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Intracranial aneurysms (IA) pose significant health risks and are often challenging to manage. 
Computational fluid dynamics (CFD) simulation has emerged as a powerful tool for understanding 
lesion-specific hemodynamics in and around IAs, aiding in the clinical management of patients with an 
IA. However, the current workflow of CFD simulations is time-consuming, complex, and labor-intensive 
and, thus, does not fit the clinical environment. To address these challenges, we have developed a 
semi-automated pipeline integrating multiple open-source software packages to streamline the CFD 
simulation process. Specifically, the study utilized medical angiography data from 18 patients. An in-
house open-source DL image segmentation model (ARU-Net) was employed to generate 3D computer 
models of the anterior circulation. The segmented intracranial vasculature models, including IAs, 
were further refined using the Vascular Modeling Toolkit (VMTK), an open-source Python package. 
This step involved smoothing the surface of the models and extending the inlet and outlet regions 
to ensure a realistic representation of the vascular geometry. The refined vascular models were then 
converted into computational meshes using an open-source mesh generator known as TetGen. This 
process was nearly automated and required minimal user interaction(s). Blood flow simulations of the 
cerebral vascular models were performed using established SimVascular solvers (an open-source finite 
element platform for vascular applications) through an application programming interface (API). The 
CFD simulation process was also conducted using the manual workflow for comparative purposes. 
The initial assessment compared the geometries derived from manual and DL-based segmentation. 
The DL-based segmentation demonstrated reliable performance, closely aligning with manually 
segmented results, evidenced by excellent Pearson correlation coefficient (PCC) values and low relative 
difference (RD) values ranging from 3% to 10% between the computed geometrical variables derived 
from both methods. The statistical analysis of the computed hemodynamic variables, including 
velocity informatics and WSS-related variables, indicated good to excellent reliability for most 
parameters (e.g., ICC of 0.85–0.95). Given the data investigated, the proposed automated workflow 
streamlines the process of conducting CFD simulations. It generates results consistent with the current 
standard manual CFD protocol while minimizing dependence on user input.

Keywords  Computational fluid dynamics, Intracranial aneurysm, SimVascular, Velocity-informatics

1Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 
USA. 2Center for Biocomputing and Digital Health, Institute of Computing and Cybernetics and Health Research 
Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA. 3Sichuan Normal 
University, Chengdu, Sichuan, China. 4Department of Radiology, University of Michigan Medical Center, Ann Arbor, 
MI, USA. 5Department of Neurosurgery, University of Michigan Medical Center, Ann Arbor, MI, USA. email:  
jjiang1@mtu.edu

OPEN

Scientific Reports |        (2024) 14:30181 1| https://doi.org/10.1038/s41598-024-80891-4

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-80891-4&domain=pdf&date_stamp=2024-12-4


Unruptured intracranial aneurysms (UIAs) are prevalent in the adult population (3–6%). These aneurysms are 
frequently incidental findings from imaging examinations for unrelated medical issues1,2. With the improving 
accessibility of state-of-the-art medical imaging technologies, more and more UIAs are detected in an aged 
society. When UIAs are detected, the primary clinical decision revolves around whether to undertake surgical or 
endovascular interventions or to adopt a conservative strategy entailing regular imaging surveillance3–6. Invasive 
procedures carry significant risks, including procedural complications and extended recovery periods7–9. 
However, a UIA generally has a low risk of rupture (e.g., 0.1–1% per year), which could be lower than the risks 
associated with surgical interventions. Conversely, conservative management (i.e., periodical imaging follow-
up) exposes patients to a risk of aneurysm rupture, which can result in catastrophic neurological outcomes (e.g., 
50% mortality after IA rupture). As a result, managing patients afflicted with a UIA is a dilemma, and many 
advocate the need for a refined, individualized treatment paradigm.

Much ongoing research involves personalized risk assessments for patients with a UIA. Outcomes of these 
personalized risk assessments enable physicians to select patients whose UIA has a high risk of rupture for 
intervention while confidently leaving other low-risk UIAs for imaging follow-up. Currently, this capability is not 
available in the clinical workflow. Based on the mechanobiology literature, disturbed flow within an aneurysm is 
a crucial factor in triggering vascular remodeling10–12. Over the past two decades, patient-specific computational 
fluid dynamics (CFD) simulations13,14 have become a valuable tool for evaluating aneurysmal hemodynamics for 
individual patients. These “patient-specific” hemodynamic metrics derived from CFD simulations are routinely 
used in IA research. Many studies have shown that integrating hemodynamic variables into machine learning 
(ML) models significantly improves the prediction of IA rupture status15–20. Remarkably, the above-said ML-
based methods for rupture status prediction have performed well (e.g., a lot of studies reached the area under 
the operator receiving curve greater than 0.85). Further developments are still needed to make them clinically 
useful. The work presented here is an integral part of these translation-driven developments.

The most common workflows used for running “patient-specific” CFD simulations by many research 
groups14,19,21,22 are similar. They start with medical imaging data and proceed to the final hemodynamic metrics 
of interest in three main steps. In the first step, pre-processing involves preparing the medical angiographic data 
(e.g., CT or MR angiography) for simulations. It includes image segmentation to extract the region of interest 
(ROI), such as the intracranial vessels, including one or more brain aneurysms, from the angiographic images. 
Subsequently, a 3D (surface) model is created. Additionally, the pre-processing includes volumetric mesh 
generation, which entails discretizing the 3D surface model into a volumetric computational mesh composed 
of grid points or elements that will be used for numerical analysis. The second step (hereafter referred to as the 
solver step) is to solve the Navier–Stokes equations to compute the time-resolved velocity and pressure fields 
over the entire volumetric computer mesh. The solver step includes defining the boundary conditions, which 
are the physical conditions at the boundaries of the computational domain, such as inlet and outlet blood flow 
rates and pressure conditions. Given the physiological boundary conditions, numerical methods are employed 
to solve the Navier–Stokes equations governing fluid motion within the computational domain. The last step 
is known as the (3) post-processing step. Specifically, we analyze and visualize hemodynamic results for each 
CFD model. Some hemodynamic metrics (e.g., velocity, wall shear stress [WSS], etc.) are standard outputs from 
a selected CFD solver. The research community is actively developing more advanced parameters (e.g., velocity 
informatics19, relative residence time (RRT)23, vortex core analysis24). Visualization of hemodynamic data has 
attracted some attention as well25–27.

The pre-processing step is both time-consuming and labor-intensive. For instance, manually creating a CFD 
model can take around 1 h and requires a skilled technician or engineer. Such resources are unavailable in a 
clinical environment, becoming a major hurdle to integrating “patient-specific” CFD simulations into clinical 
practice.

In this study, capitalizing on the state-of-the-art deep-learning (DL)-based vessel segmentation technologies28, 
we present a semi-automated pipeline that minimizes user interaction while preserving the accuracy of CFD 
simulations. The primary objective is to develop a robust semi-automated workflow capable of handling complex 
geometries with minimal manual interventions. Moreover, in this study, we propose an open-source approach 
for all three key steps to make our proposed software pipeline accessible to the entire research community. 
The main thrust of this study is our validation of the proposed pipeline using in vivo angiographic data from 
37 human subjects. Our secondary objective is to demonstrate that the proposed pipeline can streamline the 
evaluation of aneurysmal hemodynamics without compromising simulation fidelity.

The main contribution of this study is our development of an open-source computational hemodynamics 
simulation platform OpenHemoSim. The proposed OpenHemoSim integrates known open-source packages 
ARU-Net29, SimVascular30, Vascular Modeling Toolkit (VMTK)31, and VTK32 to streamline CFD simulations 
using patient-specific imaging data. Although this feasibility study focuses on streamlining image-based CFD 
simulations for IAs, our work contains innovative components. First, the proposed OpenHemoSim connects 
DL-based segmentation to image-based simulations using open-source packages, as mentioned above. To 
our knowledge, integrating DL-based image segmentation with image-based CFD simulations for IAs is still 
relatively new. Second, OpenHemoSim includes both conventional hemodynamic metrics (e.g., wall shear stress 
and its derivatives) and newly-developed velocity-informatics parameters19. Notably, velocity-informatics is a 
novel technology useful for characterizing both the growth status of abdominal aortic aneurysms33 and the 
rupture status of IAs25. Making velocity-informatics available augments computerized analysis of IAs.

Related prior work
The most relevant prior work is summarized below, and our review indicates that streamlining the computational 
hemodynamics workflow has not received sufficient attention. Hence, our review of prior work has been divided 
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into the three most relevant components: (1) DL-based vessel segmentation, (2) neural network-based CFD 
simulation, and (3) accelerating CFD mesh generation.

DL-based brain vessel segmentation
Recent breakthroughs in DL-based technologies have revolutionized the domain of medical image segmentation. 
Interested readers are steered to recent survey articles34,35. Relatively fewer studies18,36–39,39–43 have focused on 
learning hierarchical representations of brain vessels from raw imaging data, as summarized below.

Recall that correct CFD models in and around IAs must meet two requirements: (1) retaining relevant small 
vessels and (2) eliminating the possibility of unwanted vessel-to-vessel or vessel-to-IA adhesion. Otherwise, 
incorrect CFD models alter pathways for blood flow, leading to erroneous gross intra-aneurysmal gross 
hemodynamics. Some early technologies largely adopted existing convolutional neural network (CNN) models 
(e.g., U-Net or its close variants) developed by the DL community and applied them to brain vessel segmentation 
or intracranial aneurysm (IA) detection. Thus, most of the DL vessel segmentation methods are not optimized 
to satisfy these two requirements. Stember et al.40 devised a CNN for the automated detection of intracranial 
aneurysms (IA) utilizing magnetic resonance angiography (MRA) data. However, their reliance solely on 2D 
maximum intensity projection (MIP) images for model training presents notable limitations, i.e., their method 
is not suited for creating the 3D vasculature necessary for generating CFD meshes. Jin et al.42 introduced an 
end-to-end spatio-temporal DL neural network tailored for IA segmentation, leveraging both 2D and temporal 
digital subtraction angiography (DSA) data. Despite its innovation, their model was constrained to 2D image 
segmentation, reducing its efficacy in distinguishing small aneurysms from vascular accumulations. Patel et 
al.41 implemented the DeepMedic architecture37 for IA segmentation utilizing dynamic susceptibility contrast 
sequences and compared its performance with a 3D U-Net model39. Shahzad et al.44 employed a deep learning 
model to automatically segment aneurysms on computed tomography angiography (CTA) images. Cheng et al.43 
tackled IA segmentation using a variant of U-Net CNN architecture45, integrating spatial information from 3D 
rotational angiography (3DRA) images. The network model had difficulties with delineating small structures, 
e.g., segmenting small-sized IAs, particularly those with dimensions less than 3 mm in height or width.

Some recent work has been devoted to designing DL segmentation methods for creating CFD models/meshes 
to meet the two requirements mentioned above. Notably, Mu et al.28 added an attention module to improve the 
depiction of small vessels, which are often needed for the integrity of computational hemodynamics in and 
around IAs. Also, they developed a post-processing strategy to eliminate unwanted vessel-to-vessel and vessel-
to-IA adhesion. Their DL model named ARU-Net was successfully used to create CFD models. However, vessel 
geometries obtained by ARU-Net often include more distal small vessels (i.e., longer and more distal branches). 
Of note, extensive small distal vessels add complexity in mesh generation and demand more computational 
time. In a more recent publication46, Mu et al. devised a frequency-domain attention module that selectively 
tune the inclusion of small vessels. As a result, their latest DL vessel segmentation model, a frequency-domain 
attention cascade U-Net (FACU-Net) showed promise in automatically creating CFD models with minimal 
human interventions.

Neural network-based CFD simulations
As described in the introduction, estimating hemodynamic stressors often requires numerically solving Navier–
Stokes equations (e.g., using the finite element or finite volume method). Because the numerical solution of 
Navier–Stokes equations is time-consuming, considerable research has been invested in accelerating the 
hemodynamic assessments using machine learning (ML) methods in recent years. These ML methods can be 
largely divided into the following three categories: (1) parameterization and projection methods, (2) point-cloud 
methods, and (3) mesh-based methods.

Theoretically, parameterization and projection methods involve the transformation of an intricate 3D 
artery-wall manifold into a simpler Cartesian 1D or 2D domain, aiming to predict one or more hemodynamic 
variables. In other words, these parameterization and projection methods do not attempt to solve Navier–Stokes 
equations. For instance, Ilu et al. deployed Multilayer Perceptrons (MLPs) for estimating scalar values like 
fractional flow reserve (FFR, i.e., a fractional pressure drop after a vessel stenosis) along the artery centerline, 
leveraging shape descriptors47. Su et al.48 utilized CNNs to predict scalar magnitudes of WSS through uniform 
shape sampling techniques. Additionally, Gharleghi et al. employed CNNs for estimating both time-averaged49 
and transient WSS magnitudes50 based on cylindrical parameterizations of the vessel wall. Furthermore, Ferdian 
et al.51 employed CNNs to estimate vector-valued WSS, also using a cylindrical parameterization. This approach 
involved sampling projections of the velocity field at various distances from the aortic wall, reconstructed 
from 4D flow MRI data. Cylindrical parameterization means that a segment of the artery is projected to an 
idealized vessel segment, i.e., a cylinder. Although the proposed parameterization mitigated some limitations 
of early work relying on regularized boundaries (e.g., CFDNet52), these parameterization methods still confront 
challenges when the vessel segments become complex. It is worth noting that complex artery shapes or vascular 
abnormalities such as aneurysms or dissections have not been widely tested using this methodology.

3D Point-Cloud Methods have been experimented with to estimate pressure and vector-valued velocity 
fields for three dimensional (3D) vessels. The 3D vessel geometries are represented by 3D point clouds. Liang 
et al.53 pioneered the development of deep neural networks (DNNs) to directly infer steady-state distributions 
of pressure and flow velocity within the thoracic aorta. Similarly, Li et al.54 proposed a DL methodology aiming 
at predicting velocity and pressure fields based on the pre- and post-operative geometric features observed in 
coronary artery bypass graft surgery. Zhang et al.55 proposed a sophisticated analytical framework leveraging 
multi-attribute point cloud datasets and DL modules augmented by physics-informed neural networks (PINN)56. 
Both studies encoded vessel geometries to include a range of morphological variations in human aorta. For 
instance, Zhang et al. constructed a set of 110 normal aorta models with and without coronary branches. As a 

Scientific Reports |        (2024) 14:30181 3| https://doi.org/10.1038/s41598-024-80891-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


result, their models take into account morphological variations of normal aorta. Consequently, their method 
showed excellent results, as compared to the results of CFD simulations. However, their methodology may 
not be easily translatable to vascular aneurysm or dissection applications. After all, vascular aneurysms and 
dissections are very challenging to geometrically parameterize.

Mesh-Based Approaches utilize Graph Convolutional Network (GCN) architectures to intricately encode 
detailed information about the artery-wall structure. These methods leverage both the geometric coordinates 
of mesh vertices and additional local geometric details, such as surface normals and connectivity. For instance, 
Morales Ferez et al.57 utilized surface normal vectors and connectivity as input features for a GCN designed 
to predict a hemodynamic scalar named endothelial cell activation potential (ECAP) on the surface of the left 
atrial appendage. Additionally, Suk et al.58 utilized Mesh Convolutional Neural Networks to estimate WSS on 
the coronary artery surface. Although this methodology showed great potential, more work is needed to address 
whether their successes can be generalized. From the perspective of flow physics, the targeted WSS and its 
derivatives (e.g., ECAP) depend on the intrinsic vessel shape. However, inputs to mesh CNN and GCN are 
surface normals, implying WSS and its derivatives are solely dependent on surface normals.

Developments in CFD model/mesh generation
Ghaffari et al.59 introduced an advanced technique for automatic parametric mesh generation specifically 
designed for subject-specific cerebral arterial trees. This method produces high-resolution, anatomically precise 
computational meshes optimized for rapid blood flow simulations, extending the applicability of 3D vascular 
modeling to encompass extensive segments of cerebral arterial networks. The parametric meshing framework 
they developed efficiently decomposes the vascular skeleton, extracts key geometric features, and generates 
hexahedral meshes. To capitalize on the strengths of both unstructured and parametric meshing, the approach 
integrates an unstructured mesh for complex, irregular pathologies such as aneurysms with a parametric mesh 
for the remaining portions of the patient’s arterial tree, achieving a seamless fusion that enhances both accuracy 
and computational efficiency. However, the method may encounter challenges when handling highly intricate 
vascular geometries, where the transition between unstructured and parametric meshes could potentially 
introduce computational artifacts or necessitate additional refinement.

In parallel, prior work on mesh generation for computational simulations has led to the development of 
several open-source tools that have significantly advanced mesh quality and efficiency, particularly for complex 
geometries. Gmsh60 is recognized as a versatile 3D finite element mesh generator with an integrated CAD engine 
and post-processor, capable of supporting both structured and unstructured meshes. SALOME61 extends these 
capabilities by offering a comprehensive platform for the pre- and post-processing in numerical simulations, 
excelling in the meshing of intricate geometries and integration with a variety of solvers. TetGen62 is notable for 
its specialization in generating high-quality tetrahedral meshes from 3D point clouds or polyhedral surfaces, 
making it particularly effective for modeling complex vascular structures. OpenFOAM’s mesh generation tools63, 
including blockMesh and snappyHexMesh, enhance the meshing process by providing both structured and 
unstructured mesh options that are seamlessly integrated with the OpenFOAM CFD solver, thereby streamlining 
the simulation workflow. Netgen64 contributes by providing automatic 3D tetrahedral mesh generation from 
constructive solid geometry (CSG) or boundary representation (BRep), with a strong emphasis on integration 
with finite element method (FEM) solvers. Additionally, MeshPy65 offers a Python-based approach to mesh 
generation, utilizing the Triangle and TetGen libraries to produce unstructured triangular and tetrahedral 
meshes, thereby offering flexibility in custom meshing workflows.

Also notably, Xiang and his colleagues developed an open-source CFD simulation platform named 
AView66,67. It is worth noting that a user study was successfully conducted for AView. However, there is room for 
improvement since AView requires a lot of user interactions in the pre-processing step. For instance, an operator 
needs to click along a centerline to define the scope of vasculture to facilitate CFD model creation. Improving 
the degree of automation using DL-based image segmentation is one of our goals.

Leveraging the latest DL-based automated image segmentation algorithm, our group has attempted 
to incorporate DL-based image segmentation into CFD model creation. Particularly, in a recent study by 
Rezaeitaleshmahalleh et al.68, the accuracy and reliability of hemodynamic variables derived from DL-segmented 
geometries were evaluated. The study systematically compared the geometrical features and hemodynamic 
parameters of eight 3D rotational angiography (3DRA) datasets containing IA cases using segmented geometries 
generated by two published DL segmentation models (i.e., MIScnn69 and DeepMedic37) and two human raters. 
Our findings demonstrated almost perfect concordance between human and AI-derived results for most 
morphological and hemodynamic parameters, suggesting that AI-based segmentation is a promising approach 
for generating CFD models.

Materials and methods
Study dataset
We identified 23 IAs from our internal database. These patient data were obtained from the Aneurisk open-
source repository (http://ecm2.mathcs.emory.edu/aneuriskweb/index). Additionally, we included 14 additional 
cases from the University of Wisconsin to validate the robustness of our proposed workflow further. Hereafter, 
we refer to the Aneurisk and UW-Madison datasets to as internal and external datasets, respectively.

Thirty-seven sets of in vivo angiographic data (rotational angiography [RA] or digital subtraction angiography 
[DSA]) were identified. Specifically, 51% of the dataset images (13 internal and 6 external cases) were used for 
training, while the remaining 49% (10 internal and 8 external cases) were used for testing. Since the segmented 
geometries from the 18 testing cases were utilized for CFD simulations, the above-said testing was conducted to 
evaluate IA morphology and computational hemodynamics.
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A description of manual workflow for “patient-specific” CFD simulations
Our current manual CFD simulation workflow follows three steps described in the Introduction. As illustrated 
in Fig. 1, the manual workflow encompasses four components: reconstruction vasculature from 3D angiographic 
imaging data (depicted by the green box), mesh generation (indicated by the blue box), and execution of CFD 
simulations followed by post-processing to convert results into visualizable formats (shown within the orange 
box) in Paraview (https://www.paraview.org/), an open-source visualization platform.

In the initial phase of pre-processing, we employ Mimics Innovation Suite (Version 21, Materialise Inc., 
Leuven, Belgium), a commercially available segmentation package, to perform image segmentation. An initial 
mask was established by defining an intensity threshold. Subsequently, manual editing was conducted using a 
paintbrush tool within the Mimics software. This manual refinement was performed slice by slice; tasks included 
eliminating small islands, filling holes, trimming downstream vessels, etc. After mask editing, the finalized vessel 
geometries were extended by six times the vessel diameter at each model’s inlet and outlet(s) using a Python 
script available in Vascular Modeling ToolKit (VMTK, version 1.4)31.

Local smoothing operations were conducted to the above-said extended vessel geometries using commercial 
software named 3Matics (Version 9, Materialise Inc.,Leuven, Belgium). This pre-processing phase was 
time-consuming, typically requiring 45–60  min for standard cases with adequate image quality and surface 
simplicity70. However, in scenarios involving complexities such as small vessels near an aneurysm dome, the 
process may extend to 2–3 h due to increased intricacy and the need for meticulous adjustments.

Subsequently, the smoothed vessel surfaces are fed into in-house Python scripts integrated into the VMTK. 
Notably, mesh element size optimization is achieved through a radius-adaptive meshing approach. This involves 
computing the centerline and subsequently generating a mesh based on the distance of each point to the 
centerline. The final CFD model comprises a 3D volumetric mesh consisting of tetrahedral elements with 3–6 
boundary prism layers at the vessel wall. Mesh sizes typically range from 1.5 to 2.0 million elements, achieving 
an average mesh size of 0.0022 mm3.

Finally, in the CFD solution step, we employed the commercial CFD simulation software Fluent (v20.0, 
Ansys Inc., PA, USA) to solve the unsteady Navier–Stokes equations for laminar flow. Blood was modeled as 
an incompressible, Newtonian fluid with a dynamic viscosity of 0.004 Pa · s and mass density of 1040 kg/m3

. Spatial discretization of pressure and momentum utilized second-order and second-order upwind schemes in 
Fluent (Ansys Inc., PA, USA), respectively. Temporal discretization was achieved using a second-order implicit 
scheme in Fluent. The pressure-velocity coupling was resolved using the classic SIMPLE algorithm71 in Fluent.

In all CFD simulations, the vessel wall was assumed to be rigid, and a no-slip boundary condition was enforced 
at the vessel wall. Without patient-specific flow waveforms, an averaged pulsatile flow waveform derived from 
healthy subjects via magnetic resonance imaging served as the inlet boundary condition72. Also, the waveform is 
scaled to a mean physiological flow rate of 280 mL/min at the internal carotid artery. Additionally, zero-pressure 
boundary conditions were applied at the outlets. The simulations were executed for four cardiac cycles, each 
comprising 1000 steps, with hemodynamic variables extracted from the results of the fourth cardiac cycle for 
further hemodynamics analysis.

In the post-processing step, CFD simulation results are converted to VTK data formats compatible with 
Paraview for subsequent data analysis and visualization.

Fig. 1.  The overall traditional workflow to conduct CFD simulation.
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A description of the proposed nearly automated workflow
The proposed workflow achieving a nearly automated pipeline is illustrated in Fig. 2. Key components in this 
workflow, including DL-based image segmentation, generating meshes, performing CFD simulations, and 
conducting post-processing analysis, and their implementation details are described below.

Deep-learning-based vessel segmentation
In this step (DL-based segmentation), we utilized 19 cases for training and 18 for testing. We adopted a published 
DL-based vessel segmentation algorithm named attention residual U-Net (ARU-Net28). ARU-Net was designed 
to satisfy two major requirements of CFD model creation for intracranial vasculature: (1) retaining small vessels 
and (2) eliminating unwanted adhesion among adjacent vessels, as mentioned earlier.

In ARU-Net, all angiographic data are pre-processed using a Sobel filter to enhance vessel boundaries. The 
network configuration of ARU-Net incorporates “attention” mechanisms to steer the focus of the learning to 
vessels only. Thus, more complete vessel structures, such as small vessels, can be more effectively retained. In 
the postprocessing stage of the ARU-Net, we utilized a fully connected 3D conditional random field (3DCRF) 
to eliminate unwanted adhesion between adjacent vessels or between an IA and its neighboring vessels. 
Subsequently, 3D connected component optimization (3DCCO) was applied to remove noise from the initial 
segmentation. As a result, accurate intracranial vasculature that is more suitable for CFD simulations can be 
obtained. Further details can be found elsewhere28.

Vessel truncation
As shown in Fig.  3a, ARU-Net produces an annotated mask representing the vessel geometry of interest. A 
surface mesh (e.g., an STL or VTP file) can be generated using the ARU-Net-produced mask. Recall that the 
initial surface is watertight (see Fig.  3a) but considerably longer than a typical CFD model. In other words, 
we need to truncate a longer watertight surface (see Fig. 3a) to a truncated surface with open ends that are 
candidates for inlet(s) and outlet(s) of a CFD model (see the red surface in Fig. 3e). Then, these open ends will 
be assigned as an inlet and one or more outlets, as described below. Recall that removing the downstream small 
vessels distal to the IA of interest (see the green IA in Fig. 3a) does not impact aneurysmal hemodynamics. But 
eliminating these downstream small vessels improves the computational efficiency and mitigates the complexity 
in CFD mesh generation.

Our procedures start with identifying the terminal points of a vascular structure. Specifically, a skeletonization 
algorithm73 (i.e., skeletonize-3d function in the skimage.morphology library) was employed to generate centerlines 
from the mask produced in NIfTI format. Subsequently, points along the centerlines with only one connection 
were identified as the terminal points of inlet and outlet vessels (see blue points in Fig. 3a).

Centerlines with defined radii were re-calculated from the surface mesh using VMTK by supplying the 
terminal points as seed points (see blue points in Fig. 3a). VMTK uses a fast marching algorithm to estimate 
centerlines and provide the maximum inscribed sphere (MIS) radius values along the defined centerlines74.

As shown in Fig. 3a, cuts are meticulously crafted using rectangular prisms positioned at the termini of the 
vessel’s centerlines. The length of each cube (i.e., one for each terminal point) is slightly larger than the respective 
vessel diameter. Each cube is orientated to align with its centerline; thus, all cuts are normal to their centerlines. 
As shown in Fig. 3b, IA cases involve small downstream vessels that need to be removed. If the user opts to 
remove downstream small vessels, they can select additional points along the centerline to define the new cut 
location (see red dots in Fig. 3c). Using the same approach as for the initial ending points, the MIS and normal 
direction based on the selected point are utilized to perform these secondary cuts (see Fig. 3d). After completing 
these cuts, the user retains the vessel of interest (see the red surface in Fig. 3d). Then, they extend the vessel 
length by adding a flow extension at each open end further to reduce the influence of boundary conditions in 
CFD simulations. This extension is typically six times the vessel diameter (see numbers 1–5 in Fig. 3f). A longer 
flow extension (e.g., 15D) is available as well. Since our CFD models contain almost the entire ICA, simulated 
gross hemodynamic patterns and variables were comparable (e.g., within 5%) to a longer 15D extension.

Automatic mesh generation and vessel boundary assignments
Following the acquisition of the STL file, we employed the VMTK software to generate a volumetric mesh of the 
reconstructed geometry, utilizing the same parameters and workflow detailed in section.

Fig. 2.  A schematic diagram showing steps in the proposed nearly-automated computational hemodynamic 
analysis.
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The volumetric mesh generation process involves enclosing openings (see regions numbered from 1 to 5 
in Fig. 3f). Subsequently, all surface regions (one inlet, multiple outlets, and one vessel surface) are identified 
and labeled, as shown in Fig. 4a. Among these labeled surface regions, the region with the largest surface area 
is designated as the wall region (see the largest surface numbered 0 in Fig. 4b). In the anterior circulation, the 
inlet will consistently start at the internal carotid artery (ICA). Recall that LPS (Left, Posterior, Superior) is used 
in DICOM images. Following the coordinate conversion to a STL file, the proximal end of ICA often has the 
highest z-coordinates, while distal vessels have lower z-coordinate values. More details can be found in 3D Slicer 
coordinate definition75.

Taking advantage of this convention, the region with the highest z-coordinate at its centroid is assigned to the 
inlet (see the surface numbered 1 in Fig. 4b). Then, the remaining surfaces are all outlets.

Integration with SimVascular
The CFD simulation and postprocessing analysis in SimVascular software comprise three distinct steps: Presolver 
(svPre), Flowsolver (svSolver), and Postsolver (svPost). In this study, to streamline the process, programmable 
Application Programming Interface (API) has been selected to simply pass necessary information from the 
generated mesh (see subsection named "Automatic mesh generation and vessel boundary assignments") to 
complete the solution of Navier–Stokes equations.

Fig. 3.  Illustrations of essential steps involving CFD mesh generation: (a) Detection of terminal points of the 
vascular structure, (b) Creation of initial open ends for the inlet and outlets, (c) Manual selection of additional 
cut points, (d) Implementation of new cuts based on manually selected points, (e) Removal of to-be-eliminated 
regions, and (f) Addition of flow extensions, alongside surface smoothing. In (a), the blue dots denote the 
locations of endpoints selected automatically, while in (c), the red dots indicate the locations of these manually 
selected points.
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More specifically, based on a configuration file (i.e., a “.svpre” file), an in-house Python script prompts 
the svPre application to produce suited files (i.e., “bct.dat”, “geombc.dat.1”, “restart.0.1”, and “numstart.dat”). 
These files contain essential information representing the computational domain, boundary conditions, and 
initial state. The geometrical information regarding the computational domain and boundary conditions were 
extracted from the volumetric mesh and boundary assessments described above in section.

In this study, blood was modeled as an incompressible, Newtonian fluid. We applied an averaged pulsatile 
flow waveform obtained from healthy subjects via magnetic resonance imaging for the inlet boundary 
condition72. This waveform was uniformly distributed across the inlet region, using a predefined plug profile to 
ensure consistency. At the outlets, zero-pressure boundary conditions were enforced. Furthermore, the vessel 
was treated as a rigid wall, aligning with the established protocol for conducting CFD simulations in our recent 
studies19,20. Of note, the automated workflow had identical settings to the manual workflow outlined in section.

Post-processing and data analysis
All hemodynamic results obtained through SimVascular were stored in VTK data format (i.e., unstructured vtu 
format).All data processing was completed by in-house Python scripts.

The quality and reliability of computed results are paramount. Therefore, our data analysis includes: (1) 
Examining the quality of the extracted surface using AI techniques, and (2) Assessing the consistency of 
computed hemodynamic parameters using manually segmented geometries or geometries segmented using AI.

Comparison of manually and AI-segmented geometries
The morphological indices of IA cases serve as crucial information in our recent machine learning-based 
prediction model and related studies focused on predicting ruptured IA cases. Moreover, aneurysm surface 
quality has a significant effect on aneurysmal flow pattern. Thus, we embarked on a comparison of aneurysm 
morphology.

To accomplish this, we computed a comprehensive set of IA geometrical features derived from both manual 
and AI-based segmentation. These features have been extensively discussed in our recent publication19 and 
can be found in Supplementary Materials. Subsequently, we employed statistical measures including Pearson 
correlation coefficient (PCC) and relative difference (RD), and utilized scatter plots to evaluate the consistency 
and reliability levels between the geometric variables measured using AI- and manually segmented methods.

Comparison of computed hemodynamic variables
A comparative analysis was conducted between the hemodynamic variables computed using our automated 
workflow and those estimated following manual workflow. We specifically focused on computing the extremities 
of WSS as well as its spatial average, based on the estimated values at each time step. Furthermore, we calculated 
the temporally averaged minimum and maximum WSS values along with their spatial averages. Moreover, we 
calculated the Oscillatory Shear Index (OSI), a dimensionless parameter, at each point along the vessel wall.

Fig. 4.  A graphic description of surface boundary specification: (a) Identifying the surface regions with 
distinct region IDs; (b) Determining the largest region as the wall boundary (i.e. wall 0) and the rest (1–5) as 
the inlet and outlets.
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Furthermore, we employed Velocity-Informatics (magnitude and directional velocity-informatics; hereafter 
referred to as MVelocity-informatics and DVeloicity-informatics), the method proposed in our recent 
publications, to measure general blood flow characteristics19,33. A brief introduction of velocity informatics 
variables can be found in Supplementary Materials.

Subsequently, to statistically evaluate the reliability of the computed results derived from different workflows, 
we utilized a Bland–Altman plot. Additionally, the ICC was employed to assess the consistency and agreement 
of the hemodynamic parameters. This comparison followed the guidelines presented by Koo76 to define the 
levels of reliability. Based on the 95% confidence interval of the ICC estimate, values less than 0.5 indicate poor 
reliability, values between 0.5 and 0.75 indicate moderate reliability, values between 0.75 and 0.9 indicate good 
reliability, and values greater than 0.90 indicate excellent reliability.

Visual assessments
All velocity streamlines and spatial distributions of hemodynamic variables were visually inspected. Three 
selected cases were included to illustrate subtle differences between the manual and proposed automated 
workflow.

Ethics approval and consent to participate
This study was approved by the Institutional Review Boards (IRB) of all participating institutions. All imaging 
data have been de-identified and patient health information was not used. As a result, this was a secondary 
analysis of existing anonymous imaging data and patient consent requirement was waived by the governing 
IRBs. All methods were performed in accordance with the relevant guidelines and regulations set up by US 
National Institutes of Health.

Results
Comparison of geometrical analysis outcomes between DL-based and manual segmentation
We chose 9 commonly used geometrical features from our recent studies to distinguish between ruptured and 
unruptured IA cases. We conducted a comparative analysis between the outcomes obtained through manual 
segmentation and those generated by DL-based segmentation. A summary of this morphological comparison of 
IAs is illustrated in Fig. 5. PCC and RD were calculated for each geometrical variable. For all nine features, the 
correlation was high (0.958–0.998), with slightly lower RDs (3–10%).

It’s noteworthy that while manual segmentation methods typically require an average of 30–45 min to complete 
any given case, our DL-based model-creation accomplishes the task in a mere 3–5 min (i.e., approximately 1/10 
of the time). This reduction in time is substantial and demonstrates the efficiency of our automated workflow.

Qualitative comparisons between results obtained using the manual and proposed 
automated CFD protocols
CFD simulations were conducted for 18 cases following four distinct protocols. Initially, simulations were 
performed using manually segmented reconstructed geometries with the SimVascular and Fluent (Ansys Inc., 
PA, USA) solvers, hereafter referred to as Protocols 1 and 2, respectively. Subsequently, the simulations were 
repeated for the same cases using DL-segmented geometries, designated as simulation Protocols 3 and 4 for 
SimVascular and Fluent, respectively. The hemodynamic characteristics computed from these four protocols 
were then systematically compared across multiple parameters.

The analysis commenced with a qualitative assessment of flow characteristics, focusing on the general flow 
patterns visualized through velocity streamlines and WSS distributions within and surrounding the IA at the 
peak systole. Figs. 6 and 7 present the velocity streamlines and WSS values for four representative cases. These 
cases were selected to include two randomly chosen from an internal dataset and two from an external dataset 
ensuring a diverse evaluation of the simulation models.

Figure 6 presents velocity streamlines for four representative cases across four different simulation protocols, 
each corresponding to a distinct combination of segmentation method and solver. Each row showcases a different 
case, providing a detailed visualization of flow patterns at peak systolic conditions. The color scale indicates the 
velocity in (mm/s), with red representing the highest velocities and blue representing the lowest.

As illustrated in Fig. 6, the consistency in flow patterns and high-velocity regions across different simulation 
types suggests that DL-based segmentation is a reliable alternative to manual segmentation (see Protocols 3 and 
4 versus Protocols 1 and 2). The computed results using SimVascular and Fluent software are comparable (see 
Protocols 1 and 3 versus Protocols 2 and 4). Minor variations observed are likely due to segmentation differences 
or different approaches to solving differential equations in the two CFD solvers (Fluent and SimVascular) but do 
not significantly impact the overall gross hemodynamic patterns represented by velocity streamlines.

The WSS distributions for these same four cases, utilizing the same CFD types as depicted in Fig.  6, are 
illustrated in Fig. 7. The color scale represents WSS in Pa, with red and blue indicating the highest and lowest 
WSS values, respectively. Consistent with our expectations, the WSS distributions exhibit similar patterns 
and high-stress regions across the different simulation protocols. Again, subtle differences observed are likely 
attributable to variations in segmentation methods or the differential equation handling approaches of the two 
CFD solvers (SimVascular and Fluent).

Levels of agreement between computed hemodynamic variables
To quantitatively assess the degree of agreement for the computed hemodynamic variables, two methodological 
approaches were implemented. Initially, ICC analysis was conducted to evaluate the degree of agreement 
between computed hemodynamic variables using different CFD simulation protocols. In this analysis, the 
computed variables obtained from the Fluent solver, based on manual segmentation results(i.e., Protocol 2), 
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served as the reference standard. Subsequently, the level of agreement between this reference model and the 
other three CFD simulation protocols was investigated. This analysis encompassed WSS-related variables and 
velocity-informatics parameters, specifically Dvelocity- and Mvelocity-informatics (see Tables 1 and 2). These 
parameters have been identified in recent literature as the most informative variables for machine learning-based 
classification models19,20. A brief introduction of these hemodynamic variables can be found in Supplementary 
Materials.

As demonstrated in Table  1, the ICC values for STA-WSS consistently exhibit excellent reliability across 
all workflow comparisons (Protocol 1 vs. Protocol 2, Protocol 2 vs. Protocol 3, and Protocol 2 vs. Protocol 4). 
Notably, the ICC value for LSA also consistently shows good to excellent reliability across all analyses. . This 
observation suggests that the computation of STA-WSS is robust across different CFD simulation protocols. In 
contrast, the ICC values for TA-WSS-min generally indicate good to excellent reliability, particularly between 
Protocols 2 and 4 workflows. This suggests that the computation of TA-WSS-min is relatively stable across these 
workflows. However, TA-WSS-max displays significant variability, with ICC values ranging from moderate to 
poor. This variability is especially pronounced in the comparison between Protocols 2 and 4, indicating that the 
computation of TA-WSS-max is less reliable and exhibits considerable inconsistency. For SA-OSI and Std-OSI, 
the ICC values indicate poor to moderate reliability across most workflow comparisons. This relatively low level 
of consistency suggests noticeable variability in their computation across different protocols.

As indicated in Table 2, several (10 out of the 26 features) Mvelocity-informatics variables demonstrate 
excellent reliability when comparing Protocol 2 with other protocols. Specifically, the variables DifferenceEntropy, 
Idmn, Idn, MCC, GLN, RLN, SizeZoneNonUniformity, SmallAreaEmphasis, ZoneEntropy, and ZonePercentage 
exhibit ICC values greater than 0.9. In contrast, the ICC values for variables such as DiffrenceAverage, 
DiffrenceVariance, Idm, and Imc1 indicate good to excellent reliability. Notably, only two variables, ZoneVariance 
and LargeAreaEmphasis, exhibit ICC values in the poor range. For the remaining variables, ICC values range 
from moderate to good.

Similarly, an Intraclass Correlation Coefficient (ICC) analysis was conducted on the Dvelocity-Informatics 
variables, with the results summarized in Table 2. As depicted in Table 2, eleven Dvelocity-Informatics (out of 
26) variables exhibit excellent reliability, with ICC values exceeding 0.9. This indicates high consistency in the 
computation of these variables across different workflows. Specifically, the variables DifferenceAverage, Idm, Idn, 

Fig. 5.  Comparison of measured geometrical features using DL-based and manual segmentation: Blue dots 
represent internal cases (10), while red dots represent external cases (8). The black dashed line represents the 
y=x line indicating perfect matching.
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GLN, RunEntropy, RLN, RunPercentage, ShortRunEmphasis, ZoneEntropy, and ZonePercentage demonstrate 
high reliability, with ICC values consistently above 0.9 across all protocol comparisons. Furthermore, the variables 
LAHGLE and SumEntropy display moderate reliability across all protocols. In contrast, the variable JointEnergy 
shows poor reliability, reflecting lower consistency in its computation across workflows. Interestingly, the 

Fig. 6.  Comparisons of velocity streamlines at peak systole among Protocols 1–4: Protocols 1 and 2 are based 
on manual segmentation results using SimVascular and Fluent software, respectively, while Protocols 3 and 4 
utilize DL-based segmentation and are processed using SimVascular and Fluent software, respectively.
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remaining features exhibit good to excellent agreement between Protocols 2 and 4, with ICC values ranging 
from 0.827 to 0.977.

In addition to the ICC analysis, the Bland–Altman plot was utilized as a complementary approach to evaluate 
the agreement between computed hemodynamic variables. Specifically, computed variables using the Fluent 
solver based on manual segmentation results were considered as the benchmark, and the reliability of other 

Fig. 7.  Comparisons of computed WSS at peak systole among Protocols 1–4: Protocols 1 and 2 are based on 
manual segmentation results using SimVascular and Fluent software, respectively, while Protocols 3 and Model 
4 utilize DL-based segmentation and are processed using SimVascular and Fluent software, respectively.
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computed variables was tested against these benchmark variables. The outcomes of the Bland–Altman plot are 
visualized in Fig. 8 for all WSS-related variables introduced in Table 1. To make the paper concise, the Bland–
Altman plots for six selected variables from Mvelocity-informatics and Dvelocity-informatics, introduced in 
Table 2, are visualized in Figs. 10 and 9, respectively.

The results illustrated by the Bland–Altman plots are in complete alignment with the computed ICC values 
presented in Tables 1 and 2. The plots support the high consistency and reliability of variables with high ICC 
values, as shown by the narrow limits of agreement and low mean differences. Conversely, variables with lower 

Mvelocity-informatics Dvelocity-informatics

ICC
(1 vs 2)

ICC
(2 vs 3)

ICC
(2 vs 4)

p-value
(2 vs 3)

ICC
(1 vs 2)

ICC
(2 vs 3)

ICC
(2 vs 4)

p-value
(2 vs 3)

DifferenceAverage 0.945 0.935 0.816 0.457 0.941 0.863 0.917 0.248

DifferenceEntropy 0.893 0.912 0.913 0.420 0.928 0.833 0.902 0.169

DifferenceVariance 0.944 0.923 0.737 0.517 0.907 0.584 0.581 0.275

Idm 0.822 0.904 0.899 0.477 0.930 0.923 0.972 0.304

Idmn 0.979 0.966 0.975 0.740 0.934 0.764 0.759 0.200

Idn 0.969 0.961 0.972 0.624 0.946 0.888 0.940 0.235

Imc1 0.879 0.930 0.856 0.169 0.824 0.689 0.936 0.045

JointEnergy 0.333 0.623 0.707 0.304 0.375 0.432 0.575 0.141

JointEntropy 0.727 0.813 0.835 0.304 0.672 0.584 0.890 0.028

MCC 0.926 0.909 0.947 0.275 0.734 0.634 0.853 0.024

SumEntropy 0.746 0.781 0.673 0.862 0.744 0.594 0.673 0.247

GLN 0.989 0.995 0.987 0.987 0.992 0.994 0.987 0.912

LongRunEmphasis 0.695 0.835 0.816 0.537 0.874 0.866 0.977 0.367

LRHGLE 0.931 0.779 0.744 0.912 0.861 0.705 0.841 0.788

RunEntropy 0.757 0.737 0.585 0.887 0.983 0.979 0.979 0.962

RLN 0.998 0.998 0.995 0.837 0.935 0.911 0.992 0.496

RunPercentage 0.796 0.884 0.865 0.580 0.926 0.941 0.984 0.351

RunVariance 0.635 0.804 0.792 0.517 0.879 0.877 0.964 0.402

ShortRunEmphasis 0.846 0.896 0.872 0.537 0.921 0.915 0.987 0.384

LargeAreaEmphasis 0.466 0.507 0.502 0.558 0.718 0.611 0.928 0.558

LAHGLE 0.732 0.334 0.514 0.351 0.736 0.445 0.749 0.537

SizeZoneNonUniformity 0.960 0.975 0.974 0.580 0.696 0.447 0.850 0.018

SmallAreaEmphasis 0.938 0.930 0.915 0.420 0.810 0.631 0.827 0.091

ZoneEntropy 0.911 0.914 0.884 0.580 0.964 0.952 0.976 0.457

ZonePercentage 0.903 0.932 0.939 0.496 0.969 0.937 0.988 0.304

ZoneVariance 0.467 0.503 0.500 0.558 0.726 0.620 0.928 0.580

Average 0.815 0.834 0.816 0.557 0.843 0.755 0.883 0.351

±ST D ±0.177 ±0.168 ±0.154 ±0.209 ±0.138 ±0.180 ±0.123 ±0.259

Table 2.  Intraclass correlation coefficient values for computed Velocity-Informatics variables using different 
workflows. This analysis includes CFD simulation results from all 18 cases. 1 to 4 indicate Protocols 1–4. 
Additionally, Wilcoxon Rank Sum Tests were conducted to compute the p-value between computed variables 
following Protocol 2 and Protocol 3. RLN RunLengthNonuniformity, GLN GrayLevelNonUniformity, LRHGLE 
LongRunHighGrayLevelEmphasis, LAHGLE LargeAreaHighGrayLevelEmphasis, STD standard deviation.

 

WSS-related variables

Protocol 1 vs. 2 Protocol 2 vs. 3 Protocol 2 vs. 4

STA-WSS 0.982 0.941 0.900

TA-WSS-min 0.758 0.792 0.917

TA-WSS-max 0.747 0.424 0.208

SA OSI 0.429 0.501 0.620

Std OSI 0.452 0.426 0.554

LSA 0.757 0.971 0.980

Table 1.  Intraclass correlation coefficient (ICC) values for computed WSS-related variables using different 
protocols. This analysis includes CFD simulation results from all 18 cases. LSA low wall shear area.
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ICC values exhibit broader limits of agreement and greater mean differences, highlighting their variability and 
reduced reliability across different protocols.

As illustrated in Table 2, comparing Protocols 2 and 3, the consistency of Mvelocity-informatics variables 
(related to velocity magnitude) is better than that of Dvelocity-informatics variables, though the differences 
(0.834 ± 0.168 vs. 0.755 ± 0.180) are not statistically significant (p=0.09 using a randsum test). Statistically 
significant differences between Protocols 2 and 3 were observed for four (4) DVelocity-informatics variables 
(p < 0.05): Imcl, JointEntropy, MCC and SizeZoneNonUniformity, as shown by bold fonts in Table 2.

Visual assessments of gross hemodynamics with IAs over a cardiac cycle
The analysis commenced with a qualitative assessment of velocity variations, focusing on the general flow 
patterns visualized through velocity contours within the IA across five distinct phases of the cardiac cycle. 
Figure 11 presents one of the four cases illustrated in Fig. 6 as a representative example. This example compares 
the velocity magnitude values at three different heights of the IA, following Protocol 2 and Protocol 3, thereby 
providing a comprehensive evaluation of the variations in flow dynamics. The outcomes of the analysis for the 
remaining three cases are detailed in the Supplementary Materials.

As illustrated in Fig. 11, the results obtained following Protocols 2 and 3 show a high degree of consistency, 
with nearly identical velocity-magnitude ranges and distributions. These findings were consistently observed 
across the other three cases as well. Similar comparisons were conducted for the other three cases listed in Fig. 6. 
The visualization of the other three cases can be found in Supplementary Materials.

Discussion
This study implemented a nearly automated pipeline (see Fig.  2) for completing the computational 
hemodynamics for IAs in the anterior circulation. To standardize the process, we intentionally retained long 

Fig. 8.  Bland–Altman plots to visualize the degree of agreement between computed WSS-related variables 
follow the four mentioned protocols: Blue dots represent (10) internal cases, while red dots represent (8) 
external cases.
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vessel segments starting from the internal carotid artery. Consequently, we could execute CFD simulations with 
minimal manual intervention.To rigorously evaluate the quality of the computed hemodynamic variables, we 
performed an in-depth comparison between the results produced by our novel workflow and those obtained 
through conventional, well-established methodologies. As illustrated in Tables 1, 2, and Figs. 8, 9, and 10, our 
preliminary analyses demonstrated that a high level of agreement between the key hemodynamic variables 
computed using our automated pipeline and those obtained through the manual CFD workflow. Specifically, 
the velocity streamline patterns, which illustrate the gross aneurysmal hemodynamics were consistent across all 
four protocols, showing similar high-velocity regions. Additionally, the WSS distributions exhibited comparable 
patterns, ranges, and high WSS regions.

More specifically, we included eight (8) external cases to evaluate the performance of our automated pipeline 
and validate the robustness of the proposed method for conducting CFD simulations on new cases. This analysis 
involved two key steps: assessing the quality of the extracted geometry and evaluating the accuracy of the 
computed CFD simulation results. As depicted in Fig. 5, the blue dots representing external data points are 
closely aligned with the matching line, indicating the high reliability of the segmentation algorithm employed. 
Subsequently, the Bland–Altman plots presented in Figs. 8, 9, and 10 further confirm the efficacy of our proposed 
workflow.

Moreover, we visually assessed gross flow patterns with the IA domes over a cardiac cycle. As illustrated in 
Fig. 11, aneurysmal velocity contours were analyzed at various cross-sections ascending from the neck of the IA 
and cardiac phases using both the newly proposed pipeline and manual workflow. The comparative analysis of 
results, depicted in Fig. 11, shows that the outputs from the proposed pipeline closely align with those obtained 
from traditional CFD approaches. Although this consistency is generally robust, some visible discrepancies 

Fig. 9.  Bland–Altman plots to visualize the degree of agreement between computed Mvelocity-Informatics 
variables following four mentioned protocols: Blue dots represent (10) internal cases, while red dots represent 
(8) external cases.
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were noted, particularly in the aneurysm neck region. Overall, the gross blood flow patterns shown in Fig. 11 
were preserved. This consistency across different spatial heights and temporal steps underscores the overall 
robustness of the new pipeline in simulating transient blood flow dynamics.

However, it is important to acknowledge that some discrepancies were observed. Visually, discrepancies in 
velocity contours (between Protocols 2 [manual] and 3 [automated]) are more pronounced in Fig. 12 but are 
visible in Fig. 11. In Fig. 12, the segmented IA contours differs from human delineated IA contours (e.g., from 
cross sections C1–C3), while the shape differences from Sections C1 to C3 in Fig. 11 is only slightly visible. 
In both Figs. 11 and 12, DL-based segmentation produced less smooth contours due to factors such as image 
resolution and surface complexity, thereby impacting the accuracy of simulated hemodynamic parameters. Our 
observations serve as examples showing how variations in aneurysm surface affect gross aneurysmal velocity 
patterns. Perhaps, due to the similar reason (i.e., surface delineation), we also found large discrepancies between 
Protocols 2 and 3 in some conventional WSS variables (see Table 1) and DVelocity-informatics metrics (see 
Table 2).

We also found that the ICC values among conventional WSS variables such as SA OSI and Std OSI were lower 
across all Protocols. In addition to small IA shape differences due to segmentation as discussed above, differences 
in the two selected CFD solvers (i.e., Fluent and SimVascular) may also played a role. Specifically, Fluent uses 
the finite volume method (FVM), whereas SimVascular is finite element method (FEM)-based. It is recognized 
in the literature77 that results of Navier–Stokes equations may be influenced by the numerical scheme selected.

Fig. 10.  Bland–Altman plots to visualize the degree of agreement between computed Dvelocity-Informatics 
variables following four mentioned protocols: Blue dots represent (10) internal cases, while red dots represent 
(8) external cases.
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Interestingly, large discrepancies also existed in some DVelocity-informatics variables. Notably, four 
variables (Imcl, JointEntropy, MCC, and SizeZoneNonUniformity) related to measures of local distributions of 
velocity vector directions stand out because their variability across Protocols was large (see Table  2). In the low 
velocity regions with the IA domes, velocity directions are likely more sensitive, as compared with the velocity 
magnitudes. That probably explains why the discrepancies are greater in DVelcoity-informatics (see Table 2).

Although “patient-specific” CFD simulations have been advocated for around two decades13,14, labor-
intensive and time-consuming processing time has been one of the roadblocks preventing its clinical translation. 
The proposed workflow streamlines the pre-processing and post-processing stages of CFD simulations, which are 
traditionally time-consuming and labor-intensive. By minimizing the need for user interactions, this workflow 
reduces reliance on the user’s experience and makes it more acceptable in a clinical environment. As of now, one 
simulation takes approximately 2–3 h in a high-end computer workstation equipped with 36 cores and 128 GB 
memory. Since the vast majority of simulation time was spent by the CFD solver, this workflow can be integrated 
into High-Performance Computing (HPC) systems to further accelerate the entire process.

Hemodynamics plays a key role in the IA’s natural history10–12. Thus, a detailed hemodynamic analysis 
could provide additional insights into the decision-making for unruptured IAs. We project that the proposed 
system can complete an IA hemodynamic analysis in 1 h on a HPC cluster. Hence, the projected computational 
efficiency (e.g., 1 h per case) of our automated workflow can produce detailed hemodynamic assessments for 
unruptured IAs.

To translate computational hemodynamics into the clinical workflow, research must find novel, useful 
hemodynamic markers that can assist in clinical decision-making. We stipulate that if a less time-intensive 
computational hemodynamics platform like OpenHemoSim is being actively used in the clinical workflow, 
there is a greater chance to find these useful hemodynamic markers. One obvious application of the proposed 
OpenHemoSim is to make it an integral part of a large machine learning (ML)-based risk assessment platform 
for unruptured IAs. With encouraging results in the literature15–20, such an ML-based system for predicting the 
likelihood of IA rupture can impact the clinical management of unruptured IAs. Hence, our ongoing research 
includes investigating how these discrepancies in simulated aneurysmal hemodynamics influence the outcome 
of ML-based predictions of IA’s rupture status.

Our study has several limitations. First, the initial validation was only conducted using 18 patients. The 
number of validation cases limits the generalizability of our findings, though the study plan is still appropriate 
for a feasibility study of this kind. We are collecting more imaging data (approximately 100 cases) acquired 
using different imaging protocols (e.g., equipment vendors, resolutions, etc.) to further validate the proposed 
OepnHemoSim platform. The ongoing validation will also contain more complex IA cases (e.g., complex 

Fig. 11.  Comparison of velocity magnitude: Manual vs. automated workflow across different cardiac phases: 
(a) IA Geometry and cross-sectional cutting plans, (b) a flow rate waveform, (c) velocity magnitude contour at 
specific cross-sectional cutting planes (see (a)) and cardiac phases (see (b)).
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morphology and multiple closely-spaced IAs). This effort is currently ongoing. Second, the proposed automated 
pipeline is currently optimized for the anterior brain vasculature, and its applicability to other vascular regions 
is still under development. Additionally, in reconstructed geometries based on IA-based segmentation, the 
presence of downstream vessels was noted, which can increase simulation running times and complicate the 
mesh generation process. Consequently, we often performed additional manual cuts. To make OpenHemoSim 
fully automated, we plan on adopting a graph-based matching algorithm78. More specifically, we plan to match a 
segmented vasculature to a set of predefined atlases. Using atlases serves dual purposes. On the one hand, we can 
differentiate IAs in the posterior and anterior circulations and perform CFD simulations correspondingly. On 
the other hand, by employing the atlases, we will standardize the length of distal vessels that need to be included 
in the CFD simulations. We are simultaneously exploring the use of DL-based spatial frequency tuning46 to 
control the degree of small vessel retention. By controlling how many small distal vessels will be retained, we 
anticipate improving the accuracy of the above-mentioned matching between the segmented vessels and atlases. 
Third, because patient-specific physiology is not available for most patients, we selected an averaged MR flow 
waveform with zero-pressure outlets. Our ongoing work includes implementing more sophisticated boundary 
conditions in SimVascular (e.g., Windkessel model and using Murray’s law) and comparing the results to further 
validate the proposed OpenHemoSim platform.

Conclusions
Overall, the proposed nearly automated platform OpenHemoSim can streamline the execution of CFD simulations 
for IAs, i.e., eliminating a lot of time-consuming and labor-intensive tasks in the pre- and post-processing 
steps during hemodynamic analysis of IAs. Our work is a step forward in the right direction for translating 
computational hemodynamics into the clinical setting. Our preliminary results demonstrate a high degree of 
concordance between most hemodynamic variables computed using the proposed OpenHemoSim platform 
(see Fig. 2) and those obtained through manual workflows (see Fig. 1). Overall, we found good agreement exists, 
suggesting that OpenHemoSim offers acceptable accuracy. Discrepancies in certain hemodynamic metrics exist; 
we attribute these differences to the variable’s sensitivity to surface quality or the different numerical approaches 
employed by the software to solve differential equations.

It is also important to note that our findings must be further validated using a large cohort of IA data. Also, 
our ongoing work is expanding to using results from the proposed workflow to demonstrate its clinical utility 
(e.g., predicting the rupture risk of an unruptured IA or outcomes of IA’s treatment outcomes).

Fig. 12.  Comparison of velocity magnitude: Manual vs. automated workflow across different cardiac phases: 
(a) IA Geometry and cross-sectional cutting plans, (b) a flow rate waveform, (c) velocity magnitude contour at 
specific cross-sectional cutting planes (see (a)), and cardiac phases (see (b)).
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Data availability
Prof. Strother from the University of Wisconsin (Madison, WI, USA) supplied partial imaging data and may not 
be disseminated without approval by the University of Wisconsin. Derived data and source codes supporting 
this study will be available from the corresponding author (JJ) upon request. We intend to provide source codes 
through GitHub (https://github.com/jjiang-mtu).
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