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Edge-centric connectome-geneticmarkers of
bridging factor to comorbidity between
depression and anxiety

Zhiyi Chen 1,2,3,11 , Yancheng Tang4,11, Xuerong Liu1, Wei Li1,11,
Yuanyuan Hu5,6,11, Bowen Hu7,11, Ting Xu2,8,9, Rong Zhang2, Lei Xia1,
Jing-Xuan Zhang1, Zhibing Xiao 7, Ji Chen 10, Zhengzhi Feng1,
Yuan Zhou 5,6 , Qinghua He 2, Jiang Qiu2, Xu Lei 2, Hong Chen2,
Shaozheng Qin 7 & Tingyong Feng 2

Depression-anxiety comorbidity is commonly attributed to the occurrence of
specific symptoms bridging the two disorders. However, the significant het-
erogeneity of most bridging symptoms presents challenges for psycho-
pathological interpretation and clinical applicability. Here, we conceptually
established a common bridging factor (cb factor) to characterize a general
structure of these bridging symptoms, analogous to the general psycho-
pathological p factor. We identified a cb factor from 12 bridging symptoms in
depression-anxiety comorbidity network. Moreover, this cb factor could be
predicted using edge-centric connectomes with robust generalizability, and
was characterized by connectome patterns in attention and frontoparietal
networks. In an independent twin cohort, we found that these patterns were
moderately heritable, and identified their genetic connectome-transcriptional
markers that were associated with the neurobiological enrichment of vascu-
lature and cerebellar development, particularly during late-childhood-to-
young-adulthood periods. Our findings revealed a general factor of bridging
symptoms and its neurobiological architectures, which enriched neurogenetic
understanding of depression-anxiety comorbidity.

Comorbidity between depression and anxiety has been demonstrated
to be more common than that of other pairs of psychiatric disorders.
Over 50% of patients with depression or anxiety disorder were diag-
nosed with lifetime depression-anxiety comorbidity1,2, and their

treatment outcomes were worse compared to those who diagnosed
for either depression or anxiety alone3,4. To clarify the etiological
foundation, the comorbidity hypothesis posited that this comorbidity
arose from the “bridging symptoms” that actively increased risks of
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“contagion” from one disorder to another5–7. It has been demonstrated
that patients diagnosed with anxiety were more likely to experience
comorbidity with depression when these “bridging symptoms” pre-
sent, as opposed to ones who do not exhibit such symptoms8,9.
Moreover, deactivating “bridging symptoms” was found to be an
effective therapeutic strategy to prevent the concurrence of depres-
sion and anxiety disorders8,10. Thus, clinicians have increasingly sug-
gested therapeutically targeting these bridge symptoms to improve
treatment outcomes for comorbidity11.

Though there was evidence to support the comorbidity hypoth-
esis, the highheterogeneity of thesebridging symptoms indepression-
anxiety comorbidity still challenged its psychopathological interpret-
ability and clinical utility. For instance, these depression-anxiety brid-
ging symptoms, such as “psychomotor reaction”, “emotional feelings”
and “negative cognition”, were found to be involved in distinct
pathological pathways12–14. Moreover, these bridging symptoms in
depression-anxiety comorbidity were highly inconsistent among
existing studies9,12,13,15–18, with significant discrepancies in identifying
bridging symptoms even within one study12. These observed hetero-
geneities in the depression-anxiety bridging symptoms have been
explained by the common cause theory, which posited that such het-
erogeneous symptoms may originate from a single underlying “com-
mon pathogenic factor”15,19. Supporting this point, a general
psychopathology factor (i.e., p factor) suggesting a single general
cause to derive comorbidity, has been identified as more reliable to
characterize psychiatric comorbidities than other multidimensional
etiological systems20,21. Despite merits, the sole p factor theory is still
challenged as it oversimplifies the inter-symptom structure by merely
summarizing the positive inter-correlations across all the symptoms22.
Therefore, the p factor showed an unstable structure in explaining
comorbidity with highly heterogeneous symptoms, which indicated
alternative factors to derive co-concurrences of psychiatric
disorders23,24.

Several nosological multi-factorial theories have been established
to understand symptomatology structures of psychiatric comorbid-
ities, particularly in the Hierarchical Taxonomy of Psychopathology
(HiTOP) andResearchDomainCriteria (RDoC) frameworks. TheHiTOP

proposed a multidimensional diagnostic system embedded within a
hierarchical framework, with combinations of subfactors (e.g., inter-
nalizing/external problems) to constitute high-order factors for diag-
nosing comorbidity25,26. However, compared to the single-factor
nosological structure, this theory was consistently challenged due to
its limited clinical practicability and especially discrepancies in the
neurobiological interpretations27,28. To consolidate the theoretical
foundation of the multidimensional structure, another nosological
system enriched by neurobiological architectures, that was the RDoC,
had been established29. Despite its merits in neurobiological inter-
pretability, it is still questioned for its poor theoretical constructs due
to its “reductionist” assumptions30,31. Therefore, to address these
issues, synthesizing these heterogeneousbridging symptoms intoone-
factor structure might be one promising pathway and theoretical fra-
mework to understand the common neuropsychopathological
mechanism to comorbidities11,32–34. By combining the common cause
theory with the comorbidity hypothesis, we aimed to establish a
common bridging component to understand the “bridging factor” in
the depression-anxiety comorbidity (referred to as the cb fac-
tor) (Fig. 1).

This conceptualized cb factormayhold thepotential to accurately
characterize a general structure of bridging symptoms in comorbid-
ities, but the lack of neurobiological evidence limited its interpret-
ability in psychopathology. Connectome, a completed component to
describe intrinsic region-to-region functional connections (rFC) in the
whole brain, has been broadly demonstrated as a fundamental prin-
ciple of brain functioning35,36. Research has well-documented that the
brain connectome-based features provided robust neurobiological
markers to characterize the biotype of depression/anxiety (even in
comorbid conditions)37–39, especially compared to the regional change
in specific regions or plain neural circuits40–42. Specifically, the
amygdala-modulated downstream rFC-connectomes (e.g., regions of
limbic networks) were consistently captured as cross-disorder diag-
nostic markers for patients who were comorbid with depression and
anxiety43,44. Moreover, by synthesizing numerous meta-analytic evi-
dence, the rFC-wise abnormalities in the default mode network and
frontoparietal network have been identified as domain-specific

Fig. 1 | Theoretical diagram of the common bridging factor (cb factor). This
diagram illustrates themain strength (marked by the “√” button) and key challenge
(marked by the “!” button) for the “comorbidity hypothesis” (a) and “common
cause hypothesis” (b), respectively. The theoretical hypothesis for the present cb
factor was drawn at (c) and was briefly introduced in the box (marked by the “i”
button). These icons that used in the present figure are openly available at the web-
based software (ICONFINDER, https://www.iconfinder.com/). The “√” icon by Pao-
media, titled “Check, sign icon”, used under CC-BY 3.0 license, available at https://

www.iconfinder.com/icons/299110/download/png/256. The “!” icon by Tahsin
Tahil, titled “Error icon”, used under CC-BY 3.0 license, available at https://www.
iconfinder.com/icons/381599/download/png/256. Based on the permission of the
CC-BY3.0 license, this “!” icon ismodifiedby changing its background color to dark
yellowand changing the style of the “!”mark in the figure. The “i” icon by Paomedia,
titled “Info, sign icon”, used under CC-BY 3.0 license, available at https://www.
iconfinder.com/icons/299086/download/png/256. Based on the permission of the
CC-BY 3.0 license, this icon is modified by changing the style of this “i” mark.
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biomarkers predicting depression-anxiety comorbidity, showing
decreased intra-connections in thesebrain networkswhen anxious and
depressive symptoms co-occurred45,46. Recently, the edge-centric FC
(eFC) has been developed to capture between-rFC communication
patterns, whichmeasure the similarity of rFC pairs at each instant time
point47,48. The eFC not only surpasses traditional rFC in robustness of
phenotyping and in the differential identifiability to individual
idiosyncrasies47,48, but also showed superior performance in char-
acterizing intrinsic neural patterns of neuropsychiatric disorders and
neurological diseases49–52.More importantly, compared to rFC, the eFC
shifted constructions of brain connectome from between-regions
spontaneous synchronization to instantaneous co-fluctuations, thus
yielding unique insights into brain high-resolution temporal FC
architectures53,54. Therefore, in the present study, we intended to
identify the eFC markers associated with the cb factor to probe its
neurobiological substrates.

As a crucial intermediate phenotype, the brain connectomes have
been reliably demonstrated to be, at least partially, influenced by
genetics in deriving clinical phenotypes, such as psychiatric
comorbidity55–58. With the developments of imaging-transcriptomics,
neuroimaging-genetic studies hold great potential to elucidate mole-
cular mechanisms and neurobiological architectures underlying het-
erogeneous psychiatric disorders59–62. For instance, the connectome
changes in the depression were found to be associated with specific
protein diversity, interneuron enrichment, and synaptic reorganiza-
tion that were explained by regional gene expressions58,63. Moreover,

previous studies have identified the neurobiological enrichment in the
excitatory neuronal systems and synapse functions for concurrent
symptoms of depression and other psychiatric disorders, which were
attributed to connectome-based alterations correlated with these
symptoms64–66. Therefore, integrating connectome phenotype with
genetic regulations paved a promising way to understand multiscale
neurobiological substrates in psychiatric comorbidities, including (but
not limited to) their molecularmechanisms and cellular systems62,67–69.
Here, by probing connectome-geneticmarkers of this cb factor,weaim
to gainmore comprehensive insights into the neurogenetic substrates
underlying depression-anxiety comorbidity.

In this study, we aimed to conceptually establish a common
bridging factor (referred to as the cb factor) to represent the general
structure of heterogeneous bridging symptoms in depression-anxiety
comorbidity in a large-scale subclinical cohort, which favored theo-
retically probing and extending comorbidity hypothesis in the net-
work theory (Fig. 2a). Here, we collected the symptoms of depression
and anxiety using self-reported questionnaires and identified the cb
factor using factor analysis model (see “Methods” section). We hypo-
thesized that the single-factor structure could be optimum in model-
ing these heterogeneous bridging symptoms. To probe the
neurobiological substrates of this conceptualized cb factor, we
developed an eFC connectome-based predictive model (eCPM) to
examine whether the whole-brain eFC could reliably predict the cb
factor (Fig. 2b). From what has been mentioned above, we speculated
that the eFC could serve as robust biomarkers of this conceptualized

Fig. 2 | Research questions and methodological workflow. a The EBICglasso
graph-theoreticalmodelwasused to identify bridging symptoms in the depression-
anxiety inter-symptom network, and the factor analysis was further conducted to
identify the common factor to characterize a general structure of these identified
bridging symptoms, which was conceptualized as cb factor. b To probe whether
this conceptualized cb factor had neural substrates, the edge-centric brain
connectome-based feature (i.e., edge-centric functional connectivity, eFC) was
calculated as a neural feature for training the eFC connectome-based predictive
model (eCPM) to predict the cb factor scores. Here, this model was trained in the
discovery sample, and the model performance was evaluated by validating in an
independent validation sample and generalization samples. c Once revealing the

predictive roles of eFC features, the inter-subject representation similarity analysis
(RSA) was further conducted by correlating the eFC pattern (i.e., eFC connectomes
at a given eFC) to the behavioral feature (i.e., cb factor scores), to probe how these
eFCs characterized the cb factor. d By using the ACEmodel in an independent twin
cohort, these eFCs that identified significant RS to the cb factor, were examined for
heritability. Once the heritability was confirmed, the Allen Human Brain Atlas
(AHBA) was used to test whether such RS could be predicted by regional gene
expression patterns in the partial least square regression (PLS). Finally, if the
connectome-transcriptional correlates (i.e., gene expression patterns) were found,
these specific gene patterns were annotated by using multiscale normative biolo-
gical atlases.
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cb factor. Upon confirming this prediction,we employed amultivariate
representation similarity analysis (RSA) to delineate what specific eFC
markers characterize the cb factor, particularly in limbic, frontopar-
ietal and default mode networks (Fig. 2c). Given the genetic influences
on the brain connectome, we finally extended our analysis to capture
the eFC-genetic signatures of the cb factor by recruiting an indepen-
dent twin cohort and incorporating extensive neurocognitive and
biological datasets (Fig. 2d).

Results
Summary of main analytic steps and findings
We included a population-based subclinical cohort (n = 2022) in the
present study, with representative sociodemographic conditions in
China (e.g., ethnic groups and socioeconomic status) (Fig. 3a, Sup-
plementary Figs. S1–S2, and Supplementary Tables. S1–S4). First, we
used an EBICglasso-based (graphic least absolute shrinkage and
selection operator with Extended Bayesian Information Criterion)
graph-theoretical model for estimating bridge centrality in this
depression-anxiety network built from inter-symptom correlations8.
Twelve heterogeneous bridging symptoms with high bridge centrality
were captured. We identified a statistically reliable common factor
representing the general structure of these bridging symptoms,
referred to as the cb factor. Second, we used eFC features to construct

the eCPM70,71 to probe whether this conceptualized cb factor could be
underpinned by eFC connectomes. The results demonstrated that
eFCs were generalizable in predicting the cb factor scores. Third, after
confirming the predictive roles of eFC connectome, we further carried
outmultivariate representational similarity analysis (RSA) to delve into
what eFC patterns were sensitive to characterize the cb factor, which
found that eFCs within the attention and frontoparietal networks
outperformed others. Fourth, to clarify the genetic influences, we
estimated the heritability of these sensitive eFCs identified fromRSA in
an independent twin cohort. The findings demonstrated moderate
heritability for these eFCs, suggesting the existence of genetic sub-
strates associatedwith the cb-factor-specific eFCs, which enabled us to
capture genetic eFC-transcriptional signatures. Thus, by aligning these
sensitive cb-factor-specific eFCs into the Allen Human Brain Atlas
(AHBA) and other normative biological atlases, we found the sig-
nificant eFC-transcriptional markers to the cb factor, which were
mainly involved in vasculature systems and cerebellar development,
especially in late-childhood-to-young-adulthood periods.

Bridging symptoms in depression-anxiety comorbidity network
We found significant correlations for symptoms between depression
and anxiety (r = 0.71, p <0.001, univariate Pearson’s correlation of
total scores; r =0.40, p <0.001, multivariate Mantel’s correlation of

Fig. 3 | Sociodemographic characteristics and Gaussian Graphic Model (GGM)
of depression-anxiety inter-symptom network. a The geospatial and socio-
economic statistics of this subclinical sample (GGBBP sample recruited from 2019
to 2022) demonstrate the geographic diversity. The scale indicated the number of
included subjects after Log transformation. Icons in this panelweregenerated from
the open-access web-based software (ICONFINDER, https://www.iconfinder.com/).
The “male gender” icon by Anna Litviniuk, titled “Avatar, male, man icon”, used
under Free for commercial use license, available at https://www.iconfinder.com/
icons/403019/download/png/512. The “female gender” icon by Anna Litviniuk,
titled “Avatar, user, woman icon”, used under Free for commercial use license,
available at https://www.iconfinder.com/icons/403023/download/png/512. The
“diversity” icon by Dumitriu Robert, titled “Guy, individual, man icon”, used CC-BY
3.0 license, available at https://www.iconfinder.com/icons/3289573/download/
png/512. This icon is modified by changing colors and replicating in the figure, as
permitted by this license. The “socioeconomic status” icon by Pongsakorn Tan,
titled “Banking, business, cash icon”, used under Free for commercial use license,

available at https://www.iconfinder.com/icons/4288564/download/png/512. The
“family health” icon by Paomedia, titled “House icon”, used CC-BY 3.0 license,
available at https://www.iconfinder.com/icons/299061/download/png/512. The
“COVID-free” icon by Omeneko, titled “Corona, coronavirus, positive icon”, used
CC-BY 3.0 license, available at https://www.iconfinder.com/icons/6217233/
download/png/512. This geographic map, along with the compass label, was pro-
duced by the open-access software titled “EasyShu (3.61)” (https://www.yuque.
com/easyshu/). b Mantel’s test plot was illustrated here (p <0.001, one-sided
Mantel’s test, uncorrected), and each point into the lower triangle indicated the
mean values of corresponding items. c We illustrated the centrality of each
symptom (item) from the network model in descending order, with the “D” for
indicating “depressive symptom” and with the number of this label for indicating
the item in this questionnaire (EI Expected Influence). d This showed density with
Gaussian kernel function for each symptom by descending order, with each circuit
(gray) for indicating the high integrative centrality. Source data are provided as a
Source Data file.
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inter-subject across-symptom correlation networks; Fig. 3b), thereby
demonstrating the presence of comorbid conditions within this sub-
clinical population. By constructing the graph-theoreticalmodel of the
depression-anxiety comorbidity network (see “Methods” section), we
identified a series of symptoms showing high bridge centralities, such
as “less meaningful life”, “worry” and “less confidence”. Nonetheless,
such symptoms varied significantly across distinct bridge centrality
metrics (e.g., bridge strength centrality, betweenness, and expected
influence centrality) (Fig. 3c, and Supplementary Tables S5–S9). To
address the discrepancies arising from these varying metrics, we cal-
culated the normalized Shannon’s entropy (SEnormalized), which quan-
tified the likelihood of each bridging symptom being identified as
“bridge node” across thesemetrics. This analysis identified 12 bridging
symptoms with significantly high SE values (all SE > 0.8; Supplemen-
tary Table S10), such as “exhaustion” (SEnormalized = 1.0), “meaningless
life” (SEnormalized = 1.0), “depressive feeling” (SEnormalized = 0.98) and
“psychomotor agitation” (SEnormalized = 0.94) (Fig. 3d). Using the
Bootstrapping method and Monte Carlo simulation, we verified the
statistical reliability and stability of above findings (Supplementary
Figs. S3–S10).

Construction of the conceptualized cb factor
Considering the high heterogeneity of these identified 12 bridging
symptoms in the symptomatology, we used factor analysis (see
“Methods” section) to identify the factor structure of these symptoms.
Results showed that a common factor structure outperformed alter-
natives (e.g., multi-factor structures) in model fitting (Supplementary
Table S5), and explained common variances of these bridging symp-
toms well (34.0%, p <0.05; Permutation test at n = 1000). Thus, we
conceptualized this one factor as the common bridging factor (cb
factor) to characterize the general structure of these bridging symp-
toms, which was akin to the p factor in psychopathology. In line with
the p factor20, we further calculated the cb factor scores by the com-
mon factor scores, to quantify a liability to derive general bridging

symptoms. Regression models revealed that the cb factor had better
goodness-of-fits in predicting the total scores of depression and
anxiety symptoms when compared to the individual symptom (s)
(Supplementary Table S6). To draw a comparison with the p factor,
further regressionmodels were constructed to predict the total scores
of depression and anxiety symptoms using the p factor scores and the
cb factor, respectively. Results showed that the model with the cb
factor significantly outperformed alternatives and presented well-
measure invariances (Supplementary Table S7). Overall, we con-
ceptualized a common bridging factor enabling us to characterize the
general structure of heterogeneous bridging symptoms in the
depression-anxiety comorbidity.

The eFC prediction of the cb factor
Beyond establishing conceptual structure, we further investigated
whether this cb factor could be underpinned by neurobiological sub-
strates (see “Methods” section). Next, we developed an eCPM to
examine whether the whole-brain eFC connectomes could predict this
cb factor (Fig. 4a, b, and Supplementary Table S11). Here, to mitigate
data leakage risks72, we used external validations to evaluate the pre-
diction performances of this model, rather in-sample k-fold cross-
validationmethod.We split the original sample into three independent
subsamples for model training (one discovery sample, n = 241) and
performance evaluation (one external validation sample (n = 240) and
one external generalization sample (n = 244)), because these three
subsamples were independently curated from three distinct research
teams (see “Methods” section). Based on the population character-
istics (e.g., ethnic groups, COVID-19 exposure), the remaining partici-
pants in the original sample were grouped into three independent
generalization samples to rigorously examine model generalizability.
We found that the eFC connectomes significantly predicted the cb
factor scores in the discovery sample, with models trained on positive
eFCs (R2 = 0.23, pperm <0.01), negative eFCs (R2 = 0.26, pperm < 0.01) or
combined ones (R2 = 0.41, pperm < 0.01) (Fig. 4c, Supplementary

Fig. 4 | The eFC line-graph connectome andmodel performance of eCPM. aWe
used the open-access Gephi (https://gephi.org/) software to visualize edge-centric
connectome. The connectome-based plot and icons were automatically generated
by inputting the full-length edge-to-edge matrix into this software. To ensure
readability, this connectome density has been threshold to 0.1 and was adjusted by
using the Fruchterman-Reingold layout. SMN sensorimotor network, DMN default
mode network, VIS visual network, VAN ventral attention network, Cont fronto-
parietal network. Subscripts embedded in abbreviations of networks (i.e., DMNa,
DMNb, DMNc, SMNa, and SMNb) indicated the subnetworks within themselves. b It
showed the inter-subject correlations between eFC and the cb factor scores, and

brain networks parceled by the Yeo-7 network atlas for improving readability. c To
show the trainedmodel performance, we provided scatter plots for the correlation
between true cb factor scores and predicted ones (z-scored) within the discovery
sample (One-sided Permutation test at n = 5000, uncorrected). The Taylor diagram
was drawn to comprehensively evaluate model performance by including models
that trained from positive eFCs, negative eFCs, and both of them, respectively.
d–f We further displayed edge-centric connectome, along with scatter plots and
the Taylor diagram to show the model performance in the external validation and
generalization in these independent samples (One-sided Permutation test at
n = 5000, uncorrected), respectively. Sourcedata areprovidedas a SourceDatafile.
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Fig. S11, and Supplementary Tables S12–S16). In the independent vali-
dation sample, we confirmed the predictive powers of this eCPM (all
pperm <0.01) (Fig. 4d). Excepting to the model that trained by the
negative eFCs, these findings were generalizable in the independent
generalization sample 1 (n = 244, pperm <0.05) (Fig. 4e). To validate the
robustness of generalizability in heterogeneous cohorts, we further
tested the eCPM in additional generalization samples. Results showed
that this eCPMwas still valid in generalization sample 2 (encompassing
29 local ethnic minorities in the Chinese population, n = 133,
pperm <0.05) and sample 3 (the main ethnic group, the Han, n = 237,
pperm <0.05) (Fig. 4f). Considering the potential confounding effects
of the COVID-19 exposure, we assessed the generalizability of the
eCPM in the generalization sample 4, which was collected after
the pandemic. The eCPM also showed significant predictive power on
the cb factor in this post-pandemic sample (n = 219, pperm < 0.05)
(Fig. 4f). Moreover, we tested the specificity of this eCPM, finding it
performed better in predicting cb factor scores than total symptom
scores for depression, anxiety, or both (Supplementary Fig. S12).
Therefore, our findings support the existence of neurobiological
substrates underpinning the conceptualized cb factor by revealing the
predictive roles of eFC connectomes.

The eFC neural representation patterns of the cb factor
Despite confirming the predictive roles of eFC connectomes to the cb
factor asdescribed above, this eCPM fell short in elucidatinghow these
eFC features sensitively characterize the cb factor because it only
yielded a selection of eFCs with uncorrected univariate correlations to
the cb factor scores72. Thus, we conducted the multivariate repre-
sentation similarity analysis (RSA) to identify cb-factor-specific eFC
characterizations (see “Methods” section, and Supplementary
Fig. S13a, b). Results showed statistically significant high representa-
tion similarity (RS) in eFCs including the frontal pole, superior frontal
cortex, and precuneus (all pperm <0.05, Benjamini–Hochberg correc-
tion; Supplementary Fig. S13c, and Supplementary Table S17). Based
onbrain network parcellation fromYeo-7 atlas, we found significant RS
within the attention, frontoparietal, and default mode networks (all
pperm <0.05, Benjamini–Hochberg correction; Supplementary
Fig. S13d, and Supplementary Tables S18–S21). In summary, the eFCs in
the attention and frontoparietal networks were sensitive markers for
characterizing the neurobiological substrates of the cb factor.

The heritability of the cb-factor-specific eFC markers
Recognizing eFC connectome as a crucial intermediate phenotype, we
further probed the heritability of these eFCs exhibiting high RS by
building the quantitative ACE (A, additive genetic factor; C, common
environment; E, unique environment) model in an independent twin
dataset (n = 127 pairs of monozygotic twins, n = 118 pairs of dizygotic
twins, see “Methods” section). Results demonstrated a moderate her-
itability (22.9%, 95% CI: 7.4–37.2) in the optimal best-fitting AE model
(Supplementary Fig. S14, and Supplementary Tables S22–S23). Sup-
porting that, we observed a significant within-pair correlation for eFC
values in monozygotic twins (intra-class correlation, ICC, r =0.22,
p <0.0001), but not yet in the dizygotic ones (ICC, r = 0.06, p = 0.28).
Thus, the findings suggested the presence of a potential genetic con-
tribution in these cb-factor-specific eFCs.

Connectome-transcriptional markers of the cb factor
Given the confirmation to the heritability of these cb-factor-specific
eFCs, we used the normative AHBA (http://human.brain-map.org) to
further delve into eFC-transcriptional signatures of this cb factor (see
“Methods” section). Therefore, we carried out a partial least squares
(PLS) regression model to fit gene expression profiles to the RS values
thatwe calculated in themain sample. Thefirst and second component
(s) of PLS (PLS1, PLS2) cumulatively explained 32.4% of the variance in
the spatial patterns of gene expressions, showing the anterior-

posterior hierarchy (Fig. 5a). Furthermore, results demonstrated sig-
nificant correlations between neural signatures (i.e., RS values) and
gene expressionmaps (i.e., PLSweighted scores) in both PLS1 andPLS2
(rPLS1 = 0.31, pperm <0.01; rPLS2 = 0.30, pperm <0.01) (Fig. 5a), thereby
supporting associations between the potential gene expression pat-
terns and the connectome-based markers (i.e., eFCs) that characterize
the cb factor.

By examining the statistical significance of gene sets in PLS com-
ponents, we found that 27 (or 231) genes overexpressed (or under-
expressed) with increased (or decreased) RS values (PLS1+, Z>3.0 or
PLS1−, Z< 3.0, p<0.005; Fig. 5b, c, and Supplementary Tables S24–S25)
in the PLS1. Similar results were observed in the PLS2 (Fig. 5b, c, Sup-
plementary Tables S26–S27). We further revealed significant correla-
tions between spatial expression patterns of specific genes and these RS
values in both PLS components, such as SCRIB, FTCD, RMND1, and
CORO2A (p<0.05, FDR-corrected; Fig. 5d, and Supplementary
Tables S28–S29). Thus, we clarified specific genetic connectome-
transcriptional markers to the cb factor enabling us to further probe
their neurobiological associations.

Neurobiological enrichment of connectome-transcriptional
markers of the cb factor
We used gene expression enrichment analysis to decode biological
function-specific annotations of these connectome-transcriptional
markers. In the PLS1 component, we capitalized on the Metascape
platform that is embedded with the ChatGPT engine, to examine the
functional enrichment of these gene sets. We found statistically sig-
nificant functional enrichment into the biological process (GO) of
“blood vessel development” (all p < 5 × 10−6, FDR-corrected; Fig. 6a,
Supplementary Fig. S15, and Supplementary Table S30), and mapped
their regulations and interactions by identifying the GO network as
well as protein-to-protein module (Fig. 6b, c, Supplementary Fig. S16,
and Supplementary Table S31). Full results of the PLS2 can be found in
Supplementary Table S32, and Supplementary Figs. S17–S18.

Given the associations of such connectome-transcriptional mar-
kers to the GO functional enrichment, we further probed the brain
network-specific, tissue-specific, cell type-specific, disease-specific,
and neurodevelopment-specific enrichment from these markers.
CombiningMetascape andSEA (Specific ExpressionAnalysis), the gene
set in the PLS1 was significantly enriched across body tissues, parti-
cularly in the brain (p <0.05, FDR-corrected; Fig. 7a, and Supplemen-
tary Tables S33–S35). We also observed significant brain network-
specific, cell type-specific, and disease-specific enrichment in this PLS
component, particularly for enrichment into risks of neurodevelop-
mental disorders and cerebral metabolic rate of oxygen (CMRO2)
(p < 0.05, FDR-corrected; Fig. 7b, c, Supplementary Figs. S19–S20, and
Supplementary Tables S36–S44). In conjunction with the BrainSpan
atlas, we revealed the specific enrichment of these transcriptional
markers in the cerebellar neurodevelopment, especially from late-mid
childhood to young adulthood (Fig. 7d). Full results for the PLS2 canbe
found in Supplementary Tables S45–S47. These findings collectively
indicated a cb-factor-connectome-transcriptional pathways, which
mayenrichunderstanding of themultiscale neurobiological substrates
of cb factor in the depression-anxiety comorbidity.

Discussion
The present study identified a common factor to represent the general
structure of bridging symptoms that were captured in the depression-
anxiety comorbidity network, which has been conceptualized as the cb
factor. Moreover, our evidence supported the existence of neural
substrates of this conceptual cb factor by showing the predictive roles
of eFC connectomes on the cb factor. Beyond confirming this predic-
tion, we further elucidated how the cb factor was characterized by the
specific representation similarity (RS) patterns of eFC connectomes.
Notably, we found that eFCs within the attention and frontoparietal
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networks are particularly sensitive in characterizing the cb factor. By
recruiting an independent twin cohort, we further revealed amoderate
heritability of such RS patterns, indicating the potential genetic con-
tributions to these cb-factor-specific eFC connectomes. Thus, we
probed into the connectome-transcriptional markers by using AHBA
and other normative biological datasets. The findings identified the
specific connectome-transcriptional markers of the cb factor and
further revealed their functional enrichment in the vasculature and
cerebellar development, particularly in late-childhood-to-young-
adulthood period. In summary, we established the common bridging
factor for comorbidity between depression and anxiety and illumi-
nated multiscale neurobiological substrates of this conceptual factor,
which enriched our understanding of the comorbidity hypothesis in
psychopathological theory.

Our findings showed that the cb factor could contribute to solving
the current challenge to the comorbidity hypothesis, which stemmed
from the substantial heterogeneity among bridging symptoms in
depression-anxiety comorbidity73–75. These bridging symptoms were

found to be the mixture of several psychopathological systems, such
as psychomotor agitation/retardation13,15,76, negative emotional
evaluations9,12,77, and poor physical feelings16,78, which hindered theo-
retical interpretability. A promising hypothesis posited that, despite
high heterogeneity, these bridging symptoms might converge on a
common factor that delineated the general structure of a “bridging
syndrome”11,75, which was in some way analogous to the p factor in the
transdiagnostics. Several lines of evidence reinforced this argument by
revealing the single general factor in heterogeneous neuropsycho-
pathological profiles (NP factor) and polygenic risks (PR factor)
underlying comorbidities of mood disorders (e.g., depression and
anxiety)79–81. Thus, establishing a common factor (i.e., cb factor)
underlying these heterogeneous bridging symptoms could potentially
alleviate the “heterogeneity challenge” in this comorbidity theory.
Furthermore, our findings demonstrated that the scores of the con-
ceptual cb factor indeed predicted the severity of comorbid depres-
sion and anxiety. As supported by existing evidence, the common
factor structure of subclinical self-reported questionnaires has been

Fig. 5 | Transcriptional profiles of representation similarity to the cb factor.
a We used a partial least squares (PLS) regression model to predict eFC-derived
representation similarity by aligning AHBAnormative data into Schaefer-100 space
(upper panel) and showed the weights for the first and second components (PLS1
and PLS2, bottom panel). Further, the scatter plot was provided to show the linear
association of PLS scores (weights) to RS values (p =0.001, one-sided Permutation
test at n = 5000, uncorrected). b The colored table detailed the gene expression
patterns for PLS1 (upper panel) and PLS2 (bottompanel), with the threshold for the
Z-value > (<) 3.0. The bar plots in the right panel indicated the proportion of the
number of genes reaching this statistical threshold fromall the candidates. Byusing

this statistical boundary, 27 genes (231 genes) survived from 4177 gene (5823 gene)
sets in PLS1, and 44 genes (112 genes) survived from 3994 genes (5989 genes) in
PLS2. c We extracted gene expression level for these selected genes from PLS
components and illustrated scatter plots for each PLS component that showing the
largest correlation strengths (PLS+ for the positive ones and PLS- for negative ones)
between this given gene and RS values (z-scored) (p <0.05, one-sided Permutation
test at n = 5000,uncorrected).dTheunivariate correlations for expression levels of
all the genes and RS values (z-scored) were calculated and were presented in this
chart in descending order. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-55008-0

Nature Communications |        (2024) 15:10560 7

www.nature.com/naturecommunications


revealed to outperform in explaining psychopathological networks
than individual symptoms or clusters of symptoms in the psychiatric
comorbidities20,82,83. Thus, compared to individual heterogeneous
bridging symptoms, this cb factormay be a better candidate to predict
risks of depression-anxiety comorbidity.

Another notable contribution of the present study was to clarify
the neural substrates underpinning this cb factor, with a specific focus
on elucidating the role of these eFCs. The eFC connectome reflected
whether the communication patterns of pairs between FCs are corre-
lated, depicting complicated hierarchical neural architecture54,84.
Compared to the nodal FC, it hasbeenbroadlymanifested that the eFC
outperformed in subject-specific identifiability and predictive robust-
ness for identifying neuropsychiatric and neurological diseases, such
as autism, mild cognitive impairment, and migraine50,85,86. Using eFC
connectomes, the present study found generalizable neural markers
characterizing the cb factor and further clarified the cb-factor-eFC
representation similarity in the attention and frontoparietal networks.
A robust body of evidence has shown that the nodal FCs both within
and between the attention and frontoparietal networks were sig-
nificantly diminished in patients with comorbidity from depression to
anxiety (and vice versa) compared to individuals who have not yet
developed comorbid conditions43,87,88. Moreover, existing evidence
also indicated that the comorbid conditions between depression and
anxiety may result from significant neurocognitive impairments in the
selective attention and executive control functions in patients, which
were also linked to multiple biological system changes (e.g., sympto-
matology, genetics, and neural circuits)89–91. Thus, the current finding
substantiated the neural substrates of depression-anxiety comorbidity
into the disruptions of attention and cognitive control systems, espe-
cially in changes in the sophisticated edge-centric communication
patterns underlying these nodal FCs, which may offer the neurother-
apeutic targets to the risks of comorbidity in the subclinical
conditions.

The present study further identified specific eFC-transcriptional
markers of the cb factor, which probed the biological enrichment
shaped by the cb-factor-specific gene expression patterns. We found

significant biological enrichment in the vasculature that sharedgenetic
associations with the cb-factor-specific eFCs. Recently, the circulating
vascular changes, along with ensuing alternations in brain gene
expression and morphology, have been identified to be reliable bio-
markers for depression92,93. Emerging studies have further demon-
strated the interplay between cardiovascular activities and anxiety
disorders, where treatment to cardiovascular diseases has been found
tooffer therapeutic benefits to anxiety disorders94,95. Such associations
had been explained by the well-established vascular hypothesis96: the
dysfunctional cardiovascular processes brought about overly neu-
roinflammatory activities in the brain circuits so as to derive neu-
ropsychiatric symptoms, particularly for those in depression and
anxiety97,98. Thus, the bridging factor in the depression-anxiety
comorbidity may share the common biological processes in the vas-
culature, which may imply a potential therapeutic target. Moreover, in
the present study, the genetic risks of the cb-factor-specific eFCs were
also linked to abnormal cerebellar neurodevelopments. As the internal
model hypothesis posited, the cerebellar network constituted an
internal system to organize and reorganize emotional reactivity, with
the disorganization of this internal system predisposing individuals to
mood disorders99,100. This hypothesis has been solidly supported by
both animal and human research demonstrating cerebellar anomalies
in patients with depression-anxiety comorbidity101,102. Recently, the
comorbidity between depression and anxiety has been clarified as the
reflection of synaptic plasticity changes in the cerebellum, particularly
in adolescence, further implying the roles of cerebellar neurodeve-
lopment in the comorbidity. Compared to early childhood, gene
expressions to cerebellar developments, especially in its synaptic
plasticity and neural circuit construction, were relatively stable from
late childhood to adolescences103–105. In adolescence, the dysfunctional
changes of gene expressions in the cerebellar development have been
demonstrated to increase polygenic risks of neuropsychiatric dis-
orders as well as their comorbidity, such as depression and
anxiety106–109. Thus, wemay infer that the biological processes involved
in dysfunctional cerebellar development from late-middle childhood
to young adulthood may potentially increase the risk of developing

Fig. 6 | Enrichment of biological processes/pathways and protein-to-protein
interaction. a Using the web-based software (i.e., Metascape that was amplified
with ChatGPT, https://metascape.org/gp/index.html)124 for the enrichment analy-
sis, we presented the top 20 biological processes/pathways that were enriched
from the PLS1 gene set at two-sided q <0.01 after Benjamini–Hochberg FDR cor-
rections, with the cumulative hypergeometric distribution for estimating corre-
sponding p-values. Once the PLS1 gene list is inputted into this software, these plots
or icons would be automatically generated. b Circos plot was illustrated by visua-
lizing the term-to-term connectivity, with edges for showing between-term simi-
larity >0.3 (Two-sided cumulative hypergeometric distribution test, q <0.05,

Benjamini–Hochberg FDR correction). “Count” refers to a number of genes in the
PLS1 with membership in the given ontology term provided by Metascape. The
“Log10(P)” is the p-value in log base 10, and the “Log10(q)” is the adjusted p-value
(i.e., q-value) in log base 10. This plot was generated by Cytoscape embodied into
the Metascape tool. c We provided protein-to-protein interaction connectome in
this chart, with proteins recolored based on enrichment from this gene list by
independent modules detected from the Molecular Complex Detection (MCODE)
algorithm. Details for each MCODE can be found in the Supplementary Informa-
tion. Source data are provided as a Source Data file.
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comorbidity between depression and anxiety by influencing a com-
mon factor underlying these bridging symptoms. These connectome-
transcriptional markers advanced the comprehension of how the cb
factor in the depression-anxiety comorbidity was supported by mul-
tiscale neurobiological underpinnings.

However, several limitations should be warranted. We recruited a
large-scale subclinical cohort comprised of adults in young adulthood
but did not consider the generalization to clinical patients. The gen-
eralization to the clinical population could directly strengthen the
clinical utility of this cb factor, especially for early intervention and
diagnostics of this comorbidity in the future. Related to this concern,
this limitation also restricted the applicability of the current findings to
older cohorts. Thus, it is highly worthy to extend the conceptual fra-
mework of the cb factor to clinical samples that include older indivi-
duals. Given the potential risks of false-positive rates in such brain-
wide association analysis, the future clinical cohort study could recruit
a large-scale sample for this validation. In addition, the present study
established this cb factor using specific self-reported symptom ques-
tionnaires for depression and anxiety, but it remained unclear whether
this cb factor could be generalizable when established with other

measurements (e.g., questionnaires, scales, structural diagnostics).
Therefore, further validation of the robustness of establishing the cb
factor in differentmeasurements is critically needed. The last aspect of
limitations was the moderate strength of evidence. These multiscale
neurobiological processes of the cb factor were indirectly inferred by
correlating with public normative atlases or annotation datasets,
rather than examining direct associations between the cb factor and
their neurobiological features. Thus, the evidence strength of these
neuroimaging-transcriptomic findings could be enhanced by directly
measuring correlations between clinical phenotype (e.g., cb factor
scores) and endophenotype (e.g., vascular pressure levels)110,111.

In conclusion, we established a common bridging factor (cb fac-
tor) to characterize the general structure of these heterogeneous
bridging symptoms in the depression-anxiety comorbidity. By adopt-
ing the eCPM and RSA models, we identified neural markers that
underpinned this cb factor, showing the crucial roles of eFC con-
nectomes within attention and frontoparietal networks to this
comorbidity. In an independent twin cohort sample, we revealed the
moderate heritability of these cb-factor-specific eFC connectomes.
Thus, by aligning with other normative genetic and neurobiological

Fig. 7 | Specific enrichment of connectome-transcriptional markers. a We
showed the tissue-specific enrichment of this gene set (PLS1) by using both the
Metascape124 tool and the Specific Expression Analysis (SEA) database. * indicated
the q <0.05 (two-sided cumulative hypergeometric distribution test,
Benjamini–Hochberg FDR correction) that found in the Metascape database in the
left panel, while the colors of circles indicated the q-values (Benjamini–Hochberg
FDR) in the right panel. The size of the bullseye plots represents the proportion of
genes in specific tissues at a given specificity index probability (pSI), which evalu-
ates the level of gene enrichment specificity compared to others, using permuta-
tion tests. All the icons within this panel were generated by the web-based plotting
platform FigDraw (https://www.figdraw.com/; Unique Copyright Code:
YPTUR7d07d). Searching terms in this platform contained each tissue in this panel,
including “body”, “brain”, “retina”, “bone”, “heart”, “muscle” and “kidney”, respec-
tively. b Cell type-specific enrichment (left panel) and disease-specific enrichment

(right panel) of this gene set (Two-sided cumulative hypergeometric distribution
test, q <0.05, Benjamini–Hochberg FDR correction) were shown. Full names of
enriched diseases are detailed below: Down Syndrome (Down synd), Acute pan-
creatitis (Acute pan), Congenital chromosomal disease (CCD), Complete Trisomy
21 Syndrome (CT21 synd), Middle Cerebral ArteryOcclusion (MCAO), Sleep-Apnea-
Obstructive (OSA), Cardiomyopathy-Familial-Idiopathic (COP), Endothelial dys-
function (Endo anomaly), Transient Ischemic Attack (TAI), Subarachnoid Hemor-
rhage (SH), Fatty Liver Disease (FLD), and B-CELL MALIGNANCY-LOW-GRADE
(MALIGNANCY). cBullseye plots, alongwith q-values, have been illustrated to show
the enrichment of the neurodevelopmental periods at different brain areas.
d Bullseye plots to show the enrichment of SEA brain regions have been provided
though no one reached the statistical significance. Source data are provided as a
Source Data file.
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datasets, we identified specific connectome-transcriptional genetic
signatures of the cb factor, which further disentangled complex asso-
ciations of the cb factor to vasculature and cerebellar developments.
Collectively, our study offers novel insights to understand the multi-
scale neurobiological substrates of bridging factors in depression-
anxiety comorbidity, thereby enriching the comorbidity hypothesis in
the psychopathological theory.

Methods
Ethical statement
All procedures performed in this study were in accordance with the
ethical standards of the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards. This study protocol has
been approved by the Institutional Review Board (IRB) of Southwest
University (Faculty of Psychology) (SWUP-19-20160).Written Informed
consents are obtained from all the participants. All the participants are
paid for their participation by college credit or monetary rewards.

Participants and neuroimaging data acquisition
We included a large-scale subclinical cohort consisting of 2022 adults,
with high sociodemographic diversity (e.g., ethnic groups, geo-
graphical distributions, 1326 females; age, ranged from 18 to 29,mean/
standard deviation, 19.96/2.01) in the Chinese population (Supple-
mentary Tables S1–S4). The neuroimaging data was not influenced by
the potential neurobiological effects of COVID-19, as the data collec-
tion occurred either before the onset of the pandemic or afterward
from participants with no history of SARS-CoV-2 infection. All the
neuroimaging data had been collected from a single site. In the neu-
roimaging analysis, the whole cohort has been grouped into six inde-
pendent samples for model training, validation, and generalizations
(see below). As covariates of no interests, the self-reported sex, age,
self-reported handedness, family incomes, mood states, and mind
wondering during scanning are adjusted in statistical analyses.

As for behavioral measurements, Zung’s self-report depression
scale (SDS) and trait anxiety inventory (TAI) were used to measure
symptom severity (see Supplementary Information). The SDS was one
of the most widely-used tools to measure depressive symptoms or
activities, with prominently good psychometric merits in the general
population112,113. This scale contained 20 items describing the depres-
sive symptoms in daily life, with higher scores for severe symptoms by
5-point Likert-formed style114. Moreover, the trait domain of Spielber-
ger’s STAI (STAI-T) was used to measure one’s anxious symptoms in
thepresent study, given thehigh reliability in subclinical studies115. This
STAI-T also included 20 items to depict anxiety-related effects and
feelings, which was widely employed for network analysis116–118. Data
acquisition and preprocessing for neuroimaging of these participants
were all in line with our previously standardized pipelines to this
dataset (see Supplementary Information)119,120.

Gaussian graph-theoretical model (GGM) and factor analysis
To capture the bridging symptoms in the depression-depression
comorbidity, we carried out the Gaussian graph-theoretical (GGM)
model to establish the inter-symptom network. Firstly, we calculated
the partial correlations between all the items of SDS (Zung’s self-
reported scale) and TAI (trait anxiety inventory) to determine the
edges of this inter-symptom network. Secondly, the EBICglasso (gra-
phic least absolute shrinkage and selection operator with Extended
Bayesian Information Criterion) algorithm was further used to control
the false-positive rates by eliminating connections that might be
spurious due to weak correlations within this network (see Supple-
mentary Information)6. Thirdly, the final network adjusted from the
EBICglasso algorithm was utilized to estimate bridging centrality for
each node by five topological metrics, including bridging strength,
bridging betweenness, bridging closeness, 1-step bridging expected
influence, and 2-step bridging expected influence (see Supplementary

Information). The identification of bridge nodes in network analysis
has been found to be inconsistent across studies as researchers arbi-
trarily chosea singlemetric from thesefive centralitymeasurements to
discern bridging symptoms between two distinct disorders11,74,121. To
tackle this drawback, we estimated the normalized Shannon’s entropy
(SE) value that described the extent to which one node had a relatively
higher bridging centrality values than others across all the metrics,
irrespective of metric selection. A high SE value indicated a high
probability of being identified as a bridging node symptom (see Sup-
plementary Information). Thus, nodeswould be identified as “bridging
symptoms” once their SE values exceeded 0.8122,123. Network reliability
and stability have been validated by the Monte Carlo and Boot-
strapping simulations (see Supplementary Information). To capture a
common factor characterizing a general structure (conceptualized as
“the cb factor”) of these bridging symptoms identified above, we
conducted a factor analysis that included all these identified bridging
symptoms (items). The common factor that decomposed from these
symptoms (items) in this analysis was initially conceptualized as a
“general factor”. Then, the factor structure was modified to test the
model performance of other alternatives (e.g., bifactor, 3-factor,
4-factor structures), in contrast to this general factor structure (see
Supplementary Information). Moreover, the Permutation test with
1000 iterations was conducted to estimate the statistical significance
ofmodel fitting of this general factor structure. Finally, as in line with a
methodology that was used to define the general psychopathological
factor (i.e., p factor)20, this conceptualized cb factor scores were cal-
culated by the common factor scores in this factor analysis.

Edge-centric brain functional connectome (eFC) establishment
The Schaefer-100 atlas was used to parcel cortical areas into 100
regions, and the time series of each regionwere extracted and z-scored
firstly. Then, we obtained “edge time series” by calculating the dot
products for time series between nodes within to each pair of these
100 nodes. By doing so, all the 4950 (100 × 99/2) “node pairs” gained
their “edge time series”. Moreover, the edge-to-edge connectome was
built upon by constructing a 4950× 4950 eFCmatrix from correlating
each pair of these 4950 “edge time series” for each participant. Finally,
all the 12,248,775 (4950 × 4949/2) unique edge-to-edge functional
connectivity (eFC) deriving from 4950 “node pairs” have been
extracted as neural feature candidates for each participant (see Sup-
plementary Information).

The eFC connectome-based predictive model (eCPM)
In line with the original CPM, we estimated the inter-subject correla-
tions of each eFC to the cb factor scores and retained eFCs whose
correlations reached statistical significance (p <0.05, uncorrected) as
thresholding masks. Here, we generated two thresholding masks: one
retaining all the eFCs that positively correlated with the cb factor
scores (i.e., positive eFCmask), and another retaining all the eFCs that
negatively correlated with the cb factor scores (i.e., negative eFC
mask). Moreover, the positive (negative) eFC neural feature to each
participant was produced by summing r-values of all the eFC values in
positive (negative) eFC mask, respectively. Finally, by using the posi-
tive (negative) eFC feature as the independent variable (s), we estab-
lished the machine-learning models with support vector algorithm to
predict the cb factor scores in these independent samples by using
MATLAB (MathWorks Inc.) (see Supplementary Information). In the
present analysis, the participants in the original sample were divided
into six groups beforehand for model training, validation, and gen-
eralizations. A total of 724 participants in the original sample were
grouped into three independent samples as they were independently
recruited from three distinct teams in this data project, including
discovery sample 1 (n = 241, used for training this model), validation
sample 2 (n = 240, used for validating prediction performance of this
trained model) and generalization sample 3 (n = 244, used for testing
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the generalizability of this trained model). For rigorously examining
the generalizability of this eCPM, we generated three independent
samples from the remaining participants in the original sample, which
were highly heterogeneous compared to the discovery sample that
was used to train this model (generalization sample 4, n = 133, derived
from 29 ethnic minorities in the Chinese population; generalization
sample 5, n = 237, derived from the ethnic majority; generalization
sample 6, n = 219, scanned after the COVID-19 pandemic).

Inter-subject representation similarity analysis (IS-RSA)
We deployed the inter-subject representation similarity analysis to
capture the correlation between multivariate similar patterns of eFCs
and the cb factor, which could interpret what eFCs contributed to the
aforementioned prediction. Firstly, each “edge-centric” node was
vectorized into a 1 × 4949 “connectome pattern” by including all the
eFCs correlated to a given “edge-centric” node (no thresholds to these
correlations here). Then, the inter-subject correlations (i.e., r-values) of
each “connectome pattern” were calculated, and these 1-r-values were
used in the inter-subject correlation matrix to generate a neural
representation dissimilarity matrix (RDM) for each “edge-centric”
node. Further, we built the behavioral RDM by estimating the Eucli-
deandistanceof the cb factor scores across all the pairs of participants.
Next, we vectorized all the neural RDMs (and one behavioral RDM)
using their upper triangular matrices, excluding diagonal. Each neural
RDM was then correlated with the vectorized upper triangular matrix
of one behavioral RDMby using Spearman’s rank correlation. By doing
so, each correlation reflected the representation similarity (RS) of the
neural eFC connectome pattern in a given “edge-centric” node to
the cb factor, with a positive (negative) r-value for RS (RDS).
Statistical significance for these r-values was set to p < .05 with
Benjamini–Hochberg correction to address multiple comparison
issues.

Quantitative twin ACEmodel and the edge-centric connectome-
transcriptional signatures
The full model with ACE (A, additive genetic effects; C, common
environment; E, unique environment) framework has been established
to clarify the heritability of eFC connectome patterns that identified
significant RS in the above analysis. Specifically, we decomposed var-
iances of additive genetic effects (A) from the latent factor model for
127 pairs ofmonozygotic twins and 118 pairs of dizygotic twins (Beijing
Twin Study Dataset; see Supplementary Information). Model perfor-
mances were further compared to these nested submodels dropping
out latent factor (s) (e.g., AE or E), in order to determine the optimal
model. Quantitative heritabilitywas finally estimated from this optimal
model once the statistical significance of Δχ2 was no longer less
than 0.5.

Preprocessing of the AHBA dataset followed the standardized
pipeline and generated a gene-brain matrix (10,027 genes × 100 par-
cels) by aligning these gene expression levels into a brain spatial map
based on the Schaefer-100 atlas. In addition, we extracted the eFC-cb-
factor scores RS vectors (1 RS × 100 parcels) representing the edge-
centric neural phenotype of this bridging factor. To capture
connectome-transcriptional signatures, we carried out the partial least
square (PLS) regression model by fitting the gene-brain matrix
(10,027 × 100, independent variables) into this RS vector (1 × 100,
dependent variable) (see Supplementary Information). To obviate
over-fitting, this PLS regression model has been validated by using the
10-fold cross-validation method. The permutation test (at n = 5000)
was used to estimate the statistical significance of each component of
this PLS model. Further, the bootstrapping method with n = 5000 was
deployed to estimate weights and corresponding statistics (Z-values)
for these genes. To balance both Type-I and Type-II errors, the statis-
tical threshold was set to Z > 3 (PLS+) or Z < −3 (PLS-). We finally

extracted genes that reached the predefined statistical threshold
aforementioned from the first and second components (PLS1 and
PLS2), as in line with technical guidelines in such imaging-
transcriptomic analysis111.

We capitalized on Gene Annotation by the Macroscale Brain-
imaging Association (GAMBA) dataset to estimate associations
between these genes that we identified above and brain features, as
well as the risks of neurological/psychiatric diseases. These brain fea-
tures included macroscale brain networks, brain cognitive ontology,
cognitive terms, and cortical expansion and metabolism (see Supple-
mentary Information). The statistical significance for each model has
been estimated by the ensemble-based (null-brain-gene) model, with
Bonferroni–Holm correction.

Finally, we deployed the “Metascape”124 and “Specific Expression
Analysis (SEA)” datasets to delineate functional processes that were
enriched from gene sets identified in PLS1 and PLS2, respectively. The
gene set was used as input for this platform andwas further annotated
by multiple biological databases (see Supplementary Information). To
assess gene enrichment specificity, the specificity index probability
(pSI) is used to determine how significantly a gene set is enriched in a
particular tissue compared to others across varied thresholds in gen-
eral background enrichment125,126. The statistical significance of such
enrichment for this given gene set was estimated, with
Benjamini–Hochberg FDR corrections. The above estimations were
implemented by either an online interactive platform or an R pack-
age (e.g., pSI).

Data availability
The data generated in this study to reproduce findings/figures have
been deposited in the Open Science Framework (OSF) repository
under accession code (https://osf.io/nu32z/). The data used for gene
expression are available in the Allen Human Brain Atlas (AHBA) data-
base under accession code (https://human.brain-map.org/static/
download). The data used for genetic enrichment analysis are avail-
able in Metascape databases (https://metascape.org/gp/index.html)
and GAMBA databases (http://dutchconnectomelab.nl/GAMBA/), with
fully open accesses. The processed data for representation similarity
analysis (RSA) areprovided in the Supplementary Information. The raw
genetic neuroimaging data are available under restricted access for
data legal restrictions. Specifically, these genetic neuroimaging data
are collected by the GGBBP Data Collection Project, which has not yet
completed and is expected to be fully done by May 2028. Thus, as
biometric data in an ongoing project, the legal censorship to share
them fromdata regulation authorities is not available at this time, until
this project is fully completed. For scientific collaborations or research
purposes, any researchers can obtain access to these data by con-
sulting the joint supervision team of GGBBP (PIs: H.Q.H., Q.J., F.T.Y.,
C.H., and L.X.). Response to reasonable access requests is expected to
be done within two weeks. The expiration date to access these data is
no more than three months since the data request was
approved. Source data are provided with this paper.

Code availability
Codes for estimating gradients and PLS components can be found at
the GitHub repository from Xia et al. (https://github.com/mingruixia/
MDD_ConnectomeGradient). Codes and software for reproducing
eCPM analysis can be accessed at Neurospider (https://neurospider.
cn/post/62271/) and Github repository from Faskowitz et al. (https://
github.com/brain-networks). Codes for SVM is openly available at
https://www.csie.ntu.edu.tw/~cjlin/libsvm/, without access restric-
tions. Brain maps and plots were built by Surf Ice (https://www.nitrc.
org/projects/surfice) and R packages (i.e., ggsegSchaefer, ggplot,
ggseg). Self-custom codes have been deposited at Open Science Fra-
mework (https://osf.io/nu32z/).
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