNN and VGG-16 models perform better on accuracy and predictions for 
medical image analysis investigations.

The remaining work is organized as follows. Section “Related work” provides a literature survey of the existing 
states of the art. Section “Classification of medical imaging datasets” consists of the classification of diseases and 
their related database available in the public domain for research purposes. Section “Case study: Alzheimer’s 
MRI classification using DL methods” provides architecture and algorithm for the proposed case study on AD 
using DL and transfer learning, Sect. “Simulation results” provides the result and comparative analysis of CNN, 
VGG-16, and Ensembled model on different datasets. The final section “Conclusion” provides the summary of 
the comprehensive analysis of the different datasets.

Related work
This section presents a details analysis of the literature survey mentioned in the Table 1 with existing state-
of-the-art approaches. In recent years, DL techniques for medical image processing have attracted increasing 
amounts of interest for medical practitioners. For various medical imaging modalities, such as ultrasound and 
MRI, researchers have presented a variety of DL architectures. In the field of healthcare Nancy et al.37 proposed 
a smart healthcare system that integrates Internet-of-Things (IoT) and a cloud-based monitoring system for 
the prediction of heart disease using DL. The suggested method predicts heart disease with a 92.8% accuracy 
rate. The authors conclude that the suggested approach can effectively predict heart disease and can be used in 
real-time healthcare monitoring analysis. An approach for a cloud-based encrypted communication system for 
diagnosing tuberculosis (TB) was presented by Ahmed et al.38. The proposed system seeks to protect the privacy 
and security of medical images while enabling efficient and accurate diagnosis using DL techniques. Authors  in39 
propose a hybrid Deep Learning network to enhance the classification of Mild Cognitive Impairment (MCI) from 
brain MRI scans. The model integrates the Swin Transformer, Dimension Centric Proximity Aware Attention 
Network (DCPAN), and Age Deviation Factor (ADF) to improve feature representation. By combining global, 
local, and proximal features with dimensional dependencies, the network achieves better classification results. 
The experimental evaluation on the ADNI dataset shows the model’s effectiveness, with an accuracy of 79.8%, 
precision of 76.6%, recall of 80.2%, and an F1-score of 78.4%. Furthermore, some studies have also focused on 
the security aspects of images as well. For instance, Gupta et al.40 presents a DL approach for enhancing the 
security of multi-cloud healthcare systems that outperforms other methods in terms of detection accuracy and 
false alarm rate. Qamar et al.41 proposed a DL-based method for analyzing healthcare data at the same time 
ensuring cloud-based security that achieves high accuracy in classifying healthcare data and can be used as an 
effective tool for healthcare data analysis with cloud-based cybersecurity.

In risky manufacturing environments, Simeone et al.42 offers an AI-based cloud platform for monitoring risk. 
According to the authors, their platform can significantly lower the frequency of workplace accidents and increase 
employee  productivity43. Cotroneo et al.44 proposed a DL-based technique to improve the analysis of software 
failures in CC systems. The authors described a DL-based method for identifying and categorizing software errors 
in CC systems using CNNs. In order to monitor patients in real-time and provide individualized recommenda-
tions, Motwani et al.45 proposed the Smart Patient Monitoring and Recommendation framework. A real-world 
dataset was used to evaluate the proposed framework, and the results demonstrated that it can accurately forecast 
patient conditions and offer useful personalized recommendations, thereby enhancing patient care. A DL-based 
pathology detection system for smart, connected healthcare was proposed by Hossain et al.46. The system uses 
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images taken with a smartphone and sent to a cloud-based server for analysis to make a diagnosis of skin cancer. 
The accuracy of the suggested system was 87.31%. Ghaffar et al.47 presented a comparative analysis on COVID-
19 detection for chest X-ray images. The authors used pretrained models like ResNet, DenseNet, and VGG to 
improve diagnostic accuracy. The study further builds upon these findings by providing a detailed comparative 
analysis of models such as MobileNet, EfficientNet, and InceptionV3, emphasizing their high accuracy rates 
in classifying COVID-19 infections, thus contributing valuable insights into effective methodologies for rapid 
and reliable disease detection in clinical practice. Illakiya and  Karthik48 focused on the significant role of DL 
algorithms in medical image processing, particularly in helping radiologists to diagnose accurately disease. Their 
research reviews 103 articles to evaluate deep learning methods like CNNs, RNNs, and Transfer Learning for 
detecting Alzheimer’s Disease (AD) using neuroimaging modalities such as PET and MRI. The study highlights 
the effectiveness of these models in the detection of AD, while also emphasizing the need for a more detailed 
analysis of the progression from Mild Cognitive Impairment (MCI) to AD. Kang et al.49 address the challenge of 
overfitting in 3D CNN models for AD diagnosis due to limited labeled training samples. They propose a three-
round learning strategy combining transfer learning and generative adversarial learning. This involves training 
a 3D Deep Convolutional Generative Adversarial Network (DCGAN) on sMRI data, followed by fine-tuning 
for AD versus cognitively normal (CN) classification, and transferring the learned weights for Mild Cognitive 
Impairment (MCI) diagnosis. The model achieves notable accuracies of 92.8% for AD versus CN, 78.1% for AD 
versus MCI, and 76.4% for MCI versus CN.

Yan et al.50 proposed a framework for DL-based concurrent processing and storage of healthcare data in 
a distributed CC  setting51. The framework that has been proposed aims to address the difficulties involved in 
the processing and real-time analysis of massive amounts of healthcare data. An evaluation of the proposed 

Table 1.  Comparative analysis of the existing state of the art. 1-Accuracy, 2-Sensitivity, 3-Specificity, 
4-Latency, 5-Bandwidth Utilization, 6-Robustness, 7-Security, 8-Fault Tolerant, 9-Efficiency, 10-Reliability.

References 1 2 3 4 5 6 7 8 9 10 Pros Cons

Gupta et al.55 Y N N N N N Y Y Y Y
Blockchain enabled system for early classification 
and detection of monkey-pox with the help of trans-
fer learning on skin lesion dataset

Increased latency and bandwidth while accessing 
blockchain

Akhtar et al.56 Y N N N N Y Y Y Y N
Internet of medical thing based healthcare monitor-
ing system that uses improved advanced feature set 
RNN

System requires high bandwidth and require large 
space to store patients data that is not secure

Nancy et al.37 Y Y Y N N Y N N N Y
A healthcare monitoring system for remote monitor-
ing of patients health and real-time analysis using 
IOT and Cloud

To handle IOT data requires higher bandwidth

Ahmed et al.38 Y Y Y N Y Y Y N Y Y
A Perceptual Encryption method, applicable for 
both the images i.e. color and grayscale, improves 
robustness against different attacks

An assumption of a cloud computation server that is 
private, which may not be applicable in all settings

Gupta et al.40 Y N N Y Y Y Y N N N The hierarchical model integrates seamlessly with 
the healthcare network’s hierarchical structure

Increased risk of malicious agents stealing or alter-
ing sensitive patient data

Qamar et al.41 Y N N N N N Y N Y Y Utilizes DL-based classification and feature selection 
to analyze EHR data with a focus on cyber security Additional complexity and potential security risks

Simeone et al.42 Y N N Y Y N N N Y Y Cloud-based platform for worker health monitoring 
in hazardous manufacturing environments

The potential cost and complexity for implementa-
tion

Bolhasa-ni et al.57 Y N N Y N N N N N N Comprehensive analysis of the possible uses of DL in 
IoT-based healthcare systems

Data Privacy and Security, increased risk of data 
breaches

Cotroneo et al.44 Y N N N N N Y Y Y Y
Yields comparable or superior results to manual 
clustering, which requires significant human effort 
and expertise

Requires high hardware requirements

Motwani et al.45 Y Y N N N Y N Y Y Y
Smart monitoring architecture monitors chronic 
patients in real-time and predicts Emergency, Alert, 
Warning, and Normal scenarios equally well locally 
and in the cloud

May require high costs for implementation and 
maintenance

Aazam et al.58 Y N N N N N Y N Y Y Explored the use of ML in healthcare applications 
with edge computing

Challenges in ensuring interoperability between 
different devices and systems, which can limit the 
ability to scale and deploy such solutions on a larger 
scale

Hossain et al.46 Y Y Y Y Y Y Y N Y Y Adequate for parallelization Need for a reliable and high-speed internet con-
nection

Praveen et al.59 Y Y Y N N Y Y N Y Y
OGSO-DNN is an energy-efficient illness detection 
and clustering approach for IoT-based sustainable 
healthcare systems

Scalability, Data privacy and security can be an issue

Shah et al.60 Y Y N Y Y Y N Y Y Y Improves data accuracy and processing speed in IoT 
environments Requires high bandwidth and robust infrastructure

Yan et al.50 Y N N N N N Y N Y Y RSIF framework enhances healthcare data access in 
the cloud for users and service providers

May require a significant amount of computational 
resources

Tuli et al.52 Y N N Y Y Y Y Y Y Y HealthFog: a portable, cost-effective solution for 
heart disease diagnosis using ensemble DL

Requires high compute resources for training and 
prediction

Durga et al.61 Y N N N N N N N N N Explored algorithms for enhancing IoT-based 
healthcare systems in this study High Complexity and Computation time
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framework using a prototype system reveals that it is capable of processing and storing large volumes of health 
data effectively. Tuli et al.52 proposed “HealthFog” for the automatic diagnosis of heart disease by integrating 
the IoT and fog computing environment. HealthFog uses an ensemble DL model to classify heart diseases based 
on ECG signals, with this system has improved the accuracy and efficiency of heart disease  diagnosis53. Illakiya 
et al.54 present a novel Adaptive Hybrid Attention Network (AHANet) for the early detection of AD using brain 
MRI. AHANet integrates Enhanced Non-Local Attention (ENLA) for capturing global spatial and contextual 
information and Coordinate Attention for extracting local features. Additionally, an Adaptive Feature Aggrega-
tion (AFA) module effectively fuses these features, enhancing the network’s performance. Trained on the ADNI 
dataset, AHANet achieves a remarkable classification accuracy of 98.53%, outperforming existing methods in 
AD detection.

Novelty of the work
The article outlines a ground-breaking method for utilizing DL in healthcare, which focuses on medical image 
processing, specifically for MRI data-based AD diagnosis. In an effort to increase the accuracy of Alzheimer’s 
diagnosis. This study also conducts a thorough analysis of DL algorithms and CC. The article also discusses the 
various healthcare imaging databases analysis. For the experimental analysis, the three models-CNN, VGG-16, 
and an ensemble model have been analyzed for classification by carefully choosing an Alzheimer’s dataset. The 
recommendation of a novel design with three essential layers-the input layer, the cloud layer for preprocessing 
and model implementation, and the diagnostic layer for thorough categorization and notification generation is 
a standout addition. This layered approach improves model comprehension and provides guidelines for upcom-
ing implementations in the domain of Healthcare systems. Beyond model performance, the research presents a 
ground-breaking CC framework that revolutionizes medical image processing while putting the needs of patient 
privacy and data confidentiality first. This study is positioned as a leading contribution to the breakthroughs in 
DL in the healthcare ecosystem.

Classification of medical imaging datasets
An overview of all the image datasets, associated diseases, and techniques/technologies used for retrieving 
medical data is presented. [NOTE: All the presented datasets in the work are public and links are provided in the 
appendix. As of April 4, 2024, the links provided for accessing the datasets were verified to be functional. However, 
it is important to note that the authors cannot be held responsible for any changes, removal, or updates to the 
datasets as these links were sourced from the Internet. Any alterations to the dataset or additional information not 
accessible through these links are beyond the control and responsibility of the authors. Users are advised to verify 
the availability and integrity of the datasets independently]. The subsections provide vital information about the 
techniques/technologies and information regarding the associated disease or considered body parts. Medical 
imaging datasets are essential for the evolution of diagnostic and prognostic techniques in the healthcare area. 
Figure 3 presents the taxonomy of medical imaging data sets such as brain disease, eye diseases, head and neck 
disease, chest and abdomen, pathology, blood, bone, and skin database. These datasets include a wide range of 
medical images taken from various clinical contexts, such as X-rays images, MRI, CT, and ultrasound images. 
Medical imaging datasets are useful because they allow for the development and testing of cutting-edge algo-
rithms, predictive models, and AI-based applications that improve medical diagnosis, treatment planning, and 
patient care. Medical imaging datasets are significant because they can also provide researchers and healthcare 
practitioners with a plethora of visual information about a patient’s internal anatomical structures, physiological 
processes, and potential problems. This knowledge allows for the early detection and accurate characteriza-
tion of a wide range of medical problems, including, but not limited to, malignancies, cardiovascular diseases, 
neurological disorders, and orthopedics pathologies etc. The following section discusses the various datasets 
available for the various known diseases.

Associated diseases
This section contains necessary information related to the diseases mentioned in all medical image datasets.

Alzheimer’s disease
AD is a brain disorder that gradually affects the brain and results in memory, thinking, and loose the ability to 
work normally. As the disease progresses, individuals with Alzheimer’s may have difficulty with everyday activi-
ties, eventually losing the ability to recognize and communicate with people. The main cause of Alzheimer’s is 
under research, but it is believed to involve a complex interaction between genetics, lifestyle factors, and envi-
ronmental  factors62.

Parkinson’s diseases
Parkinson’s disease is a neurological condition that causes a chronic, progressive movement disorder. It results 
from the decline of dopamine-producing neurons in a particular region of the brain, which lowers dopamine 
 levels63. Tremors, stiffness, slowness of movement, and issues with balance and coordination are some signs of 
Parkinson’s  disease64. Non-motor symptoms such as cognitive decline and mood disorders can also be brought 
on by the disease. There is currently no cure for Parkinson’s disease, which typically develops gradually and gets 
worse over  time65.
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Spinocerebellar ataxia type II
The central nervous system is impacted by the uncommon genetic disorder known as Spinocerebellar ataxia type 
II. It is brought on by a mutation in the ATXN2 gene, which causes the cerebellum and other areas of the brain to 
deteriorate. Progressive movement issues, such as poor coordination, balance issues, slurred speech, and muscle 
stiffness, are a hallmark of SCA2. Additionally, it can cause psychological and cognitive symptoms like anxiety, 
depression, and memory issues. SCA2 is inherited in an autosomal dominant manner, which means that all it 
takes for a person to be affected by the condition is for one copy of the mutated gene to be inherited from one par-
ent. SCA2 currently has no known treatment options; instead, efforts are made to control the illness’s  symptoms66.

Mild traumatic brain injury
Concussion, also referred to as MTBI is a type of brain injury brought on by a blow to the head or body. Although 
the injury is usually not life-threatening, it is still referred to as “mild” because it can still result in many of physi-
cal and mental symptoms, including dizziness, confusion, memory issues, and mood swings. These symptoms 
may need medical attention and rehabilitation and can last for days, weeks, or even  months67.

AMD
Age-related Macular Degeneration is referred to as AMD. It is a chronic eye condition that damages the macula, 
the retina region that controls central vision. AMD can result in a progressive loss of vision, making it challeng-
ing to read, drive, or identify  people68.

DR
Diabetic Retinopathy, also known as DR, is an eye condition associated with diabetes that can cause  blindness69. 
The high level of sugar in the blood affects the retina blood vessels leak and constrict. If untreated, DR is a pro-
gressive condition that can result in vision loss. In order to stop or slow the progression of DR, routine eye exams 
and blood sugar control are  crucial70.

Glaucoma
It is a disease that damages the optic nerve which causes vision loss or blindness. The optic nerve transmits visual 
information from eye to the brain. This damage often occurs due to increased pressure in the eye, which can lead 

Figure 3.  Taxonomy of medical imaging dataset.
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to vision loss and, ultimately blindness if left untreated. Glaucoma can come in a variety of eye forms, such as 
primary angle-closure, open-angle, and normal-tension  glaucoma71.

Pathologic myopia
Pathologic myopia is a severe form of myopia (nearsightedness) characterized by a refractive error of at least 
− 6 diopters and associated structural changes in the eye. In pathologic myopia, the eye elongates, causing thin-
ning and stretching of the retina, which can lead to various complications such as retinal detachment, choroidal 
neovascularization, and macular  atrophy72.

Techniques/Technologies
In the medical field, different types of medical imaging technologies or techniques are used to capture images 
of the human body for treatment purposes and diagnosis. Each modality has its own strengths and weaknesses, 
and the particular medical issue being identified or treated determines which modality should be used.

DWI
Diffusion-weighted Imaging (DWI), is a type of medical imaging that creates images by utilizing the character-
istics of water molecules in tissues. It is commonly used in MRI and is sensitive to changes in the microstructure 
of tissues, such as those caused by stroke, inflammation, or  tumors73. DWI is particularly useful for detecting 
early signs of stroke and for monitoring the response to  treatment74.

PT
The term “positron emission tomography” (PT) is an imaging technique that uses radioactive material to measure 
and visualize the changes in the metabolic process. Different tracers are used to monitor the flow, absorption, 
and chemical composition of blood. It is often used as a medical and research tool to detect tumor  imaging75.

T1 and T2
T1 and T2 are MRI modalities that provide different types of tissue contrast. T1-weighted images have a shorter 
echo and repetition time, which makes them sensitive to changes in tissue composition, particularly in fat con-
tent. On the other hand, T2-weighted images have a longer echo and repetition time, which makes them sensitive 
to changes in tissue water content and can highlight fluid-filled structures such as cysts or  edema76.

MRI FLAIR
Fluid Attenuated Inversion Recovery (FLAIR) is an MRI pulse sequence used to suppress fluids such as Cerebro-
spinal Fluid (CSF) and highlight pathological tissues with high water content, such as tumors, inflammation, 
and demyelination lesions. It is commonly used in neuroimaging to visualize subtle abnormalities in the brain 
and spinal  cord77.

CT
Computed Tomography (CT) medical imaging produces comprehensive internal images of the body using 
X-rays. It is frequently used to identify and track many illnesses, including tumors, internal bleeding, and bone 
 fractures78. Multiple X-ray images of that area of the body taken by the CT scanner from various angles are 
combined to form a complex cross-sectional image of the body component being  investigated79.

Ultrasound
The medical imaging method known as ultrasound uses high-frequency sound waves to produce pictures of the 
organs and tissues of the body. The internal organs, tissues, and blood flow can be seen using this non-invasive, 
painless procedure. While ultrasound is frequently used in obstetrics to see the growing fetus, it can also be 
used to diagnose and track a number of medical conditions in other areas of the body, including the abdomen, 
pelvis, and  heart80.

Computed radiography
Digital radiographic images are created using Computed Radiography (CR), a medical imaging technique that 
employs Photostimulable Phosphor plates. A digital image that can be viewed on a computer is created in CR by 
scanning an imaging plate with a laser beam after it has been exposed to X-rays. For its superior image quality 
and adaptability, CR is widely used in medical imaging, particularly in radiography. Digital radiography (DR), 
which provides quicker image acquisition and lower radiation exposure for patients, has largely replaced  it81.

MR
By mixing radio waves and a potent magnetic field, the medical imaging method known as magnetic resonance 
produces detailed images of the body’s internal components. Frequently used to visualize the brain, spine, joints, 
and soft tissues and is particularly helpful in diagnosing conditions that might not be visible on other medical 
imaging techniques, like X-rays or CT scans. For some patients, MR imaging offers a safer alternative because it 
doesn’t expose them to ionizing  radiation82.
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Coronary CT angiography
In coronary CT Angiography (CTA), Computed Tomography (CT) is a non-invasive imaging method used to 
see the coronary arteries that provide blood to the heart. Contrast dye is injected into a vein and then circulated 
through the coronary arteries in this procedure. A 3D image of the coronary arteries is created by reconstructing 
images of the arteries taken by the CT scanner as the dye travels through  them83. Utilizing this method, coronary 
artery disease, blockages, and other heart conditions can be identified or  assessed84.

Radiotherapy structure set
A radiotherapy structure set is a collection of anatomical structures that are identified on medical images, such 
as organs or tumors, and which are typically used in the planning and administration of radiation therapy for 
the treatment of cancer. The structure set makes it easier to precisely direct radiation towards the tumor while 
minimizing damage to healthy cells and  organs85.

PET
Positron Emission Tomography (PET) is known as PET. It is a type of medical imaging procedure that creates 
3D images of bodily functions using radioactive materials called radiotracers. PET scans are frequently used to 
identify and treat cancer as well as other heart and brain  diseases86.

Endoscopy
It involves the insertion of a long thin tube with a camera on the other end to examine internal organs or tissues. 
It is frequently used to check the joints, respiratory system, and digestive system. Endoscopy can also be used to 
obtain tissue samples for biopsies and perform minor surgical  procedures87.

General microscopy
Using a microscope to view and examine samples that cannot be seen with the unaided eye, such as microor-
ganisms, cells, tissues, and small structures, is known as general microscopy. It involves using a microscope to 
enlarge the image of the sample being examined in order to examine its features and characteristics in greater 
detail. Several disciplines, including biology, medicine, material science, and forensics, among others, can benefit 
from general  microscopy88.

Electron microscope
An electron microscope that uses a beam of electrons for illumination to create an image of a sample. There are 
two variants of it one uses a transmission process and the other uses a scanning process. By colliding with the 
sample’s atoms, the electrons in the beam generate signals that can be picked up and used to build images with 
extremely high levels of magnification and resolution. Numerous scientific disciplines, such as materials science, 
biology, and nanotechnology, use electron  microscopes89.

Datasets associated with the classification of brain diseases
The objective of the AD Neuroimaging Initiative (ADNI) is to understand how the disease develops and to find 
biomarkers for its early diagnosis and treatment. The ADNI study is divided into several phases, such as ADNI-
1, ADNI-2, ADNI-3, and ADNI-GO (Grand Opportunity)90,91. Based on their cognitive abilities, the study 
participants can be divided into three groups: those with normal cognition (NC), mild cognitive impairment 
(MCI), and AD. Early Mild Cognitive Impairment (EMCI) and Later Mild Cognitive Impairment (LMCI) are 
two subgroups of MCI. An assortment of Neuroimaging datasets, such as structural and functional MRI scans, as 
well as data on demographics and clinical conditions, can be found in the Open Access Series of Imaging Studies 
(OASIS). Three datasets, referred to as OASIS-1, OASIS-2, and OASIS-392–94, have been made available by the 
OASIS project and are primarily used for research on AD. However, researchers have also used these datasets 
for related tasks like functional area segmentation. Table 2 depicts an overview of the datasets and difficulties 
associated with classifying brain diseases.

Table 2.  An overview of the datasets and difficulties associated with classifying brain diseases.

Dataset Year Techniques Associated disease Classification

ADNI-190 2004 T1, T2, DWI and PT Alzheimer’s NC, MCI and AD

ADNI-291 2015 T1, T2, DWI and PT Alzheimer’s NC, EMCI, LMCI and AD

ADNI-GO90 2009 T1, T2, DWI and PT Alzheimer’s NC, MCI and AD

OASIS  192 and OASIS  293 2007,2009 T1 Alzheimer’s NC and AD

OASIS  394 2019 T1, T2, PT and MRI FLAIR Alzheimer’s NC, AD

TADPOLE95 2017 T1, T2, DWI and PT Alzheimer’s NC, MCI, AD

PD De  Novo96 2019 T1 Parkinson’s NC and PD

SCA2  DTI97 2018 T1 and DWI Spinocerebellar ataxia type II NC and SCA2

MTOP98 2016 T1 and DWI Mild traumatic brain injury Healthy, category I or category II
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An extensive, global initiative to advance the comprehension, detection, and care of AD and similar diseases 
is the TADPOLE (Trajectory Analysis Project for AD)  dataset95. The dataset contains clinical and imaging infor-
mation from people who have been given the detection of Mild Cognitive Impairment (MCI), AD, or cognitive 
normality (CN). PD De Novo is a dataset of individuals who were newly infected with Parkinson’s disease (PD) 
and followed for up to three years to track the progression of the  disease96. The dataset includes clinical assess-
ments, imaging data, genetic information, and biospecimen samples from participants, and is intended to help 
researchers better understand the early stages of PD and develop new treatments. Some datasets concentrate on 
diagnosing mild traumatic brain injury and others on Spinocerebellar Ataxia type II (SCA2)97.

Datasets associated with eye diseases
Retinal Image Analysis for Multi-disease Detection (RIADD) is a public dataset that has a total of 2,740 retinal 
fundus  images99. The dataset has been specifically intended for the development of algorithms that can detect and 
categorize various common retinal illnesses, including retinopathy caused by diabetes, glaucoma, and macular 
degeneration caused by age. Retinal Fundus Glaucoma Challenge 2019 (REFUGE2 ) is a public dataset consist-
ing of retinal fundus images of both healthy and glaucomatous  eyes100 . It was introduced as part of a challenge 
to develop ML algorithms for automated glaucoma diagnosis. The AGE dataset is related to the disease glau-
coma. It is a dataset consisting of retinal fundus images collected from patients with glaucoma as well as healthy 
 individuals101. The dataset is intended for use in developing and testing algorithms for automated glaucoma 
detection and diagnosis based on retinal fundus images. In the Paediatric Automated Lamellar Keratoplasty 
Missions (PALM )  dataset102, 1159 color scans and their segmentation masks show the optic nerve head (ONH) 
and macula, two ophthalmology-related regions of interest. The retinal OCT (Optical Coherence Tomography) 
pictures dataset is a collection of retinal OCT images used to train and evaluate DL models for the detection of 
retinal illnesses such as macular degeneration, diabetic retinopathy, and  glaucoma103,104. A collection of retinal 
images used to identify cataracts is called the CAT ARA CTS dataset. The dataset includes eyes with and without 
cataracts, and it is made up of retinal images taken with a slit-lamp camera. Retinal Optical Coherence Tomog-
raphy (OCT)105 scans with Diabetic Macular Edema (DME) make up the Seg OCT (DME) dataset, a medical 
imaging collection that is openly  accessible106. Table 3 depicts an overview of eye disease datasets along with 
challenges.

Datasets associated with head and neck diseases
The MICCAI 2020 HECKTOR challenge dataset is a multi-institutional dataset of head and neck CT scans. It 
includes CT scans of 198 patients with head and neck tumors, along with annotations for Organs at Risk (OARs) 
and Gross Tumor Volumes (GTVs)110. The dataset is intended for use in developing and evaluating algorithms for 
automated segmentation of OARs and GTVs in head and neck CT scans. TN-SCUI 2020 is a dataset for thyroid 
nodule ultrasound image classification and  segmentation111 . The dataset consists of 5949 ultrasound images of 
thyroid nodules. The Head Neck Radiomics HN1 dataset is a collection of head and neck cancer patients’ medi-
cal images and clinical data. The dataset includes CT, MRI, and PET-CT images of the patient’s head and neck 
region, as well as clinical information such as tumor stage and treatment outcomes. The Head Neck PET-CT 
dataset consists of Positron Emission Tomography (PET) and computed tomography (CT) images of the head 
and neck region, which are used for diagnosis and treatment planning of head and neck cancer. The dataset 
includes images from 58 patients, with each patient having a PET and CT  scan112,113 .

The Ultrasound Nerve Segmentation dataset is a medical imaging dataset used for nerve segmentation tasks. 
It contains ultrasound images of the neck area of patients, with the goal of segmenting nerve structures in the 
images. The Dental X-Ray Analysis 1 Dataset is a publicly available dataset of dental X-ray images for the task of 
dental pathology detection. The dataset contains 5 different classes of dental pathologies, including Dental car-
ies, Dental fillings, Dental implants, Dental infections, and Dental fractures. The CLS 2009 dataset is a medical 
image dataset of the carotid bifurcation. It contains 200 contrast-enhanced CT Angiography (CTA) scans of the 
neck region, including the carotid bifurcation, from 100  patients113–116 . Table 4 depicts an overview of challenges 
and datasets related to head and neck diseases.

Table 3.  An overview of datasets and challenges related to tasks involving eye diseases.

Dataset Year Techniques Associated disease

RIADD99 2020 FP AMD, DR

REFUGE2100 2020 FP Glaucoma

AGE101 2019 OCT Closure glaucoma

DRIVE107 2019 FP Vessel extraction

ODIR-2019108 2019 FP AMD, glaucoma, diabetes, cataract, hypertension

PALM102 2019 FP Pathologic myopia

Retinal OCT  Images103104 2018 OCT DR

CAT ARA CTS105 2017 Video Surgery tools detection

RETOUCH109 2017 OCT Fluid segmentation

Seg OCT(DME)106 2015 OCT Diabetic macular edema
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Datasets associated with chest and abdomen
A medical imaging dataset called the automated Segmentation of Coronary Arteries contains heart CT Angi-
ography (CTA) images for the segmentation of coronary arteries. The dataset consists of 101 CTA heart images 
with an average of 291 slices per image. A collection of computed tomography (CT) volumes with various organ 
segmentations is called the CT-ORG dataset. It consists of 1,010 volumetric images of the thoracic and abdominal 
regions of the human body, with segments of the liver, pancreas, kidneys, stomach, gallbladder, aorta, and portal 
vein in each volume. The Medical Segmentation Decathlon (MSD) dataset consists of ten distinct medical image 
segmentation tasks for a variety of imaging modalities, including microscopy, CT, and MRI. Segmenting brain 
tumors, heart, liver, lungs, pancreas, prostate, and other organs are just a few of the  tasks117,118.

A collection of lung lung-CT scans makes up the Lung CT Segmentation Challenge dataset. Automated lung 
segmentation from CT scans is a crucial step in the diagnosis and treatment of many lung diseases, including 
cancer and emphysema. This project was designed to develop and evaluate algorithms for this task. A medical 
imaging dataset called the Breast MRI NACT Pilot is made up of breast MRI scans from breast cancer patients 
who received Neoadjuvant Chemotherapy (NACT) treatment. The data set might contain MRI images of the 
breast from various patients annotated for various breast structures, including breast tissue, tumor, and sur-
rounding anatomy, 514 for example. Anatomy 3 (Year: 2015): This dataset focuses on the segmentation of organs 
like the liver, lung, kidney, aorta, and trachea and includes both MR and CT scans. Developing algorithms to 
precisely segment these organs from MR and CT images, which are frequently used for various diagnostic and 
treatment planning purposes, may be a challenge. The data set might contain MRI and CT scans from various 
patients that have annotations for the relevant organs. CETUS 2014 (Year: 2014): This dataset focuses on the 
segmentation of the heart and utilizes ultrasound imaging. The challenge may involve developing algorithms 
to accurately segment the heart from ultrasound images, which are commonly used for cardiac imaging. The 
dataset may include ultrasound images from different patients with annotations for different cardiac structures 
such as the left ventricle, right ventricle, and  myocardium119–122. Table 5 depicts an overview of the datasets and 
challenges for tasks that involve organ segmentation in the chest and abdomen.

Datasets associated with segmentation of organs in chest and abdomen regions
The COVID-19 CT Diagnosis dataset is a collection of CT scan data from patients who tested positive and nega-
tive for the  virus125–127. Studies have employed CNNs and other machine learning models to extract features from 
chest X-rays and CT scans, achieving significant improvements in diagnostic accuracy. For instance, authors  in128 
demonstrated the efficacy of using CNNs in combination with recurrent neural networks (RNNs) for automated 
disease detection, underscoring the potential of hybrid models in enhancing diagnostic capabilities.

In order to generate the dataset, 2973 CT scans from 1173 individuals, including 888 COVID-19 positive 
cases and 285 COVID-19 negative cases, were obtained. The COVID Chest X-Ray Dataset is a collection of chest 
X-ray scans for cases that tested positive for COVID-19, for normal cases, and for instances that tested positive for 
other kinds of pneumonia. The dataset is comprised of 2 parts: Metadata, Which contains the patient’s data, and 
Image files, Which include the chest X-ray scans in Portable Network Graphics (PNG) format. There are a total 

Table 4.  An overview of the challenges and datasets related to head and neck diseases.

Dataset Year Techniques Emphasis

MICCAI 2020:  HECKTOR110 2020 CT, PT Tumors originating in the head and neck area

TN-SCUI  2020111 2020 Ultrasound Diagnosis of nodules in the thyroid gland

Head Neck Radiomics  HN1112 2019 CT Malignant growths in the head and neck

Head Neck PET-CT113 2017 CT, PT Tumor

Ultrasound Nerve  Segmentation114 2016 Ultrasound Nerve

Dental X-Ray  Analysis115 2015 Computed Radiography Caries

CLS  2009116 2009 CT Angiography Carotid bifurcation

Table 5.  Overview of datasets and challenges for tasks involving segmentation of organs in the chest and 
abdomen.

Dataset Year Techniques Considered body parts

Automated Segmentation of coronary  arteries117 2020 Coronary CT angiography Coronary arteries

CT-ORG118 2019 CT Liver, lung, kidney and bladder

Medical segmentation  decathlon119 2019 MR, CT Liver, lung, heart, pancreas and colon

Lung CT segmentation  challenge120,123 2017 Radiotherapy structure set Lung and heart

Breast MRI NACT  pilot121 2016 MR Breast

Anatomy3124 2015 MR, CT Liver, lung, kidney, aorta and trachea

CETUS122 2014 Ultrasound Heart
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of 12,721 images in the collection. COVID-19 AR, a dataset introduced in 2020, combined CT and CR imaging 
techniques to facilitate organ segmentation in patients with COVID-19. BCS-DBT, a dataset focused on digital 
breast tomosynthesis, was introduced in the same year with an emphasis on breast cancer  segmentation129–133.

A-AFMA-Detection, a 2020 dataset, utilized ultrasound imaging to detect amniotic fluid in the abdomen 
region. In 2019, the NSCLC-RadiomicsInterobserver1 dataset was introduced, focusing on NSCLC and utiliz-
ing a radiotherapy structure set for organ segmentation. The MIMIC-CXR dataset, introduced in 2019, utilized 
electronic health records and report data for chest image analysis. The NSCLC-Radiomics-Interobserver1 dataset 
is a collection of medical images and annotations for NSCLC patients. The dataset includes CT images of the 
chest region for 30 NSCLC patients, with annotations for various regions of interest (ROIs) within each image. 
The MIMIC-CXR (Medical Information Mart for Intensive Care Chest X-ray) dataset contains radiology reports 
and chest X-ray images. More than 65,000 patients’ chest X-ray images and corresponding reports totaling more 
than 350,000 are included. The patient’s associated demographic and clinical information, as well as frontal and 
lateral views of the chest, are all included in the  dataset134–136. Table 6 depicts an overview of Datasets and Chal-
lenges in tasks related to the Segmentation of Organs in the Chest and abdomen regions.

Datasets related with image analysis in Pathology
Pathology VQA (2020): This dataset was created especially for pathology-related visual question-answering 
(VQA) tasks. It involves responding to inquiries about pathology images, which necessitates comprehending 
the visual information contained in the images and doing  so137.

• PAIP 2020 (2020): In order to analyze and spot patterns and features in pathology images related to this 
particular type of cancer, this dataset specifically focuses on colorectal  cancer138.

• MICCAI 2020 CRPCC (2020): To investigate the synergy between radiology and pathology in disease diag-
nosis, this dataset combines radiology and pathology data for classification  tasks139.

• Post-NAT-BRCA (2019): The analysis of changes in cell morphology and structure following treatment 
is made possible by this dataset, which focuses on cell images specifically for studying the effects of post-
neoadjuvant therapy in breast  cancer140.

• ANHIR (2019): This dataset was created for pathology image registration, which entails aligning and register-
ing images from various sources or time points to allow for additional analysis and  comparison141.

• PAIP 2019 (2019): This dataset emphasizes the segmentation of liver tumors and tumor burden, offering 
information for the creation of algorithms and models for the precise segmentation of liver tumors and the 
estimation of tumor  burden142.

• Data Science Bowl 2018: The goal of this dataset, which contains images of cells, was to test participants’ 
ability to create algorithms for cell detection and classification  tasks143.

• Colorectal Histology MNIST (2018): This data which is based on patch-based analysis of colorectal pathol-
ogy, can be used to examine and spot patterns in histology images of colorectal  cancer144.

• CAMELYON 17 (2017): This dataset focuses on breast cancer metastases and provides information for 
creating models and algorithms for identifying and classifying metastatic lesions in breast cancer pathology 
 images145.

• Glas (2015): This dataset, which is based on patches of colorectal cancer pathology, offers information for 
examining and identifying features in patches of colorectal cancer pathology  images146.

• OCCIS (2014): Data for studying cell morphology and structure in relation to cervical cancer screening is 
provided by this dataset, which consists of overlapping images of cervical  cells147.

• MITOS-ATYPIA-14 (2014): This dataset focuses on the identification of mitotic cells with the goal of creating 
algorithms for the precise identification of these crucial markers of cell division and  proliferation148.

• Particle Tracking Challenge (2012): This dataset involves particle tracking in microscopy images, providing 
data for developing algorithms and models for accurately tracking particles and analyzing their  dynamics149.

Table 7 depicts an overview of Datasets and difficulties associated with image analysis in Pathology.

Table 6.  An overview of datasets and challenges in tasks related to the segmentation of organs in the chest and 
abdomen regions.

Dataset Year Techniques Emphasis

CT Diagnosis of COVID-19129 2020 CT COVID-19

COVID Chest X-Ray  Dataset130 2020 CR COVID-19

Detection of COVID-19 from  Ultrasound131 2020 Ultrasound COVID-19

COVID-19  AR132 2020 CT and CR COVID-19

BCS-DBT133 2020 Digital breast tomosynthesis Breast cancer

A-AFMA-Detection134 2022 Ultrasound Amniotic fluid detection

NSCLC-Radiomics-Interobserver1135 2019 Radiotherapy structure set Non-small cell lung cancer

MIMIC-CXR136 2019 Electronic health record and report Chest image analysis
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Datasets associated with the analysis of blood-related images
Medical datasets connected to blood-related image analysis have proven to be useful in furthering both research 
and therapeutic applications. These datasets typically consist of a collection of digital photographs of blood sam-
ples that have been annotated with information such as cell kinds, morphologies, and potential disease markers. 
The use of these datasets has aided in the development of advanced ML algorithms capable of accurately iden-
tifying and categorizing blood components. Researchers have made substantial advances in the early diagnosis 
of diseases such as leukemia, anemia, and different blood-borne infections by exploiting these databases. The 
diversity of these datasets, which include a wide range of blood properties, ensures a solid training basis for AI 
algorithms, contributing to a better knowledge of hematological illnesses. Such data-driven approaches have 
also resulted in more tailored treatment strategies, ultimately improving overall patient care quality. Below are 
various examples of the same.

• SegPc 2021—Myeloma Plasma Cell: The analysis of myeloma plasma cells, a subset of white blood cells essen-
tial to the growth of multiple myeloma, a plasma cell cancer, is the main goal of the SegPc 2021 dataset. This 
dataset can be used for tasks like classifying, quantifying, and segmenting myeloma plasma cells in images 
related to  blood150.

• MitoEM Challenge 2020—Mitochondria: The analysis of mitochondria, significant organelles in charge of 
generating energy in cells, is the main focus of the MitoEM Challenge dataset. The understanding of mito-
chondrial function and dysfunction in various diseases can be aided by using this dataset for tasks like 
segmentation, detection, and classification of mitochondria in blood-related  images151.

• B-ALL Classification 2019—Leukemic Blasts in an Immature Stage: The analysis of leukemic blasts in an 
early stage is the main focus of the B-ALL Classification dataset. Blood cancer of the B-ALL (B-cell Acute 
Lymphoblastic Leukaemia) variety mainly affects lymphoid cells. This dataset can help with the development 
of B-ALL diagnostic and prognostic tools by being used for tasks like classifying, detecting, and quantifying 
leukemic blasts in blood-related  images151.

• Malaria Bounding Boxes 2019—Cells in Blood: The analysis of blood cells infected with malaria parasites 
is done using the Malaria Bounding Boxes dataset. Millions of people worldwide suffer from malaria, a 
mosquito-borne illness, and accurate identification and quantification of infected blood cells is essential for 
both diagnosis and treatment. This dataset can be used for tasks like object recognition, blood-related image 
segmentation, and classification of infected blood  cells152.

• LYSTO 2019—Lymphocytes: The analysis of lymphocytes, a category of white blood cells that is crucial to 
the immune response, is the main focus of the LYSTO dataset. The understanding of lymphocyte function 
in various diseases and conditions can be improved with the help of this dataset, which can be used for tasks 
like the segmentation, classification, and quantification of lymphocytes in images related to  blood153.

• SN-AM Dataset 2019—Stain Normalization: For the analysis of stain normalization methods in images 
involving blood, the SN-AM Dataset was created. In order to address staining variability across various 
samples and laboratories, stain normalization is a crucial preprocessing step in medical image analysis. For 
image analysis tasks involving blood, this dataset can be used to evaluate and benchmark stain normalization 
 techniques154.

• C NMC Dataset 2019—Classification of Immature Leukemic Cells: The immature leukemic cells, which are 
abnormal white blood cells that are indicative of leukemia, are the main focus of the C NMC Dataset. This 
dataset can be used for tasks like categorization, detection, and quantification of immature leukemic cells in 
images of blood as well as for the creation of automated tools for leukemia diagnosis and  monitoring154.

• Blood Cell Images 2018—Cells in Blood: Red blood cells, white blood cells, and platelets are just a few of the 
different types of blood cells included in the Blood Cell Images dataset. This dataset can be used for tasks 
like classifying, quantifying, and segmenting blood cells in images of the blood. It can also be a useful tool 
for researching blood cell morphology and comprehending various blood-related diseases and  conditions155.

Table 7.  An Overview of Datasets and difficulties associated with image analysis in Pathology.

Dataset Year Emphasis

Pathology  VQA137 2020 Visual question answering

PAIP  2020138 2020 Colorectal cancer

MICCAI 2020  CRPCC139 2020 Classification combining radiology and pathology data

Post-NAT-BRCA 140 2019 Cell

ANHIR141 2019 Pathology image registration

PAIP  2019142 2019 Liver cancer and tumor burden segmentation

Data Science  Bowl143 2018 Cell

Colorectal Histology  MNIST144 2018 Patch-based analysis of colorectal pathology

CAMELYON  17145 2017 Breast cancer metastases

Glas146 2015 Colorectal cancer pathology patch

OCCIS147 2014 Overlapping cervical cell

MITOS-ATYPIA-14148 2014 Mitotic

Particle Tracking  Challenge149 2012 Particle
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Table 8 depicts an overview of Datasets and challenges related to the Analysis of blood-related images

Datasets associated with the analysis of bone-related images
Medical datasets connected to bone-related image processing are a valuable asset in the domains of orthopedics 
and radiography. These datasets frequently include a wide range of imaging modalities, such as X-rays, CT scans, 
and MRI images depicting diverse bone structures and accompanying disorders. Annotations in these databases 
may include information about fractures, osteoporosis, bone cancers, and other orthopedic diseases. Healthcare 
professionals can accomplish more exact diagnoses, prognoses, and treatment planning by using ML and AI 
algorithms trained on these massive datasets. The availability of such datasets has fueled innovation in the crea-
tion of automated diagnostic systems, saving time and perhaps reducing human error in analyzing complex bone 
pictures. As a result, these data-driven techniques are changing the landscape of bone health care by encouraging 
early intervention and leading to better patient outcomes. Some examples of the same have been showcased here.

• KNOAP 2020—MR and CR Knee Osteoarthritis: The MR and CR images used to analyze knee osteoarthri-
tis are the primary focus of the KNOAP 2020 dataset. This dataset can be used for tasks like segmenting, 
classifying, and quantifying features related to knee osteoarthritis, and it can help with the creation of early 
detection and monitoring methods for this degenerative joint  disease157.

• MICCAI 2020 RibFrac Challenge 2020—CT Detection and Classification of Rib Fractures: The CT images 
used in the MICCAI 2020 RibFrac Challenge dataset are intended for the detection and classification of rib 
fractures. This dataset can be used for tasks like fracture localization, classification, and detection, and it can 
aid in the creation of automated tools for managing and assessing rib  fractures158.

• VerSe 20 2020—CT Vertebra: The VerSe 20 dataset is dedicated to the CT-based analysis of vertebrae. This 
dataset can be used for tasks like categorizing, quantifying, and segmenting vertebral structures and abnor-
malities. It can also be used to help with the diagnosis and planning of treatments for a variety of conditions 
and diseases involving the  spine159.

• Pelvic Reference Data 2019—CT Pelvic Images: For use in a variety of pelvic-related image analysis tasks, the 
Pelvic Reference Data dataset offers CT images of the pelvic anatomy. This dataset can be used to perform 
operations on the pelvic structures, such as segmentation, registration, and measurement, and it can help 
with the creation of automated tools for pelvic imaging analysis in clinical and academic  settings160.

• AASCE 19 2019—CR Spinal Curvature: The CR images used for the analysis of spinal curvature are the main 
focus of the AASCE 19 dataset. This dataset can be used for tasks like segmentation, measurement, and clas-
sification of abnormal spinal curvature, which can help us understand conditions and deformities affecting 
the  spine161.

• MURA 2018—CR Abnormality in Musculoskeletal: The MURA dataset includes different musculoskeletal 
injuries and abnormalities, including those involving bones. This dataset can be a helpful tool for researching 
musculoskeletal disorders and injuries because it can be used for tasks like the localization, classification, 
and detection of abnormalities in CR  images162.

• xVertSeg Challenge 2016—CR Fractured Vertebrae: The CR images of fractured vertebrae are the focus of 
the xVertSeg Challenge dataset. This dataset can be used for tasks like segmenting, classifying, and localizing 
vertebral fractures. It can also help with the creation of automated tools for managing and assessing vertebral 
 fractures163.

• Bone Texture Characterization 2014—CR Bone Crisps: Using computed radiography (CR) images, the Bone 
Texture Characterization dataset is intended for the analysis of bone crisps. This dataset can be used for 
tasks like bone crisp classification, feature extraction, and texture analysis, which can help us understand 
the characteristics of bone texture and how they relate to bone  health164.

Table 9 depicts an overview of Datasets and Challenges Related to the Analysis of bone-related images.

Table 8.  An overview of datasets and challenges related to the analysis of blood-related images.

Dataset Year Emphasis

SegPc  2021150 2020 Myeloma plasma cell

MitoEM  challenge151 2020 Mitochondria

B-ALL  Classification156 2019 Leukemic blasts in an immature stage

Malaria bounding  boxes152 2019 Cells in blood

LYSTO153 2019 Lymphocytes

SN-AM  dataset154 2019 Stain normalization

C NMC  dataset154 2019 Classification of immature leukemic cells

Blood cell  images155 2018 Cells in blood
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Datasets associated with skin and animal image analysis tasks
The fields of dermatology, veterinary medicine, and wildlife biology all place high importance on medical datasets 
linked to skin analysis and animal image analysis activities. Images of various dermatological disorders, includ-
ing melanoma, psoriasis, and eczema, are frequently included in skin-related datasets, allowing the creation of 
AI-driven diagnostic tools that support early detection and treatment planning. Animal picture databases also 
offer important information about the morphology, behavior, and health of both domestic and wild animals. 
These could be information from monitoring wildlife for conservation and demographic studies, or veterinary 
medical imaging for disease diagnosis. By incorporating ML models that have been trained on such a wide range 
of datasets, healthcare, and ecology researchers are encouraged to take a multidisciplinary approach, opening 
up new possibilities for better medical diagnosis, individualized treatment plans, and greater animal species 
knowledge. With the help of technological improvements, the merging of skin and animal picture collections 
represents a cutting-edge frontier in scientific inquiry into ecology and medicine. Here are a few of its instances.

• DFU 2020: This dataset focuses on the detection of foot ulcers in diabetic patients. Foot ulcers are a com-
mon complication in diabetic patients and early detection is crucial for timely intervention and prevention 
of serious complications such as infections and amputations. The emphasis of this dataset is on developing 
image analysis techniques using RGB imaging to accurately detect foot ulcers from medical images, which 
can aid in early diagnosis and effective management of diabetic foot  ulcers165.

• ISIC 2019: This dataset is focused on the classification of 9 different skin diseases, including melanoma, 
benign nevi, and dermatofibroma, among others. The emphasis of this dataset is to develop image analysis 
techniques using RGB imaging for accurate and automated classification of skin diseases, which can assist 
dermatologists in clinical decision-making and improve patient outcomes. Early and accurate classification 
of skin diseases can aid in timely treatment and management, and potentially prevent the progression of 
malignant skin  conditions166.

• MATCH 2020: This dataset focuses on tumor tracking in markerless lung CT images. The emphasis of this 
dataset is on developing advanced image analysis techniques using CT imaging to track lung tumors in 
dynamic medical images, which can aid in radiation therapy planning, assessment of tumor response to 
treatment, and monitoring disease progression. Accurate tumor tracking can improve treatment efficacy and 
minimize radiation exposure to healthy  tissues167.

• MRI-DIR: This dataset focuses on multi-modality registration with phantom images in MR and CT images. 
The emphasis of this dataset is on developing image registration techniques using MR and CT imaging to 
align different imaging modalities for accurate fusion and analysis of medical images. Accurate multi-modal-
ity registration can improve image-guided interventions, treatment planning, and diagnosis by providing a 
comprehensive view of anatomical and functional information from different imaging  modalities168.

• CC-Radiomics-Phantom-2: This dataset focuses on assessing feature variability using phantom images in CT 
imaging. The emphasis of this dataset is on developing image analysis techniques to assess the variability of 
radiomic features extracted from phantom images, which can help in evaluating the robustness and repro-
ducibility of radiomics-based image analysis methods. Understanding feature variability in phantom images 
is crucial for ensuring the reliability and generalizability of radiomics-based models in clinical  practice169.

• PET-Seg Challenge 2016: This dataset focuses on phantom registration and research using CT and PET 
imaging. The emphasis of this dataset is on developing image registration techniques to accurately align CT 
and PET images of phantoms, which are used for quality assurance and calibration purposes in PET imag-
ing. Accurate phantom registration can ensure the accuracy and reliability of PET imaging results, which are 
widely used for cancer diagnosis, staging, and treatment response  assessment170.

• EndoVis SCARED 2019: This dataset focuses on depth estimation from endoscopic data. The emphasis of 
this dataset is on developing computer vision and image processing techniques to accurately estimate the 
depth information from endoscopic images or videos. Accurate depth estimation can aid in 3D reconstruc-
tion, virtual reality visualization, and surgical planning during minimally invasive surgeries, improving the 
safety and efficacy of these  procedures171.

• BigNeuron 2016: This dataset focuses on general microscopy for animal neuron reconstruction. The emphasis 
of this dataset is on developing image analysis techniques to reconstruct the complex 3D structures of animal 

Table 9.  An overview of datasets and challenges related to the analysis of bone-related images.

Dataset Year Techniques Emphasis

KNOAP  2020157 2020 MR and CR Knee osteoarthritis

MICCAI 2020 RibFrac  Challenge158 2020 CT Detection and classification of rib fractures

VerSe  20159 2020 CT Vertebra

Pelvic reference  data160 2019 CT Pelvic images

AASCE  19161 2019 CR Spinal curvature

MURA 162 2018 CR Abnormality in musculoskeletal

xVertSeg  Challenge163 2016 CR Fractured vertebrae

Bone texture  characterization164 2014 CR Bone crisps
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neurons from microscopy images. Accurate neuron reconstruction can provide insights into neural networks 
and connectivity, aiding in understanding brain function and neurological  diseases172.

• SNEMI3D 2013: This dataset focuses on the segmentation of neurites from electron microscopy images. The 
emphasis of this dataset is on developing advanced image segmentation techniques to accurately segment 
neurites, which are the elongated projections of nerve cells, from electron microscopy images. Accurate 
neurite segmentation is crucial for studying the morphology and connectivity of neurons, understanding 
neural circuits, and investigating neurological  disorders173.

• Learn2Reg 2020: This dataset focuses on image registration in medical imaging using MR and CT images. 
The emphasis of this dataset is on developing image registration techniques to align and fuse MR and CT 
images for various medical imaging tasks such as image-guided interventions, treatment planning, and 
disease diagnosis. Accurate image registration can improve the accuracy and precision of medical image 
analysis, aiding in better patient care and treatment  outcomes174.

Table 10 depicts an overview of the Datasets and challenges related to Skin, phantom, and animal image analysis 
tasks.

Case study: Alzheimer’s MRI classification using DL methods
DL techniques, notably CNNs and pre-trained models such as VGG-16, have been used successfully in the field 
of neuroimaging to categorize AD using MRI  images175. CNNs, a sort of deep neural network primarily built for 
image processing, excel at extracting features from high-dimensional  input176. They recognize complicated pat-
terns in data using convolutional layers, pooling, and fully linked layers, making them excellent for MRI image 
processing. VGG-16, a CNN variation, is pre-trained on millions of images, generating a robust feature detection 
capability. Due to its resilience and depth (16 layers), it can record subtle patterns in MRI scans, greatly help-
ing to diagnose AD and separate it from other types of dementia. However, the fundamental difficulty with DL 
models is the requirement for large volumes of training data to avoid overfitting and ensure accurate predictions. 
Obtaining a large volume of labeled data in the field of medical imaging, particularly in the context of AD, can 
be difficult due to privacy concerns and the time-consuming nature of the labeling procedure. To remedy this, 
consider using ensemble ML approaches. Ensemble learning is a method in which numerous models or ’learners’ 
are developed and strategically merged to tackle a specific computer intelligence problem. Combining CNN or 
VGG-16 output, for example, with other ML algorithms helps improve and refine the decision-making process, 
enhancing the accuracy and robustness of the final model. Furthermore, by efficiently learning from minority 
classes, ensemble methods can help address class imbalance concerns that are frequently seen in medical datasets. 
To summarize, the use of DL algorithms such as CNN, VGG-16, and ensemble ML approaches has promising 
promise in Alzheimer’s MRI Classification, potentially improving diagnostic precision and allowing for early 
therapies. The following sections elucidate the dataset used in this study and present the results achieved through 
the various methodologies mentioned above.

Dataset used
The disease taken into consideration is AD and the dataset taken into consideration is the Alzheimer’s MRI 
dataset. Figure 4 presents the distribution of different images in the dataset.

The dataset includes a total of 6400 images, which have all been resized to 128 × 128 pixels. The dataset con-
sists of mild, moderate demented, non-demented, and mild demented images consisting of 896 images, Moderate 
Demented (64 images), Non-Demented (3200 images), and Very Mild Demented (2240 images). The images 
were preprocessed to remove noise and artifacts and then resized to 128 × 128 pixels for consistency. Each image 
is labeled with a class label (1–4) corresponding to the severity of dementia, as determined by a clinical expert.

The dataset has a class imbalance problem in case of Moderate Demented and Mild Demented cases. Thus, 
we apply different data augmentation techniques to address the imbalance. Initially, we generated extra images 

Table 10.  An overview of the datasets and challenges related to skin, phantom, and animal image analysis 
tasks.

Dataset Year Techniques Emphasis

DFU  2020165 2020 RGB Detection of foot ulcers in diabetic patients

ISIC  2019166 2019 RGB Classification of 9 diseases

MATCH167 2020 CT Tumor tracking in lung

MRI-DIR168 2018 MR, CT Multi-modality registration with phantom

CC-Radiomics-Phantom-2169 2018 CT Feature assessment with phantom

PET-Seg  Challenge170 2016 CT, PET Phantom registration and research

EndoVis 2019  SCARED171 2019 Endoscopy Depth estimation from endoscopic data

BigNeuron172 2016 General microscopy Animal neuron reconstruction

SNEMI3D173 2013 Electron microscope Segmentation of neurites

Learn2Reg174 2020 MR, CT Image registration
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by basic augmentation like rotation, flipping, scaling, and translation transformations. In particular, for each 
minority class image x ∈ R128×128 , the techniques are applied as follows. 

1. Rotation: Each image is rotated by θ ∈ {15◦, 30◦, 45◦} leading to new images Rθ (x).
2. Flipping: Horizontal H(x) and vertical V(x) images flips are applied, to create additional images.
3. Scaling: Images are resized by factors s ∈ {0.9, 1.1} leading to scaled images Ss(x).
4. Translation: The images were translated with a shift δ along the x and y axes by {−10, 10} pixels, resulting in 

Tδ(x) as the translated images.

With the basic techniques, we generated 3584 new images for Mild Demented cases, and 256 new images for 
moderate demented. However, we removed images which are similar with ≈ 50% subtraction on augmentation, 
and generated finally 2688 total images in mild demented, and 320 images in moderate demented.

Next, we used the Generative Adversarial Network (GAN) model on the moderate demented  case177. GANs 
are models that consist of a generator G and a discriminator D, which both play a minimax game. The genera-
tor (G(z; θG)) , usually given some noise input z with parameters θG , aims to produce realistic-looking images. 
In contrast, the discriminator (D(x; θD)) , which works with either natural or fake data x with parameters θD , is 
trained to discriminate between these two classes. The objective function is as follows.

Applying GANs to the moderate demented case, we were able to generate high-quality synthetic images that 
closely resemble real images in this category. After applying GAN, we increased the number of Moderate 
Demented images from 320 to 1360. Further, resampling technique using Synthetic Minority Over-sampling 
Technique (SMOTE) is applied to generate new synthetic samples by interpolating the moderate demented class 
samples. Mathematically, given a sample xi in the minority class and one of its k-nearest neighbors, xj , a new 
synthetic sample xnew is created, where � is a random number drawn from the interval [0, 1], that defines a linear 
space between the sample xi and xj . We further did undersampling on the Non-demented class to mitigate its 
domination over moderate demented class, resulting in 3057 images in the non-demented class. Figure 5 shows 
the final dataset distribution after applying the balancing techniques.

The purpose of this dataset is to aid in the development of computer-aided diagnosis systems for AD. The 
dataset provides a valuable resource for researchers interested in developing DL models to identify patterns in 
MRI images associated with the disease. The dataset has several potential applications in medical research and 
clinical practice. Various ML and DL models trained on this dataset could be used to automate the diagnosis of 
dementia based on MRI images, which could reduce the time and cost associated with traditional diagnostic 
methods. So considering this dataset, various DLs are applied on this dataset for classification and prediction 
into the necessary classes of dementia. Subsection “Methodology” give depicts the methodology portion.

Methodology
After identifying the necessary dataset following models were applied and trained on this dataset and appropriate 
results and graphs were obtained. The following are the models:

1. CNN: We used a CNN model to classify AD based on preprocessed MRI data. The model was implemented 
using Keras with a TensorFlow backend. The following steps were taken to construct the model: A Rescaling 
layer was added to the model with a scaling factor of 1./255 and the input shape of IMG HEIGHT x IMG 

(1)min
G

maxV(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1− D(G(z)))]

Figure 4.  Original dataset distribution.
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WIDTH x 3. This layer helps to scale down the pixel values of the input images to a range between 0 and 1, 
which can improve model performance. Figure 6 depicts how data is distributed and transformed amongst 
different layers that include  Convolutional178,  Pooling179,  Dense180, and Dropout  layers181 in  CNN182. A 2D 
convolutional layer was added with 16 filters, a kernel size of (3, 3), padding of ’same’, ReLU activation func-
tion, and He normal kernel initializer. This layer helps to extract features from the input images by sliding 
a filter window over the image and computing dot products between the filter and local image patches. A 
max-pooling layer was added with a pool size of (2, 2). This layer helps to down-sample the feature maps 
produced by the convolutional layer by taking the maximum value in each non-overlapping subregion. A 
dropout layer was added with a rate of 0.20. This layer randomly drops out a percentage of the neurons in the 
preceding layer during training to prevent overfitting. Steps were repeated twice with increasing numbers 
of filters (32 and 64) to further extract and down-sample features. The output from the convolutional layers 
was flattened to create a one-dimensional feature vector. A fully connected layer with 128 neurons, ReLU 
activation function, and He normal kernel initializer was added. This layer helps to map the high-dimensional 
feature vector to a lower-dimensional representation. Another fully connected layer with 64 neurons and 

Figure 5.  Modified dataset distribution post balancing.

Figure 6.  Architectural diagram of layers of CNN.



19

Vol.:(0123456789)

Scientific Reports |        (2024) 14:30273  | https://doi.org/10.1038/s41598-024-71358-7

www.nature.com/scientificreports/

ReLU activation function was added to further reduce the dimensionality. The output layer with 4 neurons 
and a softmax activation function was added to produce class probabilities for the input images.

2. VGG-16:  The VGG-16 model is a deep  CNN183. It is a popular model for image classification because of its 
relatively simple architecture. In this study, we used the VGG-16 model as a base model for our Alzheimer’s 
MRI classification task. Figure 7 indicates all the layers included in the model and input is transformed 
from one layer to another which includes many convolutional layers and required flatten and dropout lay-
ers. We used a pre-trained VGG-16 model with ImageNet weights to learn meaningful features from many 
images. We excluded the final fully connected layers by setting the included top parameter to False and 
added our own dense layers for classification. The pre-trained layers were frozen to prevent weight updates 
during training. We then added a flattened layer to the output of the base model, which converts the output 
tensor to a 1-dimensional tensor that can be passed to a fully connected layer. We added a dense layer with 
256 neurons, ReLU activation function, and He normal kernel initializer. This was followed by a dropout 
layer with a rate of 0.20, which helps prevent inaccurate prediction by randomly dropping out some of the 
neurons during training. The output layer had 4 neurons and a softmax activation function for producing 
a probability distribution over the four classes. We then compiled the model with the Adam  optimizer184, 
sparse categorical cross-entropy loss  function185, and accuracy as the evaluation  metric186.

3.  Ensembled: We defined an ensemble model that combines three pre-trained DL models - VGG19, 
 ResNet50187, and  InceptionV3188 into a single model for image classification. VGG19 is selected due of its 
straightforward and deep architecture, which makes it highly effective for image classification tasks. VGG19’s 
uniform structure, consisting of multiple convolutional layers followed by fully connected layers, excels 
at extracting detailed and hierarchical features from images. This characteristic is particularly important 
in medical imaging, where subtle differences in brain scans need to be captured accurately to distinguish 
between various stages of Alzheimer’s disease. The simplicity of VGG19 also allows for easier interpretability 
and implementation, making it a reliable component of our ensemble.

ResNet50 is incorporated into our ensemble due to its innovative use of residual connections, which address 
the vanishing gradient problem that often hampers the training of deep neural networks. These residual con-
nections enable ResNet50 to train much deeper networks without the risk of degradation in performance. This 
model’s strength in capturing intricate patterns and its robustness in training deep architectures enhance the 
ensemble’s ability to accurately classify Alzheimer’s stages.

InceptionV3 is chosen for its advanced architecture that includes Inception modules, which allow the network 
to handle multiple receptive fields within the same layer. This design enables the model to process and integrate 
information at different scales, which is crucial for analyzing the diverse patterns present in MRI images (Sup-
plementary Information). InceptionV3’s efficiency in managing computational resources while maintaining 
high performance is another reason for its inclusion. Its capacity to perform complex feature extraction and its 
adaptability to various types of image data make it an excellent addition to our ensemble.

By combining these three models, our ensemble leverages the unique strengths of each: VGG19’s depth 
and simplicity, ResNet50’s ability to train deep networks effectively, and InceptionV3’s multi-scale feature 
 extraction189. The ensemble model features improved performance in distinguishing the various stages of Alz-
heimer’s disease from MRI scans. In the ensemble, to prevent any kind of update on model weights, the model 
weights are frozen. By combining the models, the ensembled model can learn from the strengths of each model 
and improve overall performance. The input images are passed through each of the three models, and the output 
features are concatenated together. Figure 8 depicts all the layers of the ensembled model where input is passed 
through each model with necessary layers like flatten, dense, and dropout, and finally after concatenating all 
models necessary output is obtained. For training of our ensembled model, we employed the Adam optimizer, 
known for its adaptive learning rate capabilities which facilitate efficient convergence to optimal solutions. The 
initial learning rate was set to 0.001, a commonly used value that strikes a balance between rapid convergence 

Figure 7.  Architectural diagram of layers of VGG-16.
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and stable training. This learning rate was chosen based on preliminary experiments and fine-tuning, ensur-
ing that the models in the ensemble could learn effectively without overshooting the loss function  minima190. 
Additionally, to further enhance the model’s performance during the latter stages of training, we implemented 
a learning rate schedule that reduced the learning rate by a factor of 0.1 if the validation loss plateaued for five 
consecutive epochs.

Regarding the dataset split, we divided the dataset into training, validation, and testing subsets to ensure 
accurate performance assessment and validation of the model. Specifically, 70% of the dataset was allocated 
for training. This subset was used to adjust the weights of the models based on the backpropagation algorithm 
and to learn the underlying patterns in the data. Another 15% of the dataset was set aside for validation. The 
remaining 15% of the dataset was reserved for testing. This test set was used to evaluate the final performance 
of the ensembled model after the training process was complete, providing a final assessment of how well the 
model generalizes to unseen data.

With a total of 19 layers, VGG19 is a kind of CNN that is distinguished by its depth and simplicity. It consists 
of three fully connected layers, five pooling layers, and sixteen convolutional layers. This model has about 143 
million parameters and can handle 224× 224 pictures. VGG19 is a good choice for image categorization and fea-
ture extraction applications because it is simple to comprehend and apply. Its numerous parameters, which need 
a substantial amount of processing power, can be a drawback. On the other hand, ResNet50 is a ResNet subclass 

Table 11.  Comparison of deep learning models: VGG19, ResNet50, and InceptionV3.

Feature VGG19 ResNet50 InceptionV3

Architecture type Convolutional Neural Network (CNN) Residual Neural Network (ResNet) Convolutional Neural Network (CNN)

Depth 19 layers 50 layers 48 layers

Key feature Simple and deep Residual connections to avoid vanishing gradient Inception modules with dimensionality reduction

Convolution layers 16 49 48

Pooling layers 5 1 Multiple pooling operations within modules

Fully connected layers 3 1 1

Input image size 224 × 224 224 × 224 299 × 299

Advantages Easy to understand and implement Solves vanishing gradient problem, deeper networks Efficient with complex data, good for transfer learning

Disadvantages Large number of parameters Computationally intensive Complex architecture

Use cases Image classification, feature extraction Image recognition, object detection Image classification, object detection, and more complex 
feature extraction

Figure 8.  Architectural diagram of layers of ensembled model.
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that has 50 layers, 49 of which are convolutional layers and only one pooling layer. This subclass is deeper than 
others. In order to solve the vanishing gradient issue, it makes use of residual relationships, which permits the 
creation of deeper networks. This model can also process 224 × 224 images and has about 25.6 million param-
eters. The main benefit of ResNet50 is that it can manage deep networks well, which makes it perfect for object 
detection and picture recognition. Its primary disadvantage is that it requires a lot of computing. Another CNN, 
but one with a more intricate structure is InceptionV3. Its 48 layers include different pooling operations inside 
its modules and several convolutional layers. It includes Inception modules, which enable effective handling of 
complex data and dimensionality reduction. InceptionV3 has about 23 million parameters and can process larger 
input images up to 299 by 299 in size. The concatenated features are then passed through a dense layer with 256 
neurons, with a ReLU activation  function191 and a dropout layer with a rate of 0.20 to prevent inaccurate predic-
tions. The outputs from each model are concatenated and passed through a final dense  layer192 with a softmax 
activation function, which generates a probability distribution over the four classes of Alzheimer’s MRI images. 
The ensemble model is initialized with the categorical cross-entropy loss  function193 and Adam optimizer. The 
purpose of using an ensemble model is to improve the accuracy and  robustness194 of the model by combining 
the strengths of multiple models.

Subsection “Simulation results” presents the simulation results after applying all three models to the training 
and validation dataset. The simulation results consist of the accuracy and loss graphs of training and validation 
data. Finally, after that prediction tasks were performed and their results are also mentioned in the section.

Proposed architecture of cloud-based analysis of medical data
This architecture is intended for the classification and diagnosis of medical images. Figure 9 represents the 
proposed architecture which consists of three layers [NOTE: The cliparts used in the figure are freely available 
icons under the CCO license.]:

1. Input layer: This layer takes the medical image datasets and the patient’s medical history if any, as an input. 
The datasets may contain X-rays, CT scans, MRI images, or other medical images. PMH (Patient Medical 
History) is a record of a patient’s past health conditions, medical treatments, surgeries, allergies, medica-
tions, and any other relevant medical information that may impact their current or future health. The dataset 
along with PMH (Patient Medical History) is passed to the cloud layer for further processing, through some 
gateway.
• Medical image dataset: Consists of Images obtained from various medical imaging modalities, of numer-

ous diseases such as Alzheimer’s, Parkinson’s, etc.
2. Cloud layer: In this layer image classification and prediction tasks are performed using DL models. These 

models are trained on large datasets to learn the patterns and features that are indicative of various medical 
conditions. The cloud layer may use several DL models such as CNN, VGG-16, etc. to process the medical 
images and extract features, and after the classification, i.e. categorize diseases based on their characteristic 
symptoms, and predict the likelihood of a person having that specific disease or health condition, the results 
are passed to diagnose layer.

Figure 9.  Proposed architecture.
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• Data cleaning and reduction: Data cleaning and reduction are two essential steps in the process of data 
preparation for analysis. It involves the identification of errors and removing them and also the removal 
of any inconsistencies in data. Data reduction involves reducing the dataset while keeping the necessary 
data and information. Usually, this is done to speed up computation and enhance the performance of 
ML algorithms.

• Extracting feature: Extracting features is the process of extracting essential and relevant information from 
raw data. Feature extraction is frequently used to improve the performance of ML models by removing 
redundant or irrelevant data and lowering the dimensionality of the data, making it simpler and more 
quickly to process.

• Data classification and prediction: Training a model on a labeled dataset to identify patterns and make 
predictions on fresh, untainted data is known as data classification. Contrarily, making predictions typi-
cally involves training a model on a labeled dataset and applying it to unobserved and relatively new 
data. The aim of prediction is to precisely calculate the likelihood of a specific result or event using the 
information that is currently available.

3. Diagnose layer: This layer receives the predicted classification of the medical image from the cloud layer. 
The diagnose layer notifies the patient, doctor, and hospital if the predicted classification points to a medical 
condition. The alert may contain the predicted diagnosis, the probability of the diagnosis, and recommenda-
tions for further testing or treatment. The diagnose layer can also be integrated with EMR systems to maintain 
a record of the medical history of patients and share it with healthcare providers. Overall, this architecture 
provides a comprehensive solution for medical image classification and prediction, with the ability to alert 
healthcare providers and patients of potential medical conditions.

4.  Gateway module: It acts as a bridge between different layers of the architecture, enabling data to be trans-
ferred between them. Here image encryption and decryption tasks are performed using the Advanced 
Encryption Standard (AES) algorithm in CBC mode. It first sets up a random 16-byte key and initialization 
vector, loads an image, and displays the original image using Matplotlib. Then it encrypts the image bytes 
using AES in CBC mode and saves the encrypted image to a new file. It also displays the encrypted image 
using Matplotlib. Next, it loads the encrypted image bytes from the file, decrypts the image bytes using AES 
in CBC mode, and creates a new image from the decrypted bytes. It displays the decrypted image using 
Matplotlib and saves it to a new file. Figure 10 depicts the entire process of encryption and decryption.

The proposed cloud-based architecture for medical data analysis plays a vital role in population health man-
agement. This is made possible by an efficient process of data gathering, integration, and analysis- a critical 
process in identifying at-risk populations for focused interventions. The architecture commences with the input 
Layer, which aggregates comprehensive health data, including datasets on medical images and patient medical 
history (PMH). It is through such extensive data collection that forms the core of population health manage-
ment. It collects various data to ensure it gets all the necessary details and information for processing at later 
stages. The collected data is then processed in the cloud Layer. Advanced DL models like CNN, VGG-16, and 
ensembled models in this layer would be used to analyze the medical images and extract relevant features. The 
use of DL models in the cloud layer would be essentially crucial because population-based health management 
deals with large-scale data. Medical conditions can be easily detected early, and interventions made using the 
cloud layer through accurate classification and prediction of the likelihood of their occurrences, which forms 
an essential task in effective population health management.

The cleaning and reduction of data processes in the cloud layer ensure that the data used in the analysis is 
accurate and relevant, hence improving the reliability of the predictions by the DL models. The architecture 
retains high data quality by reducing errors and inconsistencies, and it also reduces the dimensionality of the 
data-all important in making correct predictions regarding at-risk populations. Additional data is optimized by 
feature extraction, where it identifies the most relevant information from the raw datasets. This increases the 
efficiency and effectiveness of the DL model in dealing with the data’s volume in less time and more accurately. 
The extracted features from this massive dataset would enable the system to detect subtle signs of health risks, 
hence early detection of at-risk people.

Figure 10.  Encryption and decryption of images.
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Data classification and prediction abilities of the cloud layer help the system to identify the populations at 
risk. The DL models learn to detect patterns associated with different health conditions by training on labeled 
datasets. When applied to new data, these models can predict the likelihood of an individual developing a specific 
condition, thus enabling healthcare providers to focus their attention and resources on those who are most at risk. 
This predictive capability is central to population health management, as it allows for the proactive management 
of health issues before they become more serious and widespread.

Algorithm 1.  The proposed architecture
The diagnose Layer translates these predictions into actionable insights, alerting the healthcare provider and 

patient of potential health risks based on detailed diagnostic reports, with recommendations for further testing 
or treatment. The correct information delivered to the right people at the right time ensures timely and targeted 
interventions. The diagnose layer further passes any such insights to Electronic Medical Record (EMR) systems 
to make them available across the healthcare continuum. The gateway module ensures that data transfer between 
the layers is secure because the data is encrypted with AES encryption, automatically securing patient data and 
compliance with regulations. These securities are essential in retaining trust and protecting sensitive health 
information, two essential elements in effective population health management.

Algorithm 1 depicts the architectural approach of the entire process, which takes input as the medical image 
dataset(Dataset ) and patient medical history(PMH) which is sent to cloudlayer , and as an output, respective entity 
get notification alerts such as patient, doctor, and hospital. This algorithm is a representation of the entire pro-
cess that aims to process medical data generate a diagnosis report and send notification alerts to the doctor and 
patients. Following is the breakdown of the steps mentioned above in the algorithm:

• Preprocess  (Dataset): This is a function that processes the raw medical data set to make it suitable for analysis. 
This could involve tasks such as data cleaning, normalization, feature extraction, or other transformations 
that make the data more usable.

• Preprocesses (PMH): Similarly, this function processes the patient’s previous medical history (PMH) to make 
it usable in the pipeline. This could involve tasks such as converting unstructured data into structured data, 
removing irrelevant information, or extracting key features.

• Cloudlayer: This step involves sending the processed data sets to a cloud-based layer for further processing. 
This could involve tasks such as running the data through a DL model or other ML/DL algorithms to generate 
a prediction.

• DL-CNN (Ds1, Ds2): This refers to the CNN that is used to generate predictions from the medical data set 
and previous medical history.

• Rclassification: This refers to the predicted diagnosis classification generated by the CNN.
• Classification (Y): This step involves using a classifier algorithm to generate a diagnosis report based on the 

predicted classification generated by the CNN.
• Prediction (Rclassification, Y): This step generates the diagnosis report based on the results of the classifica-

tion algorithm.
• Diagnoselayer: This step involves sending the diagnosis report to another layer for further processing. This 

could involve tasks such as storing the report in a database, generating visualizations, or other analyses.
• Send-Alert (Report): This step involves sending alert notifications to relevant entities based on the diagnosis 

report. In this case, the algorithm loops through the entities Eh, Ep, and Ed and sends alerts to each entity 
as necessary. Overall, this algorithm represents a typical DL pipeline for medical diagnosis that involves 
preprocessing data sets, using DL algorithms to generate predictions, and sending alerts to relevant entities 
based on the results.
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Cross validation techniques
While constructing an ML model, we provide initial data to train the model and subsequently provide some 
unknown data to test the accuracy and check how effectively the model is performing against the unseen data. 
A model that performs well on unseen data, displaying consistency and accurately predicting a wide range of 
input data, is considered stable. However, this is not always the case. Machine learning models can be unstable, 
necessitating an evaluation of their stability. This is where Cross Validation becomes relevant, which asses the ML 
model’s accuracy on unseen data i.e. how the results of statistical analysis are used to generalize to the concept 
of the dataset to be independent. The need for cross-validation is very important, because if we have developed 
a ML model to address a particular problem, and after training it on a specific dataset, we find that its accuracy 
on the training data is around 98%. This does not imply that your model has been trained effectively and is the 
best choice due to its high accuracy. A high accuracy on the training data does not guarantee that the model will 
perform well on unseen data. A model with high training accuracy might have overfit the training data, meaning 
it has learned to capture even the smallest variations in the training data, rather than generalizing well to new, 
unseen data. When such an overfitted model is exposed to new data, its performance might drop significantly. 
Also, On the other hand, if a model has low training accuracy, it might not have learned the underlying pat-
terns in the data well enough. This can result in poor performance not only on the training set but also on new, 
unseen data. This scenario is known as underfitting. So, in general, training accuracy is important, but it is not 
the only indicator of a good model which make essential to model’s performance on a separate test set or using 
cross-validation to ensure that it can generalize well to new data. To handle such issues we use cross-validation, 
some commonly used cross-validation techniques are listed below: 

1. Holdout validation: This technique is used in ML to evaluate the performance of a model. It involves splitting 
the dataset into two subsets: a training set and a test set. The model is trained on the training set and then 
evaluated on the test set to estimate its performance on unseen data. If Dset is the complete data set consist-
ing of k samples. we split Dset into two subset training set Dk

tr and testing set Dk
ts each consist of k training 

and testing set. The models is trained on Dk
tr , once the model is trained we evaluate its performance on Dk

ts 
to estimate generalization error. Let yk be the true label for sample k and ŷk be the predicted label by the 
model. The performance metric, such as accuracy, can be calculated as: 

 where I is the indicator function that returns 1 if the predicted label matches the true label and 0 otherwise.
2. Leave-one-out cross-validation: This technique used to estimate the performance of an ML model dataset 

is divided into k subsets, where k is the number of instances in the dataset. For each iteration, one instance 
is held out as the validation set, and the model is trained on the remaining k-1 instances. This process is 
repeated k times, with each instance used once as the validation set. The performance of the model is then 
evaluated by averaging the performance metrics (such as accuracy, error rate, etc.) obtained in each iteration. 
It provides an unbiased estimate of the model’s performance, as each instance is used for both training and 
validation. The error rate is defined as: 

 L is the loss function used to measure the difference between the actual target value yk and the predicted 
target value ŷk . The sum is taken over all instances in the dataset. This techniques is generally used when 
working with small dataset.

3. K-fold cross-validation: The basic idea behind K-Fold Cross-Validation is to divide the dataset into K subsets, 
or folds, of approximately equal size. The model is then trained and evaluated K times, each time using a 
different fold as the test set and the remaining folds as the training set. Evaluate the model on the test set and 
calculate the evaluation metric (e.g., accuracy, precision, recall, etc.) and save the evaluation metric for fold 
k. Finally, Calculate the average evaluation metric across all K folds to obtain the final performance estimate 
of the model. 

 Where E is the average evaluation matrix across all k folds and Ek is the evaluation matrix for fold k.
4. Stratified K-fold cross-validation: This technique used in ML to address the issue of class imbalance in 

datasets. It is an extension of the traditional K-Fold Cross-Validation method, where the dataset is divided 
into k subsets (folds) while ensuring that each fold has the same proportion of target variable classes as the 
entire dataset. This helps in producing more reliable and unbiased estimates of model performance, especially 
when dealing with imbalanced datasets.

Class balancing methods
When the number of samples in each class is roughly equal, then most of the ML algorithms perform best, as 
they are designed to maximize the accuracy and minimize the error. When the dataset consists of imbalanced 
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classes, then the ML algorithm exhibits biases toward some classes. In such cases, the model may achieve high 
accuracy by predicting the majority class but fail to capture the minority class. For instance, if 98% of the data 
from the bank transaction belongs to the majority class, i.e., valid transactions, and only 2% transactions are 
fraudulent, and your model predicts every transaction as valid without checking it, you still get 98% accuracy. 
So, the basic classification models like logistic regression or decision trees may struggle to identify and classify 
minority class data points correctly. To handle this problem, class balancing techniques are used, some of the 
widely used techniques are listed below: 

1. Random under-sampling: It involves reducing the number of instances in the majority class to match the 
number of instances in the minority class. This helps prevent the model from being biased towards the 
majority class and improves its ability to generalize to new data. If Dset is a dataset if k samples, where kmaj 
is the number of samples of the majority class and kmin is the number of samples of the minority class, then 
the imbalance ratio can be defined as: 

 Determine the desired number of samples in the balanced Dset , randomly select instances from the major-
ity class, and now Combine the randomly selected instances from the majority class with all instances from 
the minority class to create the balanced dataset. Finally train the machine learning model on the balanced 
dataset.

2. Random over-sampling: This method involves randomly selecting instances from the minority class and 
duplicating them until the class distribution is balanced. If Dset is a dataset if k samples and c distinct classes 
and Dmaj

set  is the number of samples of the majority class and Dmin
set  is the number of samples of the minority 

class, then imbalance ratio is defined as: 

 Now randomly select some new samples from Dmin
set  equivalent to Dmaj

set -Dmin
set  and replace them with new 

randomly selected ones. Now Dset is balanced.
3. Synthetic minority oversampling technique: This technique uses class imbalance in datasets by generating 

synthetic samples for the minority class. It creates synthetic samples that are similar to existing minority class 
samples, thereby increasing the representation of the minority class in the dataset. This helps to balance the 
class distribution and improve the performance of machine learning models, especially in scenarios where 
the minority class is underrepresented. Let x be the set of minority class samples and kmin is the total number 
of minority class samples, then for each xi sample in x compute k-nearest neighbor and randomly select one 
of the k-nearest neighbors xnn for each xi . 

 where xnew is the generated synthetic samples and � is a random value between 0 and 1. Repeat this process 
until the desired balance between the minority and majority classes is achieved.

4. Near miss: This technique addresses class imbalance by selecting a subset of samples from the majority 
class that are close to the minority class samples. The goal is to reduce the imbalance between classes while 
maintaining the separability between classes. It is an under-sampling technique that uses distance to make 
the majority class equal to the minority class. Each sample in the minority class, calculate its distances to 
the samples in the majority class and for each sample in the minority class, select the “nearest” samples from 
the majority class based on a euclidean distance. Now, based on the specific variant of never-miss, different 
criteria are used to select the samples from the majority class. The “Near Miss” algorithm is a simple yet 
effective way to address class imbalance by focusing on the samples that are most relevant to the minority 
class.

Simulation results
This subsection presents the analysis of results on the medical dataset when CNN, VGG-16, and Ensemble 
model are used.

1. CNN: Fig. 11 shows the loss in training and validation data, whereas Fig. 12 shows the accuracy in training 
and validation data. The model was initially trained on the preprocessed MRI data for 50 epochs with a 
batch size of 64 using the Adam optimizer. The validation dataset was used to assess model performance and 
prevent inaccurate predictions on testing data. The Y-axis of the graph indicates loss and X-axis indicates the 
number of epochs in Fig. 11. In Fig. 12 the Y-axis determines accuracy and X-axis determines the number 
of epochs. We can observe from the figures that if the model is trained on more epochs the model provides 
better accuracy with loss as quite as low, This helps us to do classification tasks appropriately. Figure 13 
indicates the prediction tasks performed after training the model on the dataset. Here X-Axis indicates the 
actual form of the disease and Y-Axis indicates the predicted form; if the actual and predicted form match, 
then the predicted result will be indicated in green color text, and if not then the predicted result will be 
indicated in red color text. Our study successfully addresses the prediction tasks and achieved high accuracy 
in our analysis, and achieved 99.285% test accuracy.

(5)Iratio =
kmaj

kmin

(6)Iratio =
D
maj
set

Dmin
set

(7)xnew = xi + �× (xnn − xi)



26

Vol:.(1234567890)

Scientific Reports |        (2024) 14:30273  | https://doi.org/10.1038/s41598-024-71358-7

www.nature.com/scientificreports/

2. VGG-16: Fig. 14 shows the loss in training and validation data, Fig. 15 shows the accuracy on training and 
validation data. For observation, we trained the model using the fit function with a batch size of 64 and 20 
epochs while keeping the pre-trained layer weights fixed. The Y-axis of the graph indicates accuracy and 
X-axis indicates the number of epochs in Fig. 14. In Fig. 15 the Y-axis determines loss and X-axis determines 
the number of epochs. As the model is much more complex because it includes many convolutional layers 

Figure 11.  CNN model training and validation loss.

Figure 12.  CNN model training and validation accuracy.

Figure 13.  Prediction results for CNN model.
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and due to its deeper architecture, the model was trained on fewer epochs compared to CNN, but the model 
still performed better on 20 epochs, if we increase the number of epochs we can achieve better accuracy. In 
Fig. 15, the initial value of loss is very high for few epochs because the model is adjusting its weights to bet-
ter fit the training data. As the training progresses the model converges to a better solution and reduces the 
loss drastically. Figure 16 indicates the prediction tasks performed after training the model on the dataset. 
Here X-Axis indicates the actual form of the disease and Y-Axis indicates the predicted form; if the actual 
and predicted form match, then the predicted result will be indicated in green color text, and if not then the 
predicted result will be indicated in red color text. Our study successfully addresses the prediction tasks and 
achieved high accuracy in our analysis, and achieved 85.113% test accuracy.

3. Ensembled: For the Ensembled Model, Fig. 17 depicts the loss on training data and validation data and 
Fig. 18 indicates the accuracy on training data and validation data. The ensemble model is compiled with 
the categorical cross-entropy loss function, the Adam optimizer, and accuracy as the evaluation metric with 
10 epochs with a batch size of 64. The ensemble model is more complex due to the combination of multiple 
models that includes VGG19, Resnet, and Inceptionv3, the model is trained on fewer epochs as it requires 
high additional computational resources. However the accuracy results is not as good compared to CNN and 
VGG-16 models, but with higher epochs, better accuracy can be achieved with lower value of loss. Figure 19 
depicts the prediction results, but we can clearly observe from the figure that there are many wrong predic-
tions obtained as compared to CNN and VGG-16 models, even if accuracy is higher there are chances of 
many wrong predictions. In this setup, we achieved 79.192% test accuracy.

Recent cloud schemes in the medical fields
CC in healthcare encompasses a multifaceted scheme aimed at revolutionizing various aspects of the industry 
and the same has been discussed in Table 12, which indicates the various usages of the CC schemes for healthcare 
ecosystems with its benefits, challenges, examples, and the numerous supporting AI algorithms. One prominent 
application is the adoption of cloud-based electronic health records (EHRs), enabling the secure storage, man-
agement, and sharing of patient health data. Additionally, cloud infrastructure facilitates health information 

Figure 14.  VGG-16 model training and validation accuracy.

Figure 15.  VGG-16 model training and validation loss.
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Figure 16.  Prediction result for VGG-16 model.

Figure 17.  Ensembled model training and validation loss.

Figure 18.  Ensembled model training and validation accuracy.
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Figure 19.  Prediction result for ensembled model.

Table 12.  Exploring cloud computing strategies in healthcare: benefits, challenges, examples and ML/DL 
usages.

Cloud computing scheme Benefits Challenges Examples/Platforms AI (ML/DL) Algorithms roles

Cloud-based electronic health 
 records197

Real-time access to patient infor-
mation, interoperability, automatic 
updates, reduced infrastructure 
costs

Data security and privacy con-
cerns, interoperability challenges, 
regulatory compliance

Epic Systems, Cerner Corporation, 
Athenahealth

Natural Language Processing 
(NLP), Convolutional Neural Net-
works (CNN), Recurrent Neural 
Networks (RNN), Support Vector 
Machines (SVM), Decision Trees

Health information  exchange198
Improved care coordination, 
streamlined workflows, support 
for population health management

Interoperability issues, data gov-
ernance, privacy and security risks

CommonWell Health Alli-
ance, Carequality, InterSystems 
HealthShare

Machine Learning, Natural 
Language Processing (NLP), Deep 
Learning, Graph Neural Networks 
(GNN), Ensemble Learning

Healthcare data storage and 
 backup199

Scalability, cost-effectiveness, data 
redundancy, disaster recovery

Data security and privacy, compli-
ance with regulatory requirements, 
data migration challenges

Amazon Web Services (AWS), 
Microsoft Azure, Google Cloud 
Platform

Machine Learning, Deep Learn-
ing, Natural Language Processing 
(NLP), AutoML, Random Forests

Disaster recovery and business 
 continuity200

Minimize downtime, data loss 
prevention, scalability, cost savings

Data replication and synchroniza-
tion, network latency, dependency 
on cloud service providers

VMware Site Recovery, Zerto, 
Druva Phoenix

Supervised Learning, Unsuper-
vised Learning, Reinforcement 
Learning, Time Series Forecasting, 
Autoencoder

Medical IoT and  wearables201
Real-time monitoring, personal-
ized care, early detection of health 
issues

Data interoperability, device 
compatibility, security and 
privacy concerns, data integration 
complexity

Philips Healthcare, Qualcomm 
Life, Validic

Machine Learning, Deep 
Learning, Time Series Analysis, 
Anomaly Detection, Natural 
Language Processing (NLP)

Healthcare analytics and machine 
 learning202

Predictive analytics, personalized 
medicine, improved outcomes, 
cost reduction

Data quality and integrity, 
algorithm bias, interpretability of 
results, data privacy and security

Health Catalyst, SAS Analytics, 
IBM Watson Health

Supervised Learning, Unsuper-
vised Learning, Deep Learning, 
Reinforcement Learning, Natural 
Language Processing (NLP)

Telemedicine and virtual care 
 platforms203

Improved access to care, con-
venience, reduced healthcare costs, 
patient engagement

Technological barriers (e.g., 
internet connectivity), reimburse-
ment challenges, regulatory and 
licensure issues

Teladoc Health, Amwell, Doxy.me
Machine Learning, Deep Learn-
ing, Natural Language Processing 
(NLP), Computer Vision, Senti-
ment Analysis

Population health  management204
Disease prevention, care coordina-
tion, resource allocation, improved 
outcomes

Data integration and standardi-
zation, interoperability, privacy 
concerns, scalability

Arcadia, Cerner Population 
Health, Philips Wellcentive

Machine Learning, Deep Learn-
ing, Graph Analytics, Predictive 
Modeling, Clustering

Cybersecurity and compliance 
 management205

Data encryption, access controls, 
threat detection, regulatory 
compliance

Evolving cybersecurity threats, 
compliance with multiple 
regulations (e.g., HIPAA, GDPR), 
resource constraints

Palo Alto Networks, Fortinet, 
Microsoft Azure Security Center

Machine Learning, Deep Learn-
ing, Natural Language Processing 
(NLP), Anomaly Detection, 
Predictive Analytics

Patient engagement and self-
service  portal206

Patient empowerment, improved 
communication, enhanced care 
coordination

User adoption and engagement, 
accessibility barriers, data security 
and privacy concerns

MyChart (Epic Systems), Fol-
lowMyHealth (Allscripts), Cerner 
HealtheLife

Machine Learning, Deep Learn-
ing, Natural Language Processing 
(NLP), Recommender Systems, 
Sentiment Analysis

Healthcare supply chain 
 management207

Cost savings, inventory optimiza-
tion, supply chain visibility, 
improved patient care

Supply chain complexity, demand 
forecasting accuracy, inventory 
management challenges

Oracle Healthcare, SAP Integrated 
Business Planning, GHX

Machine Learning, Deep Learn-
ing, Time Series Analysis, Predic-
tive Modeling, Optimization

Healthcare IoT data integration 
and  analytics208

Predictive maintenance, real-time 
monitoring Latency and data security

IoT Health Monitoring System, 
Remote Patient Monitoring Plat-
form, Philips Healthcare

Autoregressive Integrated Moving 
Average (ARIMA), Isolation 
Forest, One-Class SVM,Predictive 
models
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exchange between different healthcare entities, ensuring seamless and secure data sharing. Moreover, cloud 
services offer robust solutions for healthcare data storage and backup, crucial for preserving sensitive medical 
information such as images and genomic data. Cloud replication of vital systems and data improves disaster 
recovery and business continuity plans and guarantees quick recovery in an emergency. The utilization of weara-
bles and medical IoT devices expands the scope of healthcare by permitting telemedicine, population health 
management, and remote patient  monitoring195. Cloud platforms use analytics and machine learning to mine 
large healthcare datasets and extract meaningful information for research, quality improvement, and clinical 
decision-making. Secure cloud-based communication tools enable virtual consultations and remote monitoring 
for telemedicine and virtual care platforms. Cloud-enabled data gathering and analysis helps population health 
management programs by assisting in the identification of populations that are at-risk and the implementation of 
focused interventions. Strict cybersecurity protocols are put in place to protect patient information and guarantee 
adherence to legal requirements. Self-service portals and mobile apps improve patient engagement by enabling 
people to quickly manage their appointments and access their health records. Furthermore, cloud-based solu-
tions streamline the distribution, inventory control, and purchase of medical equipment and supplies, improv-
ing the efficiency of the healthcare supply chain. Moreover, real-time monitoring and predictive maintenance 
are made possible by the integration and analysis of data from various healthcare IoT devices, providing useful 
insights to enhance patient care  results196. All things considered, cloud computing revolutionizes the healthcare 
sector by improving accessibility, efficiency, and quality of care delivery while protecting patient privacy and 
security. However, the role of the Transformer is also supportive to the healthcare industry. Originally intended 
for NLP, the Transformer architecture has found use in the healthcare industry, especially in cloud computing 
settings. This deep learning model effectively processes sequential input by means of self-attention techniques. 
The Transformer can be used for tasks like image analysis, predictive modeling, and patient monitoring in the 
healthcare industry, where data is frequently provided in sequences, such as medical images or patient records. 
Accurate predictions are made possible by effectively capturing complicated connections in data, particularly 
in situations with subtle patterns. Because of its parallelizability and scalability, it can be deployed in the cloud 
and process massive healthcare datasets effectively. All things considered, the Transformer design holds great 
potential for increasing data analysis, decision support, and eventually patient outcomes in the healthcare indus-
try. Mathematically, the Transformer architecture can be represented as follows: Let X be the input sequence of 
data, where X = {x1, x2, ..., xn} , and n is the length of the sequence. Each element xi represents a feature vector or 
a token in the sequence. Feed-forward neural networks and self-attention mechanisms are the mainstays of the 
Transformer design. The self-attention mechanism computes attention scores between all pairs of elements in the 
input sequence X, capturing the relevance or importance of each element with respect to others. Mathematically, 
the self-attention mechanism can be formulated as shown in Eq. 7:

where Q, K, and V are the query, key, and value matrices obtained by linear transformations of the input sequence 
X. dk represents the dimensionality of the key vectors. After scaling by the square root of the key vectors’ dimen-
sionality and utilizing the dot product between the query and key vectors to calculate the attention scores, 
a softmax function is applied to produce a probability distribution. Ultimately, the result is calculated as the 
weighted sum of the value vectors, with the attention scores serving as the basis for the weight calculations. The 
output of the self-attention mechanism is sent via feed-forward neural networks to identify non-linear linkages 
and interactions in the data, following the computation of attention scores. A non-linear activation function, 
usually a Rectified Linear Unit (ReLU), comes after two linear transformations in a feed-forward neural network. 
The feed-forward neural network can be expressed mathematically as shown below in equation 8:

where W1 , W2 , b1 , and b2 are learnable parameters of the neural network. Positional encodings are another 
feature of the Transformer architecture that provide details on the placement or order of the elements in the 
input sequence. The input embeddings are enhanced with these positional encodings prior to being fed into 
feed-forward neural networks and the self-attention mechanism. All things considered, the Transformer archi-
tecture provides an effective framework for handling sequential healthcare data, which makes it ideal for a range 
of applications including clinical decision support, predictive modeling, medical image analysis, and patient 
monitoring in cloud healthcare systems.

Comparative analysis of models
This section presents the comparison of all models that are implemented and trained on a dataset with 10 only 
epochs, as VGG-16 and Ensembled models require high computational resources, which makes the model too 
complex and takes more time to train the dataset. Figure 20 indicates training data accuracy and Fig. 21 indicates 
validation data accuracy of the 3 models. We considered Adam optimizer with a batch size of 64 and sparse cat-
egorical cross-entropy loss function. The Adam optimizer gives better performance and uses optimized gradient 
descent whereas the cross-entropy loss function provides better adjustment of model weights during training. 
We can observe from both the figures that VGG-16 provides better accuracy as compared to CNN and Ensemble 
model, but CNN achieved higher accuracy when trained for a higher number of epochs.

Table 13 shows the comparison based on the specific characteristics and requirements of MRI datasets, such 
as the need for robustness to variations in MRI data, the importance of interpretability in medical imaging, and 
the potential for improved performance through ensembling. Table 14 shows the observation on performance 

(8)Attention(Q,K ,V) = softmax

(

QKT

√
dk

)

V

(9)FFN(x) = ReLU(xW1 + b1)W2 + b2
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classification of model used  by209,210 with proposed approach. This shows the per-class classification of the pro-
posed model against the two baseline deep learning CNN model. The accuracy of the proposed model is 92.18% 
against the two model 78.0% and 91.20%.

Discussion
The VGG-16 neural network design has been used more frequently to classify medical images, demonstrating 
its significant utility in this particular area. VGG-16 has demonstrated success in extracting complex patterns 

Figure 20.  Comparison of training accuracy with 10 epoch.

Figure 21.  Comparison of validation accuracy with 10 epoch.

Table 13.  Analysis metric for CNN, VGG16, Ensembled model.

Factor CNN VGG16 Ensembled model

Architecture Custom deep learning specially designed for 
spatial data such as MRI

Predefined, 16 layers, 3X3 filter, and max-
pooling layer that helps to learn hierarchical 
features from the input MRI images

Combination of models, possibly including 
CNNs, VGG16, and other architectures.

Performance metrics F1-score = 96.5, Sensitivity = 96.5, Preci-
sion = 96.5 F1-score = 96, Sensitivity = 97, Precision = 94.5 F1-score = 98.5, Sensitivity = 98.7, Preci-

sion = 98.25

Computational complexity High when dealing with complex MRI dataset Model depth contribute to high computational 
complexity

Depend on the number of base model and 
ensembled method

Training and inference time Longer training time Longer training time Longer training time

Interpretability
Difficult to understand the specific features 
or patterns in the images that lead to those 
predictions.

Challenging to interpret how it makes decisions 
based on MRI images

More interpretable and depend on the base 
model.

Robustness Robust due to hierarchical features of images Robust due to ability to learn features from 
images Potential for improved robustness
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and characteristics from medical pictures, including those related to various diseases and Alzheimer’s MRI Clas-
sification, thanks to its depth and usage of small convolutional filters.

Its application across diverse medical imaging tasks such as tumor detection, organ segmentation, and tis-
sue classification demonstrates its adaptability and potency in handling complex visual data. Furthermore, the 
architecture’s ability to be fine-tuned allows it to be tailored to specific medical scenarios, resulting in enhanced 
performance compared to more generic models. The VGG-16 consistently succeeds in various medical image 
classification for Alzheimer’s MRI Classification endeavors despite some restrictions in computational efficiency 
and resource consumption, demonstrating its significant contribution to the development of AI-driven healthcare 
diagnostics and research. Using medical datasets offers a number of challenges that prevent their ideal application 
in clinical practice and healthcare research. First and foremost, accuracy depends on the quality and consistency 
of the data, which necessitates stringent pre-processing and standardization. Second, strict compliance with rules 
like HIPAA in the United States or GDPR in Europe is required due to the privacy and ethical issues surrounding 
patient information, which can restrict accessibility and collaboration. Thirdly, complex integration and align-
ment techniques are frequently needed to extract relevant insights from the heterogeneous nature of medical 
data, including different imaging modalities, textual reports, and genetic information. Last but not least, biased 
models that inaccurately represent the overall population may result from the dataset’s frequently unbalanced 
distribution of specific medical diseases. Together, these difficulties highlight the complexity of utilizing medical 
datasets, and they call for a careful, interdisciplinary strategy to get around them and realize the full promise of 
data-driven healthcare.

Statistical analysis of experiment results using T‑test
In order to make sense of the data gathered during study and experimentation, statistical analysis is essential. The 
t-test is one approach that is frequently used to compare two sets of data. This article explores the fundamentals 
and uses of the t-test in statistical testing, offering a thorough explanation of how this technique is applied to 
examine experimental results related to medical imaging. The discussion here covers the t-test’s theoretical 
foundations, assumptions, several t-test varieties, and step-by-step directions for the test. To show how it might 
be applied and interpreted in the actual world, concrete examples and experiments have been investigated. A 
t-test is a statistical technique for making inferences about datasets. Its purpose is to measure whether the means 
of two groups exhibit significant differences while being linked to specific attributes. The t-test is a fundamental 
method within the realm of statistical hypothesis testing. This method is most appropriate when comparing two 
distinct groups, known as pairwise testing or comparison. The decision to employ a t-test hinges on two primary 
considerations: firstly, whether the groups being compared originate from the same or different groups, and 
secondly, whether the intention is to assess significance in a particular direction or both directions.

• Paired T Test: If the groups come from the same population, a paired t-test should be employed (for instance, 
when comparing results from an experiment before and after).

• Two sample T test: It is also known as an independent t-test, which should be advised to be used if the samples 
come from two distinct populations such as two different species or persons from two different locations.

• One sample T‑test : Use a t-test of one sample if only one set is being compared to a standard value (for 
instance, comparing a liquid’s acidity to pH 7 as the neutral value).

• T‑tests with one and two tails: It is advised to use if two populations are different. To evaluate whether the 
mean of one population is greater or less than the other, a one-tailed t-test can be performed. Below is the 
two-sample t-test formula. 

 In Eq. (10), the Vt is the value of t, M1 and M2 are denoted as the means of the two groups, which is being 
compared, and the Es2 is denoted as the pooled standard error of the two groups. The On1 and On2 are desig-
nated as the number of observations for each group. A high t-value signifies group mean difference is more 
important than the standard error of the pool, which indicates the more significant difference between the 
two groups. In the present study, we reject the null hypothesis and come to the conclusion that the two 
groups are distinct.

(10)
Vt =

M̄1 − M̄2
√

Es
2

(

1
On1+

1
On2

)

Table 14.  Comparative Analysis metric of proposed model. ND: Non Demented, VMD: Very mild Demented, 
MiD: Mild Demented, MoD: Moderate Demented.

Sarraf et al.210 Islam et al.209 Proposed

ND VMD MiD MoD ND VMD MiD MoD ND VMD MiD MoD

Precision 0.88 0.75 0.62 0.32 0.80 0.44 0.27 0.50 0.96 0.98 0.67 0.55

Recall 0.95 0.50 0.70 0.51 0.90 0.33 0.60 0.50 0.96 0.36 0.86 0.51

F1-score 0.91 0.60 0.62 0.42 0.82 0.38 0.25 0.50 0.96 0.60 0.75 0.50

Support 72.0 6.00 7.00 2.00 73.0 6.00 6.00 2.00 78.0 7.00 7.00 2.00
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To calculate the t-test the Mean Absolute error (MAE), as shown in the Eq. (11) has been computed for the 
medical image classification.

The MAE is represented as follows:

where 

1. n: Total number of samples in the dataset
2. ypred , i : Predicted value for the ith sample
3. yactual , i : Actual (ground truth) value for the ith sample

This formula provides an average measure of the absolute differences between predicted and actual values, serving 
as an evaluation metric for regression tasks. Table 15 shows the statistical testing data of one tail and two tails for 
MAE values. Here the level of significance is 0.05, and hence, the NULL hypothesis is rejected here. The values 
that have been discussed here are lesser than the level of significance, i.e., less than the 0.05 level. The same is also 
described in Table 15 the ANN value has been calculated as one-tail values as 2.7E− 03 and two-tail as 5.42E−
03. Similarly, the values for the Random forest have been calculated as 6.41E− 03 for One-tail and 1.28E− 03 for 
two-tail. Likewise, the values of the KNN, SVM, and Residual Networks are found as 3.10E−03, 4.23E−03, and 
2.40E− 03 for one-tail and the two-tail values are calculated as 3.36E−02, 3.48E−03, and 1.90E−03.

Conclusion
The study presents a tutorial approach on the use of DL for reliable CC in healthcare, using Alzheimer’s-related 
MRI scans as a test case. Our article covered an extensive review of literature, hand-picking the right dataset, 
employing various computational models like CNN, VGG-16, and an ensemble method, as well as creating our 
own unique architecture and algorithms. We also conducted simulations and engaged in prediction activities 
to test the efficacy of these models. The CNN model emerged as the top performer, boasting a test accuracy of 
an impressive 99.285%. On the other hand, VGG-16 secured a decent score with an 85.113% accuracy rate. The 
ensemble model trailed behind, achieving only 79.192% accuracy and displaying numerous false predictions, 
thereby showing its limitations in this particular predictive task. The results indicate that CNN based models 
show immense potential in MRI imaging. Moreover, our proposed architecture offers a secure and trustworthy 
blueprint for integrating CC into healthcare systems.

Future research could delve into how these computational models apply to other sets of medical data and 
evaluate their effectiveness in real-world clinical scenarios. Another promising avenue could be the exploration 
of encrypting medical images to further enhance privacy and security measures. In sum, our study paves the 
way for the fusion of dependable CC in healthcare settings and the progression of DL models in the realm of 
medical image analysis.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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